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Abstract

In this paper, a thermo-mechanical model of pebble beds is adopted [D. Hofer, M. Kamlah, Drucker-Prager-Cap creep
modelling of pebble beds in fusion blankets, Fusion Eng. Des. 73 (2005) 105-117] and developed based on experiments by Dr.
Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear
elastic law [O. Coube, Modelling and numerical simulation of powder die compaction with consideration of cracking, PhD
Thesis, University Pierre et Marie, Paris VI, 1998], the Drucker-Prager-Cap theory [ABAQUS, Analysis User’s Manual, Version
6.5,2004], a modified creep law [D. Hofer, M. Kamlah, Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets,
Fusion Eng. Des. 73 (2005) 105-117]. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium
pebble beds [J. Reimann, G. Piazza, Z. Xu, A. Goraieb, H. Harsch, Measurements of the thermal conductivity of compressed
beryllium pebble beds, FZKA 7096 (2005)] is taken into account and full thermo-mechanical coupling is considered.

By analyzing the deformation mechanism of the oedometric experiments, a new method is developed to determine the set
of material parameters, including the temperature dependent hardening law. With the new method, the material parameters can
be derived directly from the empirical equations (the so-called “Reimann fits” for pebble beds) including the thermoplastic
behaviour. All these thermo-mechanical constitutive laws are implemented in ABAQUS by user defined field (USDFLD) and
CREEP subroutines. The oedometric compression tests and creep tests under different temperatures are simulated by the present
model, and the results show that the model gives a good description of experimental results. The analysis on the precompaction
procedure of pebble beds assembly (PBA) is applied to show the feasibility of the present material model.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the development of fusion technology, pebble
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originating from the fusion reaction into usable heat
and shielding of the superconducting magnets against
neutron and gamma radiation, its main purpose is
breeding of the fuel tritium by capturing neutrons in
lithium [5,6]. Two main types of pebble beds are used
in HCPB blanket: first ceramic pebble beds as breeder
material, such as lithium orthosilicate (LizSiOy4); sec-
ond beryllium pebble beds as neutron multiplier. The
blanket is split into several modules filled with breeder
and neutron multiplier pebble beds. The pebble beds are
composed of nearly spherical shaped pebbles, whose
diameters range from 0.25 to 2mm [7]. Due to the
extreme working conditions in the fusion reactor, a
deep understanding of the thermo-mechanical proper-
ties of these pebble beds is essential. Thus, a material
model for describing their response to the external exci-
tation is needed, to check the requirements in design
and analysis of the HCPB blanket.

For the thermo-mechanical modelling of pebble
beds, there are several recent approaches in develop-
ment. As a type of the discrete material, similar to sand,
pebbles can be modeled by both a discrete element
method (DEM) and a continuum approach.

In the first type of modelling, by means of the so-
called discrete element method, the contact interactions
and deformations of particles are analyzed in view
of the constitutive modelling of pebble beds. As one
issue, thermal creep of a ceramic breeder pebble bed is
investigated by 3D discrete numerical thermomechan-
ics code [8,9]. Other researchers [10-12] simplify the
particles in regular lattices as beam elements, which
represent the contact effects between pebbles. Consid-
ering the microstructures of pebble beds, the defor-
mation mechanism can be clearly revealed by DEM
approach, including the mechanical behaviours, ther-
mal creep and the thermal conductivity. The physical
meanings of some phenomenological material param-
eters can be better understood by this approach, such
as the strain dependent thermal conductivity. But the
problem remains, for example, that the complexity of
the microstructure and the plastic contact of pebbles are
still idealized in this approach. Furthermore, the plastic
deformation of pebble beds results from a combination
of the plastic deformations and the irreversible move-
ments/rearrangements of pebbles, while in DEM, it is
difficult to deal with the later effect.

The second type of modelling, considering mate-
rials composed of particles as continuous media, is

the thermo-mechanical modelling in the framework of
continuum mechanics. To take into account the typi-
cal material behaviour in engineering analyses, a cor-
responding phenomenological constitutive model can
be exploited in the framework of the finite element
method. By investigation of granular materials, many
different models are developed in soil mechanics, such
as the Drucker-Prager-Cap model and the Cam-Clay
model. It should be noted that whether it is appropriate
to use a continuum approach depends on the ratio of
the size of the microstructure, i.e. an individual par-
ticle, compared to the dimension of the component
under investigation. In the activities of FZK [1,13],
the modified Drucker-Prager-Cap theory, which is one
of the most frequently used models in soil mechan-
ics, is applied as the constitutive model for pebble
beds. The predictions of the model generally agree with
the experiments, if the material parameters are chosen
properly. However, in some specific cases unrealistic
plastic softening behaviour of the Drucker-Prager-Cap
model during unloading is observed. In the activities of
Dipartimento di Ingegneria Nucleare (DIN, Palermo),
Di Maio et al. [14] use both the Drucker-Prager-Cap
model and the Gurson’s model as plasticity laws, com-
bined with a so-called the hyperporous elasticity law to
analyze the SCATOLA benchmark experiments. Moti-
vated by experimental results and by the empirical
loading and unloading curves proposed by Reimann,
Fokkens [15] applies two different elasticity laws for
loading and unloading. This model is implemented in
the finite element code MARC and used to analyze the
thermo-mechanical behaviour of the pebble bed assem-
bly (PBA) in pre-compaction and start-up procedures.

The aim of both approaches mentioned above is
to represent the constitutive behaviours of the mate-
rials under the framework of different models. And the
agreement between the prediction of model and the
experimental results, such as oedometric compression,
is the key to show the applicability of material models.
In this investigation, the continuum approach is used
for the modelling of the thermo-mechanical behaviours
of pebble beds. Since the ratio of pebble size to the
bed dimension is sufficiently small, this appears to be
justified for both the experimental and the theoretical
investigations.

