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Dense packings of the Platonic and Archimedean
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Dense particle packings have served as useful models of the struc-
tures of liquid, glassy and crystalline states of matter1–4, granular
media3,5, heterogeneous materials3 and biological systems6–8.
Probing the symmetries and other mathematical properties of
the densest packings is a problem of interest in discrete geometry
and number theory9–11. Previous work has focused mainly on
spherical particles—very little is known about dense polyhedral
packings. Here we formulate the generation of dense packings
of polyhedra as an optimization problem, using an adaptive
fundamental cell subject to periodic boundary conditions (we term
this the ‘adaptive shrinking cell’ scheme). Using a variety of multi-
particle initial configurations, we find the densest known packings
of the four non-tiling Platonic solids (the tetrahedron, octahedron,
dodecahedron and icosahedron) in three-dimensional Euclidean
space. The densities are 0.782…, 0.947…, 0.904... and 0.836...,
respectively. Unlike the densest tetrahedral packing, which must
not be a Bravais lattice packing, the densest packings of the other
non-tiling Platonic solids that we obtain are their previously
known optimal (Bravais) lattice packings. Combining our simu-
lation results with derived rigorous upper bounds and theoretical
arguments leads us to the conjecture that the densest packings of
the Platonic and Archimedean solids with central symmetry are
given by their corresponding densest lattice packings. This is the
analogue of Kepler’s sphere conjecture for these solids.

A large collection of non-overlapping solid objects (particles) in
d-dimensional Euclidean space Rd is called a packing. The packing
density w is defined as the fraction of space Rd covered by the particles.
A problem that has been a source of fascination to mathematicians
and scientists for centuries is the determination of the densest arrange-
ment(s) of particles that do not tile space and the associated maximal
density wmax (ref. 9). Most previous work has focused on spherical
particles, but even for this simple shape the problem is notoriously
difficult. Indeed, Kepler’s conjecture concerning the densest sphere
packing arrangement was only proved by Hales in 2005 (ref. 10).

Attention has very recently turned to finding the maximum-
density packings of nonspherical particles in R3, including ellip-
soids12, tetrahedra13,14, and superballs15. Very little is known about
the densest packings of polyhedral particles that do not tile space,
including the majority of the Platonic and Archimedean solids
studied by the ancient Greeks. The difficulty in obtaining dense pack-
ings of polyhedra is related to their complex rotational degrees of
freedom and to the non-smooth nature of their shapes.

The Platonic solids (mentioned in Plato’s Timaeus) are convex
polyhedra with faces composed of congruent convex regular poly-
gons. There are exactly five such solids: the tetrahedron, icosahedron,
dodecahedron, octahedron and cube (see Fig. 1). An Archimedean
solid is a highly symmetric, semi-regular convex polyhedron com-
posed of two or more types of regular polygons meeting in identical

vertices. There are thirteen Archimedean solids (see Fig. 1). We note
that the tetrahedron (P1) and truncated tetrahedron (A1) are the only
Platonic and Archimedean solids, respectively, that are not centrally
symmetric. A particle is centrally symmetric if it has a centre C that
bisects every chord through C connecting any two boundary points of
the particle. We will see that this type of symmetry is fundamental in
determining the nature of the dense packing arrangements.

Some definitions are in order here. A lattice L in R3 is an infinite
set of points generated by a set of discrete translation operations
(defined by integer linear combinations of a basis of R3) (ref. 4). A
(Bravais) lattice packing is one in which the centroids of the non-
overlapping particles are located at the points of L, each oriented in
the same direction. The space R3 can then be geometrically divided
into identical regions F called fundamental cells, each of which con-
tains just the centroid of one particle. Thus, the density of a lattice
packing is given by