The present material model is mainly based on sys-
tematical thermo-mechanical experiments [4,7,16—19]
and a modified Drucker-Prager-Cap theory [1]. By
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analyzing the macroscopic deformation mechanism of
the oedometric test, a new method was developed to
identify the possible set of material parameters in the
Drucker-Prager-Cap theory, including the temperature
dependent hardening law. With the new method, the
empirical equations representing the experimental data
for pebble beds, the so-called Reimann fits, can be used
directly. In particular, the thermo-plastic behaviour of
pebble beds is represented in terms of the temperature-
dependence in the hardening law. Furthermore, the
strain dependence of the thermal conductivity of beryl-
lium pebble beds is taken into consideration in the
present model.

This model is implemented in ABAQUS by user
subroutines (USDFLD and CREEDP, see ref. [3]). Sev-
eral comparisons between the predictions of model and
experiments are shown in this paper.

This paper is organized as follows. In Section 2,
the present constitutive model for the representation
of the material properties mentioned above is intro-
duced. The analysis of the oedometric experiments and
the method of the determination of material parame-
ters from experimental data and empirical curves are
discussed in Section 3, with special emphasis on the
hardening law in the Drucker-Prager-Cap theory. The
validations of the present thermo-mechanical model are
listed in Section 4, and the improvement brought about
by the present identification method and the validation
of the resulting model is discussed. Furthermore, in
Section 4, the present model is applied in the analysis
of the pre-compaction procedure of pebble beds assem-
bly. A few conclusions on the model and the obtained
results are drawn in Section 5.

2. Constitutive modelling of pebble beds

In the HCPB concept, a pebble bed has typical
dimensions on the order of 10~! m, but is composed
of nearly spherical particles with a typical diameter
of 1073 m. Thus, a continuum mechanics approach
is appropriate for the investigation of the thermo-
mechanical response to external excitation.

The main experimental phenomena of pebble beds
are non-linear elasticity, volumetric plasticity, volumet-
ric creep and strain dependent thermal conductivity.
To describe the thermo-mechanical behaviour of peb-
ble beds, the present material model is mainly based

on the following: a non-linear elasticity law describes
the observed stress dependent elasticity; the modified
Drucker-Prager-Cap model predicts the yielding and
hardening behaviour; the time-dependent behaviour
or the thermal creep is modelled by a so-called con-
solidation (cap) creep mechanism; finally, the strain
dependent thermal conductivity and the thermal expan-
sion obtained in experiments are also implemented in
the present material model. In this section, the present
material model will be discussed in detail.

2.1. Non-linear elasticity law

For stress states inside the yield surface, it is
assumed that the material behaves elastically. During
unloading and reloading in the experiments (oedo-
metric compression experiments), non-linear and
non-hysteretic behaviour is observed. Since in the
experiment, the unloading paths are parallel at dif-
ferent deformation levels, we consider the non-linear
elastic properties a function of the stresses. The
work of Coube [2] on powder die compaction deals
with a material with microstructure having similar
character as the pebble beds under consideration
in this work. Therefore, the non-linear elasticity
law proposed by Coube is adopted for the present
material model. This law possesses the structure of
the classical Hooke’s law, however, Young’s modulus
dependents on the current stress state via the von
Mises stress g and the hydrostatic pressure p in the
form:

1+v 1 5/2
E:Ae[ 3 q2+3<2—v)p2} +Ey. (D)

Here, Ac, s and E( are material parameters, v the
Poisson’s ratio and g and p may be expressed in terms
of the principle stresses as:

1
q= \/2[(01 —02)* + (02 — 03)” + (01 — 03)°]

o1 toy+o3
B 3
@
Fig. 1 gives an example of the contours of Young’s
modulus according to Eq. (1) in the g—p plane, and the
shape of the contours are controlled by material param-
eters v and s. This non-linear elasticity law has been
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Fig. 1. The contour plot of Young’s modulus (Eq. (1)) in the g—p
plane (v = 0.25, s=0.6).

implemented by a user-defined-field routine (USD-
FLD) in ABAQUS [1].

2.2. Drucker-Prager-Cap theory

In the present model, the plasticity of pebble beds is
described by the Drucker-Prager-Cap model, which is
a commonly used in geomechanics. This model has
been implemented in the commercial finite element
program ABAQUS [3] representing the yielding, hard-
ening and time-dependent mechanical behaviour. The
yield surface consists of the shear failure surface F
and the cap surface F,. Fig. 2 gives a representation of

Transition
q surface, F, .-~

Shear failure, F

$ a(d+ p,tan f)

d+p, tan B

/ fffff Cap, F.

P, o P P
R(d + p, tan )

Fig. 2. The Drucker-Prager-Cap model (ABAQUS [3]).

the Drucker-Prager-Cap model in g—p plane. The shear
failure surface Fs characterizes the pressure-dependent
shear failure loading: as the pressure increases, a higher
shear loading is needed to initiate shear failure. The
cap surface F describes the plastic behaviour under
the hydrostatic compression, which is not present in
classical metal plasticity.

2.2.1. Formulas and material parameters

In detail, the yield criterion Fg and the non-
associated plastic flow-potential G for shear failure
surface are defined as:

Fs=qgq—ptan—d=0

; (3)
Gs = \/[(p — pa) tan B + (¢)°
where
"= M 4)
+ R tan B

For the cap surface, the yield criterion F. and the
associated flow-potential G, read as:

Fe=\/(p— pa? + (RgY> — R + py tan p) = 0

Ge = \/(p — pa + (Rg)?
s)

The plastic flow-potentials G. and Gy are parts of
ellipses forming together a continuous and smooth
potential surface. There are several material parame-
ters that need to be identified, such as the constants S,
R, d and the material function py,.

Constant B is the Drucker-Prager friction angle
defining the slope of the shear failure surface Fj. It is
not identical with the friction angle of granular materi-
als, and the relation between these two “friction angles”
will be discussed in Section 4.2. Constant d represents
the value of the von Mises stress related to the cohesion
of the material. For the pebble beds under consideration
here, the value of d is almost to 0. Constant R con-
trols the shape of the elliptic cap surface F.. Finally,
pv defines the position of ellipse F. The dependence
of py on the loading history is assumed to represent the
hardening properties of material under consideration.
For instance, in ABAQUS py, is taken to be function
of the inelastic volumetric strain, i.e. pb(sivn ) (default

ol

with “*CAP HARDENING”). Furthermore, it is also
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possible to implement a plastic volumetric hardening

law pb(esgl) or a work hardening law by a USDFLD
routine.

2.2.2. Plastic flow theory

Since the plastic flow rule of Drucker-Prager-Cap
model is not given in detail in the ABAQUS manual,
they will be deduced in the following. We discuss the
plastic flow in multi-surface and non-associated plas-
ticity with f1(o,k)=0 and G'(o) as the I-th yielding
(failure) criterion and the plastic flow-potential, cor-
respondingly, where « is a hardening parameter (an
internal variable). For instance, in the Drucker-Prager-
Cap model, Egs. (3) and (5) give the description of yield
(failure) surfaces and the plastic flow-potentials on the
shear failure surface and cap surface, respectively. The
plastic strain increments can be written as

10 I

o 3G

def; = > dr oy (©6)
=1

where dA is a factor of proportionality and Iy is the num-
ber of the active yield surfaces. If the I-th yield (failure)
surface is active, the corresponding consistency condi-
tion gives by differentiation

of! af!
aff = ¥ o+ Y ae o, 7
adij ’ oK
or in another form
oldo — Adr =0, (8)
where
_ EI _ af[ afl af[ afl af[ 8f1 T
o do o 30’11 ’ 3(722’ 80’337 3012’ 80’237 3013
)
1 af!
A= LU 4 (10)
dr ok

The scalar function A depends on the hardening law.
If the hardening parameter « can be written as a function
of the plastic strains,

K = K(ePh, (11)
the differentiated form is:

)
dic = = dgP!. (12)

T 9P

Substituting Eq. (12) into Eq. (9) and replacing dsP!,
A can be obtained as
of! o oGT of! ak
T 9k deP!

B. 13)

o 9ePl o

where

5 06! _[9G" 36! 36! aG! aG! aG! !

do o 80’11 ’ 3(722’ 30’33’ 3(712’ 80’23’ 3(713
(14)

If time-dependent effects are taken into consider-
ation, and only yielding (hardening) mechanism [ is
active, the total strain increment can be decomposed
into elastic, plastic and creep strains as:

aG!
de = de® + deP' + de" = Dl do + dka— + de*,
(o}

5)

where D is the elastic stiffness matrix. Multiplying the
both sides of Eq. (15) with oD gives

o' D(de — de) = o do + a" DB dA. (16)

Due to Eq. (8), a! do at the right-hand side can be
replaced by A dA resulting in

oTD(de — de") = Adxr + T DB dA. a7)
Thus, the factor of proportionality is obtained as

oI D(de — de)
di=—-—""" (18)
A+oTDB

2.3. Representation of creep processes

For the Drucker-Prager-Cap model, two types of
creep laws are defined in ABAQUS: consolidation
creep and cohesion creep [20]. In this investigation,
only the consolidation creep mechanism is taken into
account. This seems justified since pebble beds in
fusion reactors are mainly in a tri-axial compression
stress state. For consolidation creep, the creep poten-
tial is equal to the plastic flow potential, Eq. (5), of the
cap yield surface, i.e.

G = \/(p — pu? + (Rq) 19)
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The corresponding creep flow rule is given by
dg 0G¢"
o 9o :

de®" = (20)
Here, de" is the work conjugate to the stress tensor
o. The work conjugate of the equivalent consolidation
creep stain de" is denoted by 6. Thus, /' is a propor-
tionality factor defined as
1 aGT
ff=—0o:—5 (21)

&er do

Buhler [13] has used a strain hardening formulation
for the creep law reading in integrated form of equiva-
lent consolidation creep stain d&" as:

1 B 1/m
(A* exp <—> p") At
m T

m
+ (ECT,O)I/nI] _ E,CI‘,O’ (22)

AECI' —

where p is the hydrostatic pressure, 2" the creep strain

at the beginning of the time step At, and A", B, m, n
are material parameters to be obtained from the exper-
imental results.

In ABAQUS, consolidation creep occurs for stress
states inside the area between the cap yield surface
F. and the critical line p =p, (see Fig. 2). This means
the condition for starting consolidation creep is p > p,.
Furthermore, in the “*CAP CREEP” option, the driv-
ing force for creep, i.e. the effective creep pressure
is defined as 6 = p" = p — p,, providing a smooth
transition to the areas in which consolidation creep
in not active (p<py). For the purpose of this work,
the ABAQUS consolidation creep option is not suf-
ficient for the following reason: while the creep strain
increases, by the hardening law pb(sivrz)l), the value of p,
will increase simultaneously. For creep under constant
hydrostatic pressure p, this means that the driving force
p" = p — p, will vanish gradually and, eventually,
creep will be stopped. For instance, the starting point
of the creep calculation locates inside the cap yield
surface, once the creep strains are increasing the cap
surface will be moved by the hardening effects of mate-
rial until the critical line p=p, surpasses the starting
point, which terminates the increasing of creep strains.
One possible modification is to define the hardening

law as pb(sghl), which totally avoids any hardening

effects introduced by creep strains. However, in two
step creep experiments [21], the compressive stress is
applied in two different steps at the same bed tem-
perature, showing that hardening behaviour may also
be introduced by creep strains. The selection of the
types of the hardening law depends on the amount of
volumetric creep strains present in the material under
consideration. For materials with a small range of creep
strains, the original ABAQUS definition is sufficient. If
there are large creep strain amplitudes, the modification
based on pb(sgzl) is necessary to obtain correspond-
ingly larger values of the creep strains.