w~
vparticle

V F

ð1Þ

where vparticle is the volume of a particle and VF is the volume of a
fundamental cell. A periodic packing of particles is obtained by
placing a fixed non-overlapping configuration of N particles (where
N $ 1) with arbitrary orientations in each fundamental cell of a lattice
L. Thus, the packing is still periodic under translations byL, but the N
particles can occur anywhere in the chosen cell subject to the non-
overlap condition. The density of a periodic packing is given by

w~
Nvparticle

V F

ð2Þ

We formulate the problem of generating dense packings of non-
overlapping polyhedra within an adaptive fundamental cell subject to
periodic boundary conditions as an optimization problem (see
Methods Summary). We call this optimization scheme the ‘adaptive
shrinking cell’ (ASC). Figure 2 illustrates a simple sequence of con-
figuration changes for a four-particle packing.

Finding the densest packings of regular tetrahedra is part of the
eighteenth problem in Hilbert’s famous set of problems. The densest
(Bravais) lattice packing of tetrahedra (which requires all of the
tetrahedra to have the same orientations) has the relatively low
density wlattice

max ~18=49~0:367 . . . and each tetrahedron touches 14
others16. Recently, Conway and Torquato showed that the densest
packings of tetrahedra must not be Bravais lattice packings, and
found packings with density as large as w < 0.72 (ref. 13).
P. Chaikin, S. Wang and A. Jaoshvili experimentally generated
jammed disordered packings of nearly tetrahedral dice with
w < 0.75 (unpublished work). Chen14 has recently discovered a
periodic packing of tetrahedra with w 5 0.7786…, which we call
the ‘wagon-wheels’ packing because the basic subunits consist of
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two orthogonally intersecting ‘wagon wheels’. A wagon wheel
consists of five contacting tetrahedra packed around a common edge
(see figure 1a of ref. 13).

We begin by solving the ASC scheme to obtain dense packings of
tetrahedra using initial configurations based upon low-density
versions of the aforementioned packings. Initial conditions based
on periodic copies of the wagon-wheels packing with 72 particles
per cell lead to the densest packing of tetrahedra reported to date
with w 5 0.782021… (see Fig. 3). Its lattice vectors and other char-
acteristics are given in the Supplementary Information. The pref-
erence for face-to-face (not vertex-to-face) contacts and the lack of
central symmetry ensure that dense tetrahedral packings must be
non-lattice structures.

To obtain dense packings of icosahedra, dodecahedra and octahedra,
we use a wide range of initial configurations. These include multi-
particle configurations (with N ranging from 20 to 343) of random
‘dilute’ packings and a variety of lattice packings with a wide range of
densities. For icosahedra, dodecahedra and octahedra, we obtain final
packings with densities at least as large as 0.836315…, 0.904002… and
0.947003…, respectively, which are extremely close in structure and
density to their corresponding optimal lattice packings with

wlattice
max ~0:836357 . . . (ref. 17), wlattice

max ~ 5z
ffiffiffi
5
p� ��

8~0:904508 . . .
(ref. 17) and wlattice

max ~18=19~0:947368 . . . (ref. 18), respectively.
Figure 3 shows the optimal lattice packings of icosahedra, dodecahedra
and octahedra, in which each particle contacts 12, 12 and 14 others,
respectively. Our simulation results strongly suggest that the optimal
lattice packings of the centrally symmetric Platonic solids are indeed the
densest packings of these particles, especially since these arise from a
variety of initial dilute multi-particle configurations within an adaptive
fundamental cell.

We can show that the maximal density wmax of a packing of con-
gruent nonspherical particles of volume vparticle is bounded from
above according to:

wmaxƒwupper bound
max ~min

vparticle

vsphere

pffiffiffiffiffi
18
p , 1

� �
ð3Þ

where vsphere is the volume of the largest sphere that can be inscribed in

the nonspherical particle and p
� ffiffiffiffiffi

18
p

is the maximal sphere-packing

density. The proof is given in the Supplementary Information. The
upper bound (3) will be relatively tight for packings of nonspherical
particles provided that the asphericity c (equal to the ratio of the
circumradius to the inradius, see online-only Methods) of the particle