2.4. Other thermo-mechanical material properties

The thermal conductivity of pebble beds is related
to the contact areas between particles, which depend
on the current stress—strain state. Experiments have
been carried out to measure of thermal conductivity
of beryllium pebble beds [4,22] and ceramic breeder
pebble beds [23]. It is found that the thermal con-
ductivity of beryllium pebble beds changes signifi-
cantly between un-compacted and compacted pebble
beds. This change has a notable impact on the thermo-
mechanical analysis. It gives rise to a full (and non-
linear) thermo-mechanical two-way-coupling, exclud-
ing the classical staggered approach of first solv-
ing the thermal boundary value problem and then
in a second step computing mechanical equilibrium
for the obtained thermal strains. So, it is essen-
tial to model the material behaviour with respect to
the change of thermal conductivity. By systemati-
cal experimental investigation on the thermal con-
ductivity of pebble beds under different compressive
strains and temperatures [4], an empirical equation
describing the strain dependent thermal conductivity is
obtained:

k(W /(m K)) = 1.81 4+ 0.0012T (°C) — 5
x 107'T (°C)* + (9.03 — 1.386
x 10737 (°C) — 7.6 x 10797 (°C)?
+2.1 x 107°T (°C)*)e (%) (23)

The functional form of Eq. (23) is adopted from
the semi-empirical Schluender—Bauer—Zehner (SZB)
model and the coefficients are identified from exper-
iments. It has been determined for bed temperatures
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between 200 and 650 °C and for a maximum pebble
bed deformation of 3.5%.

Eq. (23) makes a fully coupled thermo-mechanical
analysis necessary, as the change of deformation has
a strong influence on the thermal conductivity and,
thus, on the temperature field. The volumetric inelastic
strain-dependent thermal conductivity k(eiv‘z)l, T) found
in experiments, which is represented by Eq. (23), has
been implemented in ABAUQS by a USDFLD routine.

Furthermore, the coefficient of thermal expansion
and the specific heat for the different materials [15],
which have been obtained from experiments, have been
implemented in ABAQUS as functions of temperature.

3. Determination of material parameters

The present model describes the thermo-mechanical
properties of pebble beds in terms of non-linear elastic-
ity, plasticity, time-dependent effects and the thermal-
mechanical interactions by a multi-parameter system.
The only available experimental basis for the deter-
mination of the material parameters is the oedometric
test, which is not a strictly proportional stress loading.
Therefore, it is necessary to find relations between the
experiments and the material parameters in the con-
stitutive model. In this section, such relations and the
determination of the material parameters in present
model are discussed and some validations are shown in
Section 4. With the present method the relation between
the hardening law and experimental results can be
determined uniquely, and no try-and-error method is
necessary. This method is mainly based on the analy-
sis of the stress—strain state of oedometric compression
experiments, therefore, the experiments will be intro-
duced first.

3.1. Oedometric compression experiments

The oedometric compression test (see Fig. 3) is one
of the basic experimental setups for characterizing the
properties of granular materials, such as soil and sand.
In Fig. 3, the loading force F), and the displacement
of the pressure plate represent the overall stress and
strain states in the experiments. On the other hand, in
oedometric compression experiments, the walls around
specimens are fixed in the oedometric test. In contrast to
uniaxial compression or hydrostatic compression, this

Fig. 3. A sketch of oedometric compression experiments.

means a combination of stress and strain boundary con-
ditions. The experimental investigation for the ceramic
breeder and beryllium pebble beds has been performed
by FZK [16,18,24]. The analysis of the stress state of
oedometric compression will be discussed later.
Oedometric tests are carried out for various temper-
ature levels, starting from room temperature to 900 °C
for Li4Si0O4 and 480 °C for beryllium pebble beds. The
loading and unloading branches of the stress—strain
curves are represented by separate temperature depen-
dent empirical fit functions, the so-called Reimann fits:
L
ol = [CH(CL + ChThye T
. 24)
U UU L Upcly 1/1-C5
o =[C{(C; + C3T™4 )e]
Superscripts L and U indicate the loading and
unloading branches. For each material, parameters ClL
and ClU are chosen such to yield optimum representa-
tion of the experimental loading and unloading curves.
Also, results of a few biaxial compression experi-
ments can be found in the literature [25]. While usu-
ally the pebble beds are under triaxial compression in
working conditions, triaxial results are difficult to be
obtained in experiments. Therefore, the material model
will have to be developed based on available experi-
mental data.

3.2. Deformation mechanism of oedometric
experiments

The stress state of the oedometric compression
experiments, Fig. 3, can be sketched as Fig. 4. Since,
oy =072, the problem is reduced to an axisymmetric one.
Here, g and p are given by:

q= |Gy — Oy
oy + 20y - (25)
3
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Fig. 4. The stress state of oedometric experiments (Hofer and Kam-
lah [1]).

As the material deforms elastically, the following
relations can be obtained by the theory of isotropic
elasticity:

oy, (26)

=————F¢,. 27
YT Arnad—2v @7)

With Eq. (26), non-linear Young’s modulus, Eq. (1),
reads as

2(1 — v)

—s/2
T e e

E=FEy+ A [

The above relation is valid during pure elastic defor-
mation only, since use has been made of the elas-
tic relation in Eq. (26). During elasto-plastic loading,
the ratio between axial and lateral stresses is differ-
ent from the elastic one in Eq. (26), and Eq. (28)
needs to be updated. Thus, Eq. (28) is called the
“elastic prediction” of Young’s modulus in oedometric
experiments.