a b c

Figure 2 | Sequential changes of a four-particle packing configuration
according to the design variables in the ASC algorithm. By efficiently
exploring the design-variable space, which consists of the particle
configurational space and the space of lattices (owing to our use of an
adaptive fundamental cell), the ASC scheme enables us to find a point in the
design-variable space in the neighbourhood of the starting point that has a
higher packing density than the initial density. The process is continued
until the deepest minimum of the objective function (a maximum of packing

density) is obtained, which could be either a local or global optimum. Here
we show such a sequence. a, An initial configuration of four particles. b, A
trial move of a randomly selected particle (red) that is rejected because it
overlaps another particle. This is determined precisely using the separation
axis theorem26. c, A trial move that is accepted, which results in a
deformation and compression (small in magnitude) changing the
fundamental cell shape and size as well as the relative distances between the
particles.

P1 P2 P3 P4 P5 P6

A2 A3 A4 A5 A6 A7

A8 A9 A10 A11 A12 A13

Figure 1 | The five Platonic solids and the 13 Archimedean solids. The five
Platonic solids are the tetrahedron (P1), icosahedron (P2), dodecahedron
(P3), octahedron (P4) and cube (P5). The 13 Archimedean solids are the
truncated tetrahedron (A1), truncated icosahedron (A2), snub cube (A3),
snub dodecahedron (A4), rhombicosidodecahedron (A5), truncated

icosidodecahedron (A6), truncated cuboctahedron (A7), icosidodecahedron
(A8), rhombicuboctahedron (A9), truncated dodecahedron (A10),
cuboctahedron (A11), truncated cube (A12), and truncated octahedron
(A13). The cube (P5) and truncated octahedron (A13) are the only Platonic
and Archimedean solids, respectively, that tile space.
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is not large. Bound (3) cannot generally be sharp (that is, exact) for a
nontiling, nonspherical particle, so any packing whose density is close
to the upper bound (3) is nearly optimal, if not optimal.

Figure 4 compares the density of the densest lattice packings of the
Platonic and Archimedean solids to the corresponding upper bounds
on the maximal density for such packings. The central symmetry of
the majority of the Platonic and Archimedean solids and their asso-
ciated relatively small asphericities explain the corresponding small
differences between wlattice

max and wupper bound
max and is consistent with our

simulation findings that strongly indicate that their optimal arrange-
ments are their respective densest lattice packings.

Why should the densest packings of the centrally symmetric solids
be their corresponding optimal lattice packings? First, face-to-face
contacts allow such polyhedral packings to achieve higher densities
because they enable the contacting centroids around each particle to
come closer together. Second, face-to-face contacts are maximized

when each particle has the same orientation because of the central
symmetry and the equivalence of the three principal axes (associated
with the small asphericity) of the solid. This is consistent with a lattice
packing, the densest of which is the optimal one. These arguments in
conjunction with our simulation results for the Platonic solids and
rigorous bounds lead us to the following conjecture: The densest
packings of the centrally symmetric Platonic and Archimedean solids
are given by their corresponding optimal lattice packings. This is the
analogue of Kepler’s sphere conjecture for these solids.

There is no reason to believe that denser packings of tetrahedra
cannot be achieved by using even better initial conditions than those
based on the wagon-wheels packing and a larger number of particles.
We observe that the densest packings of all of the Platonic and
Archimedean solids reported here as well as the densest known pack-
ings of superballs15 and ellipsoids12 have densities that exceed the
optimal sphere packing density wsphere

max ~p
� ffiffiffiffiffi

18
p

~0:7408 . . .. These
results are consistent with Ulam’s conjecture19, which may be
violated if the convex particle has little or no symmetry, but a
counterexample has yet to be given.