A sketch of the loading and unloading path in the
oy — oy plane is plotted in Fig. 5. This is an alter-
native representation of the Drucker-Prager-Cap yield
surface valid for the special type of axisymmetric
stress states acting in the oedometric test. The dot-
ted line is the yield (failure) surface, transferred to
oy — oy plane. If during loading in the oedometric
test, cap yielding is active, the following equations

Q
s

H
[ TS

A4

Q
x

I

Q
N

=rrigag
LL LT
LEL T

R L LLL LT T PP
LT

.
had L LET PRSI L b

Fig. 5. A sketch of the loading and unloading path of oedometric
experiments in the oy—o plane.

are satisfied by the yielding criterion and plastic flow
potential:

F.=0

3G o (29)

00y J—

The first equation is the cap yield criterion, sat-
isfied while cap yield is active, and the second one
is derived from the plastic flow potential by taking
into account the condition of rigid side walls in the
oedometric test (see Section 2.2.2). During the com-
pression, &, =&, =0 is valid due to the rigid wall con-
dition, but for the increments of plastic strains in
the transverse plane, the second equation in Eq. (29)
is the approximation to the condition on the total
strain.

Expressing this in terms of the principle stresses
for the case of axisymmetric loading, and this sys-
tem of equations can be solved for the hardening
parameter p, as a function of stress component oy,
giving

3sec?B(cos B+ Rsin B)
x (=3 cos B+ +/4 + 9R? sin B)
= T ar oy g GO

Although Eq. (30) cannot provide the exact defini-

tion of hardening law yet, there is possibility to reveal
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the relation between compression stress and plastic
strain through Reimann fits.

3.3. Reimann fits for loading and unloading

First, we recall the empirical curves by Reimann for
the oedometric experiments. While in the unloading
branch oV of Eq. (24), the strain & represents purely
elastic strain changes during unloading, the strain in
the loading branch o' is the sum of the elastic and
plastic strain changes during loading. Thus, Eq. (24)
can be written as

1/1-Cct
o} = [CH(CE + CET) e et
v (3D
1/1-C
oV = [CV(CY + CYTC)eel)

Comparing the non-linear Young’s modulus in Eq.
(28) to the elastic (unloading) part of the Reimann fits
Eq. (31), we identify

% —0
S = ng ) (32)
Ae = 2CV(CY + CYTCY) f(1)! =52 g(el
where
(I+v)d—-2v)
fO)y=—7—F——"
2(1 — v)
| - (33)
8(8%1) =1+ i‘;](,)o
vol

In Eq. (32), g(eivr:ﬂ) is a function to adjust the dif-
ference between the elastic prediction according to Eq.
(28) and the exact elasto-plastic loading path. Eq. (28)
is valid only in pure elastic deformation. Once the
material had behaved irreversibly, the ratio of stresses
will be different from Eq. (26) even for the case of
elastic unloading. The present non-linear elasticity law
depends on the stress state, however the elastic pre-
diction is different from the elasto-plastic loading path
because of the changing of inelastic strains. The differ-
ence in these two stress states is accounted for approx-
imately by the function g(&!" ). Only a first order, i.e.

vol
linear functional form of g(¢!™ ) is taken into account,

vol
and the values of &™ are chosen to fit the empirical
curves.

Next, we eliminate the elastic strain change in the
plastic (loading) part of Eq. (31) by means of the corre-
sponding unloading part and solve for the plastic strain
change to obtain

_CL _cU
8p] _ y)l Cs B (O'y)l Cs
CL(CL + CLTC) V(Y + CYTY) -

(o

Note the dependence on both the CI-L and CIU.

Combining Egs. (30) and (34), the hardening
law pb~891 is obtained. To each value of &P,
there is related a unique value of p, in analyti-
cal form depending on the values of C% and CiU
as they are provided by Reimann fits representing
the experimental data. So, with the procedure dis-
cussed above, the elasto-plastic parameters in the
present model can be determined unambiguously from
the experimental results without any try-and-error
method.

3.4. The advantages of the improvement

There are two main advantages of this improve-
ment. First, it is possible to directly use the empir-
ical Reimann fit equations from the experiments to
determine uniquely the set of material parameters,
especially the hardening laws, instead of using a try
and error method. It turns out that the latter method
may deliver various sets representing the oedomet-
ric experiment more or less well, however, they may
result in totally different and possibly unphysical
responses for other loading histories. By the method
developed in this work, we identify the right set of
parameters.

Second, since this procedure can be carried out for
each temperature level, the temperature dependence
of the hardening law is introduced into the model in
an unambiguous way. This means that the thermo-
plastic generalization of the constitutive model for
pebble beds is obtained in a straight forward man-
ner from the temperature dependent Reimann fits.
Fig. 6 shows a sketch of the yield (failure) surfaces in
stresses—temperature—space. In this way, the inelastic
response of the material for different temperatures can
be predicted. For instance, if the temperature varies,
the theory might describe changed yielding behaviour
of the material [26].
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N

Fig. 6. A sketch of the Drucker-Prager-Cap yielding/failure surfaces
of thermoplasticity.

4. Validation and discussion
4.1. Validation for hardening law

For the purpose of validation of the method dis-
cussed above, the material data from oedometric com-
pression experiments are needed. Table 1 gives a set of
parameters of Reimann fits, Eq. (31), for both breeding
ceramics, LisSi04 and beryllium pebble beds [15].

For beryllium pebble beds, the Poisson ratio
v=0.05, and for LisSiO4 breeder pebble beds, v=0.25
[27]. The procedure of determining the material param-
eters has been implemented in a USDFLD routine.

Fs=¢g-ptanp—d=0=

And for beryllium pebble beds, we take gm0 0.02,

vol =

and for LisSiO4 breeder pebble beds, ™ = 0.05 is

Table 1
The parameters of “Reimann fits” for oedometric compression
i LisSiOy4 Beryllium

ck cy ck c?
1 154.0 170.0 154.0 870.0
2 1.0 1.0 1.0 1.0
3 —8.5E—10 —8.5E—-10 0.0 0.0
4 3.0 3.0 1.0 1.0
5 0.47 0.60 0.586 0.65

used. As validation, we simulate the oedometric exper-
iment with the present model and compare the pre-
dicted results with the experiments. Fig. 7 presents the
comparison between the present FEM model and the
experiments for both ceramic breeder pebble beds and
beryllium pebble beds. The FEM results include an
unloading and reloading path at 3 MPa. Fig. 7 shows
a good agreement of the prediction by the model with
the empirical curves during both loading and unload-
ing branches. This validation proves the accuracy of
the method discussed above to determine the mate-
rial parameters of both elasticity and plasticity in the
present model.

4.2. The softening behaviour in the previous model

In the previous material modelling [1], the Drucker-
Prager friction angle has been chosen as 45°. Unreal-
istic plastic softening behaviour was observed in the
model when simulating unloading in the oedomet-
ric test to zero stresses resulting in an almost com-
plete vanishing of the plastic strains. Fig. 8 shows the
stress—strain curves for different values of the Drucker-
Prager friction angle 8 (40-60°). The smaller the B
value, the more pronounced softening behaviour is
found. In Fig. 5, the slopes of the shear failure sur-
faces are defined by f. For axisymmetric conditions,
the shear failure surface can be transformed from the
g-p plane to the o—o, plane as

1
I:0—o0y+ z(0y+20)tanBf—d =0
3
1 > (35)
II:0y—0x+ g(oy—i—20x)tan,3—d=()

where “I” and “II” refer to the shear surfaces in the
oy—0, plane, respectively, see Fig. 5. Thus, we may
obtain the coordinates of the intersections (A and B)
between the shear failure surfaces and the oy- and o -
axes. We get

A:(—l 2d3 ,0)
—2/3tan 8 ‘ (36)

B: (o, _d)
1—1/3tan 8

For arelatively small d, as in the case of pebble beds,
intersection A is close to the origin point of the oy—0



Y. Gan, M. Kamlah / Fusion Engineering and Design 82 (2007) 189-206

Li,Sio,
U WU T S N R R
6 —v—F.EM.
Reimann's Fit
54
©
[a
Z -
w
o
= 34
2]
K
< 24
L=
=7
O"‘-"'"".T&' '-v T T T T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

Strain

Axial Stress (MPa)

199
Beryllium

1 1 1 L 1 " 1 n 1
64| —v—F.EM.

Reimann's Fit
5]
44
34
9.
14
0 e T T T T T T ) T b T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Strain

Fig. 7. The prediction of the present model compared with the experimental fits (parameters from Fokkens [15]): left, ceramic breeder pebble

beds; right, beryllium pebble beds.

plane. Consequently, the main reason for the softening
behaviour while unloading is that the failure surface
is hit before complete unloading to zero compressive
stresses has occurred. If the unrealistic softening during
unloading is to be avoided, the shear failure surface “IT”
should be parallel to the o-axis or have an intersection
for o, >0. This means a condition for the slope, i.e., S,
and, by Eq. (36), we find

tan 8 > 1.5. (37)
Oedometric Testing of Beryllium Pebble Beds
T T T T
6 |—m—p=600 .
1 |—©o—p=450
5 [Z2—p=400 |
© 4 4
[a
<
8 34 i
2
n
24 .
14 4
{]_EFF""D‘G":“? CJ . . .

OIAG
Strian (%)

0.0 0.3

Fig. 8. The effects of B on the softening behaviours while unloading.

As mentioned above, for a small value of B, the
unloading path will hit the shear failure surface before
the axial stress is reduced to zero, initiating the unre-
alistic softening behaviour during final unloading,
while Eq. (37) provides the condition to avoid such
behaviour.

Note that the Drucker-Prager friction angle B is
not identical to the friction angle of granular materi-
als, but it is a function of the real friction angle. The
Drucker-Prager friction angle § can be estimated by
the Leonardo da Vinci’s static friction experiment for
a granular medium, see Fig. 9 [28]. The static friction
coefficient is defined as

T
=5 =—. (38)

The three-dimensional stress state in the static fric-
tion experiment is shown in Fig. 9 (right). The stresses
on the cubic element represent the stress state in the
sheared middle layer of the experimental setup. By
analyzing the stress state in the middle layer, it is
found that the middle layer of the static friction exper-
iment is in a similar stress state as the pebble bed in
the oedometric test. The normal stresses in the trans-
verse plane are determined by the effect of the Pois-
son ratio and a condition of axisymmetric symmetry
in this plane. Consequently, the stress tensor can be
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Fig. 9. Left, A sketch of typical experimental setup used to measure the coefficient of the static friction ps of a granular material; right, the stress

state in the sheared middle layer of the setup to the left.

expressed as

o, T 0
T co, 0 |. (39
0 0 coy

In this stress tensor, the stress ratio ¢ = v*/( 1— v*)
depends on the kind of loading. For pure elastic defor-
mation, v"* = v is the elastic Poisson ratio, Eq. (26). In
the case of elastic—plastic deformation, v* = vP! is some
history dependent quantity with a value in the range
0<wl <05, Expressing this stress state in Drucker-
Prager-Cap theory as

, (40)
_ 1+ v*
P=30 -5
we have
\/(1 — 2042 4 3p2(1 — )2
tanf =3 . 41)

1+ v*

Here, the Drucker-Prager friction angle g is
expressed as a function of the static friction coefficient
s and the Poisson ratio V' (=vor =v1’1), see Fig. 10.
The value of § is a monotone function of pg for pg > 0.