How does our conjecture extend to other polyhedral packings? It is
natural to group the infinite families of prisms and antiprisms20 with
the Archimedean solids. A prism is a polyhedron having bases that
are parallel, congruent polygons and sides that are parallelograms. An
antiprism is a polyhedron having bases that are parallel, congruent
polygons and sides that are alternating bands of triangles. Prisms with
an even number of sides and antiprisms are centrally symmetric and
so it may be that Bravais lattices of such solids are optimal. However,
prisms with an odd number of sides are not centrally symmetric and
thus their optimal packings may not be Bravais lattices. In future
work, we will determine whether our conjecture extends to prisms
and antiprisms.

METHODS SUMMARY

The objective function in our ASC optimization scheme is taken to be the

negative of the packing density w. Starting from an initial packing configuration

in the fundamental cell, the positions and orientations of the polyhedra are

design variables for the optimization. Importantly, we also allow the boundary

of the fundamental cell to deform as well as shrink or expand such that there is a

net shrinkage (increase of the density) in the final state. Thus, the deformation

and compression/expansion of the cell boundary are also design variables. We

are not aware of any packing algorithm that employs both a sequential search of

the configurational space of the particles and the space of lattices via an adaptive

fundamental cell that shrinks on average to obtain dense packings. The ASC has a

number of novel features that distinguish it from previous packing algorithms

that have been devised for spheres21–23, ellipsoids24,25 and superballs15 (see online-

only Methods for details).

a b c d

Figure 3 | Portions of the densest packing of tetrahedra obtained from our
simulations, and the optimal lattice packings of the icosahedra,
dodecahedra and octahedra to which our simulations converge. All of these
packings are at least locally jammed, that is, each particle cannot be
translated or rotated while fixing the positions and orientations of all the
other particles27,28. We emphasize that even though the latter three cases
begin with complex multi-particle initial configurations in the large
fundamental (repeating) cell, they all converge to packings in which a

smaller repeat unit contains only one centroid, that is, they all converge to
Bravais lattice packings and, in fact, the corresponding densest lattice
packings. a, Tetrahedral packing. We depict the 72 particles in the
fundamental cell of this non-lattice packing. Within the cell, the particles are
characterized by short-range translational order and a preference for face-to-
face contacts (see Supplementary Information). b, Optimal lattice packing of
icosahedra. c, Optimal lattice packing of dodecahedra. d, Optimal lattice
packing of octahedra.
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Figure 4 | Comparison of the densest known lattice packings (blue circles)
of the Platonic and Archimedean solids16–18 to the corresponding upper
bounds (red squares) obtained from bound (3). The large asphericity and
lack of central symmetry of the tetrahedron (P1) and truncated tetrahedron
(A1) are consistent with the large gaps between their upper-bound densities
and densest-lattice-packing densities, and the fact that there are non-lattice
packings with densities appreciably greater than wlattice

max (green triangles). The
truncated tetrahedron is the only non-centrally symmetric Archimedean
solid, the densest known packing of which is a non-lattice packing with two
particles per fundamental cell and a density at least as high as 23/
24 5 0.958333… (ref. 13).
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Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

The ASC optimization problem could be solved using various techniques,

depending on the shapes of the particles. For example, for spheres, we have shown

that linear programming techniques can efficiently produce optimal solutions

(unpublished work). However, for polyhedra, the complex non-overlap condi-

tions make the ASC scheme inefficient to solve using linear programming

methods. For polyhedral particles, we solve the ASC optimization problem using

a standard Monte Carlo procedure with a Metropolis acceptance rule for trial

moves to search the design-variable space efficiently, which contains both the

configuration space of the particles and the space of lattices.

In our implementation, a polyhedral particle is represented by the position of its

centroids as well as the coordinates of all its vertices relative to the centroid.

Although this representation contains redundant information, it is a convenient

way to deal with the rotational motions of the polyhedra. To search the configura-

tion space of the particles, small random trial moves of arbitrarily selected particles

are attempted sequentially for each particle. Each trial move is equally likely to be a

translation of the centroid of the particle or a rotation of the particle about a

randomly oriented axis through its centroid.