The value of g can be obtained by several kinds of
experiments, and on the basis of 15, arough range of the
Drucker-Prager friction angle can be estimated. For the
shear failure surface to be parallel to the o, = o-axis,
the condition tan = 1.5 has to be satisfied (see Fig. 5

and Eq. (37)). By solving Eq. (41), and considering
the extreme condition ps =0 for a totally non-friction
material, v* <vg=0.2 guarantees that the unloading
path will not hit the shear failure surface. With lager val-
ues of s, the critical value of Poisson ratio vg increases,
for instance, vo=0.5 while s > \/§/2. By Eq. (41),
the region satisfying tan § > 1.5 can be found in Fig. 10.

According to the available bi-axial experimental
data for ceramic breeder pebble beds ([25] and “Mate-
rial Assessment Report” for ITER), the Drucker-Prager
friction angles of the pebble beds can be calculated
by analyzing the stress state in bi-axial compression.

1/

0.8

/1an[,Bj>.5 y

0.6
0
=
0.4 tan[B]=1.5
0.2 tan[B]<1.5

0 0.1 0.2 0.3 0.4 0.5

W

Fig. 10. tan B as a function of the static friction coefficient pg and
the Poisson ratio v* , the bolded line shows the critical value of tan .
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Fig. 11. The hydrostatic compression with different values of R: left, stress—strain curves; right, strains at 5 MPa with different R-values.

Following Eq. (35) for shear failure surface “I” in the
axisymmetric stress plane, and assuming d = 0 for sim-
plicity, we have:

369 — %)
tanf = —2—— 42
an g "8 + 200 (42)

Superscript 0 indicates the failure stress in exper-
iments. As a result, values of almost around 60° are
found for the Drucker-Prager friction angle § of both
ceramic breeder and beryllium pebble beds. As dis-
cussed above, such a value is in accordance with the
criterion for avoiding unrealistic softening, i.e. Eq.
(37). Consequently, both the experimental results and
theoretical considerations of the Drucker-Prager theory
support the choice of the Drucker-Prager friction angle
B~ 60°. On the other hand, as shown before, for such
a value no unreasonable plastic softening behaviour
occurs in the model.

4.3. Sensitivity of constitutive model with respect
to material parameter R

Most of the material parameters can be determined
by the method presented above from with the empirical
equations of the Reimann fits. However, some param-
eters are adjusted “manually”, i.e. by try and error,
which does not effect the predictions in oedometric
test but possibly in other loading paths. In principle,

these parameters can be determined by experiments
employing different loading paths, such as hydrostatic
compression or triaxial compression. Fig. 11 shows the
impact of R on the simulation of hydrostatic compres-
sion. In Fig. 11, the left plot shows the stress—strain
curves and the right plot is the normal strain at 5 MPa
versus the corresponding value of the parameter R.

Only the determination of the value of R is missing
in the present model. This constant controls the shape
of cap surface, and mainly effects the direction of the
plastic and creep flows. However, Fig. 11 clearly shows
that the stress—strain curves are not very sensitive to
variations of R over a wide range. From the current
point of view, these findings indicate that tremendous
efforts for experiments with new type of loading states
in order to identify R exactly seem not to be justified.
Instead, some reasonable estimate for R will be suffi-
cient for the purposes of this work.

4.4. Creep properties

In addition, creep experiments have been performed
and empirical creep equations were obtained [19] of the

type:
B

e = A exp (—) o™
T

Parameters A, B, n, m have been determined by
experiments for different materials, such as ceramic

(43)
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Table 2

The parameters for the creep experiments (units: MPa/s/K)
LigSiOy4 Beryllium

A 12.12 3.874

B 10220.0 9124.0

n 0.65 0.62

m 0.2 0.35

breeder and beryllium pebble beds. The parameters of
LisSi04 and beryllium pebble beds are listed in Table 2
[17,19].

In view of the discussing in Section 2.3, the param-
eters (A", B, m, n) in Eq. (22) can be identified from
experiments for different materials. It has been reported
that due to a bug the “strain hardening” form of consol-
idation creep is not available in ABAQUS in analyses
of two-step creep [1]. The consolidation creep has
been re-implemented in ABAQUS by a CREEP rou-
tine. In contrast to the ABAQUS formulation reported
in Section 2.3, in this investigation, the effective creep
pressure p is taken to be equal to the total hydro-
static pressure p at the current stress state. By this
approach, the fit equations for the experimental data
[19] can be used directly in the formulation of consoli-
dation creep. Eq. (43) is formulated in term of uniaxial
stress o, whereas Eq. (22) for the consolidation creep
relies on hydrostatic pressure p. This difference is taken
into account by the ratio A*/A, while the other param-
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eters (B, m, n) are the same in both cases. In order
to minimize the difference between the predictions of
the model and experiments, we choose for A¥/A the
value of 2.2 for both LisSiO4 and beryllium pebble
beds.

The validation of the creep modelling has been made
for different compression stresses and bed temperatures
of Li4SiO4 and beryllium pebble beds, respectively.
Fig. 12 shows a comparison between the prediction of
model and the experimental results. Two typical exam-
ples for single step stress loading are given with the
maximum creep strain up to 3% (LisSiO4 at 2.2 MPa
and 850°C as well as 6.5 MPa and 650 °C) and 2%
(beryllium at 1.7 MPa and 635 °C as well as 1.7 MPa
and 635 °C). It can be seen that the identification of the
material constants has been successful. The two-step
creep experiment of beryllium pebble beds in Fig. 13
may serve as an independent validation experiment,
since such a loading history was not the basis of the
identification of the creep parameters. The comparison
shows that present model is well capable of represent-
ing the creep processes in the pebble beds considered
here.

In additional, the relations between parameters in
current material model and experimental results are
listed briefly in Table 3, in order to give an overview
of the present method. C f‘ and C lU are the coefficients
of “Reimann fits” for oedometric compression, which
can be found in Table 1.

T T T
3000 4000 5000

Time (Min)

T
2000

T
0 1000

6000

Fig. 12. The creep prediction of the present model compared with experimental fits (Reimann and Worner [19]; Reimann and Harsch [17]): left,

ceramic breeder pebble beds; right, beryllium pebble beds.
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Fig. 13. The two-step creep experiment, the comparison of the prediction of the present model and experiment (7'=605 °C [4]).

4.5. Application to pebble beds assembly (PBA)

For the validation purpose, the analysis of the pre-
compaction procedure of the pebble bed assembly
(PBA) capsule used for experiments in the HFR reactor
at NRG Petten is carried out. This procedure has been
analyzed in detail by Fokkens [15] with the assumption
that the pebble beds have two different elastic laws
while loading and unloading. The geometric model
of PBA is sketched in Fig. 14. Ceramic breeder and
beryllium pebble beds are included in PBA. The com-
pression stress o is applied on the pressure lid, and
cycles at the first mechanical loading with the temper-
ature at 20 °C. In the first 37.5 s, the pressure increases
and decreases at rate of 0.4 MPa/s, and the maximum
pressures are 1, 2, 3 MPa at every loading cycle in 30,
and then reloads to 3 MPa. Second, thermal loading,

Table 3
The summary of material parameters used in this paper

Parameters in model Expressed by experimental results

Non-linear elasticity

Ae Eq. (32)
s Cg
v 0.05 for beryllium and 0.25 for
LisSiOy4 pebbles [27]
Ey ~0
Drucker-Prager-Cap theory
R 0.9
B 60° [25]
Pb Eqgs. (30) and (34)
d ~0
Creep law
A,B,m,n Experimental coefficients in Eq.

(43), i.e. Table 2 [17,19]

the temperature of PBA is raised uniformly to 350 °C
at rate 0.04 °C/s under the constant pressure 3 MPa;
then the whole PBA keeps the constant pressure and
temperature for 24 h; and finally thermal unloading to
20 °C atrate 0.04 °C/s and mechanical unloading atrate
0.4 MPa/s [15]. This calculation has been carried out
for the case of uniformly heating to find out the influ-
ence of volumetric inelastic strain on the thermal con-
ductivity of beryllium pebble beds. This influence has
been investigated by experiments [4,22,23], suggesting

a

. Beryllium
. Li,sio,
. Eurofer
. Inconel

Fig. 14. A sketch of the axisymmetric finite element model of pebble
bed assembly (PBA).
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that the one of beryllium pebble beds is more signifi-
cant than ceramics breeder pebble beds, and should be
taken into account for the thermal-mechanical coupled
analysis.

Using the modified Drucker-Prager-Cap model with
the present identification method of material parame-
ters, the pre-compaction procedure has been analyzed.
The stress—displacement curve on the pressure lid is
shown in Fig. 15, and the result obtained by Fokkens
[15] is plotted inside for comparison. The result shows
that the present model works well in the thermo-
mechanically coupled finite element analysis.

With the implementation of the strain-dependent
thermal conductivity in USDFLD, the profile of the
thermal conductivity of beryllium pebble beds can be
predicted by the present material model (see Fig. 16).
The thermal conductivity has been modelled as a func-
tion of both volumetric inelastic strain and temperature,
as Eq. (23). The magnitudes of thermal conductivity
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Fig. 15. The stress—displacement curve of the pressure lid during
the entire pre-compaction procedure, small plot is the results from
Fokkens [15].
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Fig. 16. Thermal conductivity (W/m °C) profile of beryllium pebble beds: (leff) after the mechanical cycling; (right) after the pre-compaction

procedure.
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are 8.74—10.1 W/m °C after the mechanical cycling and
10.1-11.4 W/m °C after the total pre-compaction anal-
ysis, compared with the value without any inelastic
strains in the material (about 2 W/m °C) at the begin-
ning of the procedure.

5. Conclusion

In this paper, the thermo-mechanical properties
of ceramic breeder and beryllium pebble beds are
investigated. Because the pebble size is sufficiently
small compared with the bed dimensions, a continuum
mechanics approach is used for the thermo-mechanical
modelling of pebble beds. Motivated by the results of
experimental investigations, the present material model
is mainly composed of a non-linear elasticity law, the
Drucker-Prager-Cap theory, a modified consolidation
creep law and a volumetric inelastic strain-dependent
thermal conductivity. The present material model can
be applied in fully coupled thermo-mechanical finite
element analysis for pebble beds.

To determine the material parameters in the present
model, a method is proposed to find the proper set of
material parameters from the available experiments.
This method is based on the analysis of the deformation
in the oedometric test, which is the basic experimen-
tal setup for characterizing the material properties of
pebble beds. The hardening law of the Drucker-Prager-
Cap theory is identified through empirical equations
(Reimann fits) representing the experimental data. Val-
idation of the material model of both ceramic breeder
and beryllium pebble beds shows that the predictions
of model agree well with the experimental results.

Furthermore, the thermo-mechanical model devel-
oped in this work is applied to the analysis of the
precompaction procedure of the pebble bed assembly
(PBA) capsule used for experiments in the HFR reactor
at NRG Petten.
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