The space of lattices is searched by deforming/compressing/expanding the

fundamental cell, which is completely characterized by a strain tensor in the

linear regime (that is, small strain limit). The trace of the strain tensor determines

the volume change of the fundamental cell and is involved in the objective

function. The off-diagonal components of the tensor determine the shape

change of the cell. The positions of the particles centroids are relative coordinates

with respect to the lattice vectors. When the strain tensor is applied to the lattice

vectors, although the relative coordinates of the centroids remain the same, the

Euclidean distances between the particles will change. Thus, the deformation/

compression/expansion of the fundamental cell at least in part allows for col-

lective particle motions, which is more efficient for finding a direction in the

design-variable space leading to a higher packing density. Moreover, it is the

overall compression of the fundamental cell that causes the packing density to

increase, not the growth of the particles, as in most molecular dynamics and

Monte Carlo hard-particle packing algorithms15,21–25. It should be noted that for

polyhedral particles, an algorithm that employs particle growth with an adaptive

non-shrinking fundamental cell is computationally less efficient than the ASC

scheme, which fixes the particle size while allowing the cell to shrink on average.

Whereas a ‘growth’ algorithm requires manipulating the coordinates of the

vertices of all of the particles, our ‘shrinkage’ method (in which the particle sizes

are kept fixed) requires only the computation of the six strain components.

In the simulation, starting from an initial configuration of polyhedral particles, a
trial configuration can be generated by moving (translating and rotating) a

randomly chosen particle or by a random deformation and compression/expansion

of the fundamental cell. If this causes interparticle overlaps, the trial configuration is

rejected; otherwise, if the fundamental cell shrinks in size (which makes the density w
higher), the trial configuration is accepted. On the other hand, if the cell expands in

size, the trial configuration is accepted with a specified probability pacc, which is

made to decrease as w increases and approaches zero at the jamming limit27 (that is,

locally maximally dense packing) is reached. In particular, we find pacc, with an initial

value pacc < 0.35 that decreases as a power law with an exponent equal to 21, works

well for most systems that we studied. The ratio of the number of particle motions to

the number of cell trial moves should be greater than unity (especially towards the

end of the simulation), because compressing a dense packing could cause many

overlaps between the particles. Depending on the initial configuration, the magni-

tudes of the particle motions and the strain components need to be chosen carefully

to avoid the system getting stuck in some shallow local minimum.

A crucial aspect of any packing algorithm is the need to check for interparticle

overlaps under attempted particle motions. Hard polyhedron particles, unlike

spheres, ellipsoids and superballs, do not possess simple ‘overlapping’ functions.
(The overlap function of a pair of strictly convex and smooth particles is a

function of the positions, orientations and shapes of the two particles, whose

value indicates whether the two particles overlap or not, or whether they are

tangent to one another.) The separation axis theorem26 enables us to check for

interparticle overlaps for polyhedra up to the numerical precision of the

machine. In particular, the theorem states that two convex polyhedra are

separated in space if and only if there exists an axis, on which the projections

of the vertices of the two polyhedra do not overlap. The separation axis is either

perpendicular to one of the faces of the polyhedra or perpendicular to a pair of

edges, one from each polyhedron. Thus, this reduces the number of axes that

need to be checked from infinity to [E(E 2 1)/2 1 2F], where E and F are the

number of edges and number of faces of the polyhedra, respectively. A pre-check

using the circumradius and inradius of the polyhedra dramatically speeds up the

simulations, that is, two particles are guaranteed to overlap if the centroidal

separation is smaller than twice the inradius and guaranteed not to overlap if

the centroidal separation is larger than twice the circumradius. The circum-

sphere is the smallest sphere containing the particle. The insphere is the largest

sphere than can be inscribed in the particle.
The cell method and near-neighbour list24,25 are also used to improve the

efficiency of the simulation, but are appropriately modified to incorporate the

adaptive fundamental cell.
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