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bstract

In this paper, a thermo-mechanical model of pebble beds is adopted [D. Hofer, M. Kamlah, Drucker-Prager-Cap creep
odelling of pebble beds in fusion blankets, Fusion Eng. Des. 73 (2005) 105–117] and developed based on experiments by Dr.
eimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear
lastic law [O. Coube, Modelling and numerical simulation of powder die compaction with consideration of cracking, PhD
hesis, University Pierre et Marie, Paris VI, 1998], the Drucker-Prager-Cap theory [ABAQUS, Analysis User’s Manual, Version
.5, 2004], a modified creep law [D. Hofer, M. Kamlah, Drucker-Prager-Cap creep modelling of pebble beds in fusion blankets,
usion Eng. Des. 73 (2005) 105–117]. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium
ebble beds [J. Reimann, G. Piazza, Z. Xu, A. Goraieb, H. Harsch, Measurements of the thermal conductivity of compressed
eryllium pebble beds, FZKA 7096 (2005)] is taken into account and full thermo-mechanical coupling is considered.

By analyzing the deformation mechanism of the oedometric experiments, a new method is developed to determine the set
f material parameters, including the temperature dependent hardening law. With the new method, the material parameters can
e derived directly from the empirical equations (the so-called “Reimann fits” for pebble beds) including the thermoplastic
ehaviour. All these thermo-mechanical constitutive laws are implemented in ABAQUS by user defined field (USDFLD) and

REEP subroutines. The oedometric compression tests and creep tests under different temperatures are simulated by the present
odel, and the results show that the model gives a good description of experimental results. The analysis on the precompaction

rocedure of pebble beds assembly (PBA) is applied to show the feasibility of the present material model.
2006 Elsevier B.V. All rights reserved.
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. Introduction
In the development of fusion technology, pebble
eds are used in the helium-cooled pebble bed (HCPB)
lanket. There are three main functions of the HCPB
lanket: besides transformation of the neutron energy
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riginating from the fusion reaction into usable heat
nd shielding of the superconducting magnets against
eutron and gamma radiation, its main purpose is
reeding of the fuel tritium by capturing neutrons in
ithium [5,6]. Two main types of pebble beds are used
n HCPB blanket: first ceramic pebble beds as breeder

aterial, such as lithium orthosilicate (Li4SiO4); sec-
nd beryllium pebble beds as neutron multiplier. The
lanket is split into several modules filled with breeder
nd neutron multiplier pebble beds. The pebble beds are
omposed of nearly spherical shaped pebbles, whose
iameters range from 0.25 to 2 mm [7]. Due to the
xtreme working conditions in the fusion reactor, a
eep understanding of the thermo-mechanical proper-
ies of these pebble beds is essential. Thus, a material

odel for describing their response to the external exci-
ation is needed, to check the requirements in design
nd analysis of the HCPB blanket.

For the thermo-mechanical modelling of pebble
eds, there are several recent approaches in develop-
ent. As a type of the discrete material, similar to sand,

ebbles can be modeled by both a discrete element
ethod (DEM) and a continuum approach.
In the first type of modelling, by means of the so-

alled discrete element method, the contact interactions
nd deformations of particles are analyzed in view
f the constitutive modelling of pebble beds. As one
ssue, thermal creep of a ceramic breeder pebble bed is
nvestigated by 3D discrete numerical thermomechan-
cs code [8,9]. Other researchers [10–12] simplify the
articles in regular lattices as beam elements, which
epresent the contact effects between pebbles. Consid-
ring the microstructures of pebble beds, the defor-
ation mechanism can be clearly revealed by DEM

pproach, including the mechanical behaviours, ther-
al creep and the thermal conductivity. The physical
eanings of some phenomenological material param-

ters can be better understood by this approach, such
s the strain dependent thermal conductivity. But the
roblem remains, for example, that the complexity of
he microstructure and the plastic contact of pebbles are
till idealized in this approach. Furthermore, the plastic
eformation of pebble beds results from a combination
f the plastic deformations and the irreversible move-

ents/rearrangements of pebbles, while in DEM, it is

ifficult to deal with the later effect.
The second type of modelling, considering mate-

ials composed of particles as continuous media, is

i

t
a
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he thermo-mechanical modelling in the framework of
ontinuum mechanics. To take into account the typi-
al material behaviour in engineering analyses, a cor-
esponding phenomenological constitutive model can
e exploited in the framework of the finite element
ethod. By investigation of granular materials, many

ifferent models are developed in soil mechanics, such
s the Drucker-Prager-Cap model and the Cam-Clay
odel. It should be noted that whether it is appropriate

o use a continuum approach depends on the ratio of
he size of the microstructure, i.e. an individual par-
icle, compared to the dimension of the component
nder investigation. In the activities of FZK [1,13],
he modified Drucker-Prager-Cap theory, which is one
f the most frequently used models in soil mechan-
cs, is applied as the constitutive model for pebble
eds. The predictions of the model generally agree with
he experiments, if the material parameters are chosen
roperly. However, in some specific cases unrealistic
lastic softening behaviour of the Drucker-Prager-Cap
odel during unloading is observed. In the activities of
ipartimento di Ingegneria Nucleare (DIN, Palermo),
i Maio et al. [14] use both the Drucker-Prager-Cap
odel and the Gurson’s model as plasticity laws, com-

ined with a so-called the hyperporous elasticity law to
nalyze the SCATOLA benchmark experiments. Moti-
ated by experimental results and by the empirical
oading and unloading curves proposed by Reimann,
okkens [15] applies two different elasticity laws for

oading and unloading. This model is implemented in
he finite element code MARC and used to analyze the
hermo-mechanical behaviour of the pebble bed assem-
ly (PBA) in pre-compaction and start-up procedures.

The aim of both approaches mentioned above is
o represent the constitutive behaviours of the mate-
ials under the framework of different models. And the
greement between the prediction of model and the
xperimental results, such as oedometric compression,
s the key to show the applicability of material models.
n this investigation, the continuum approach is used
or the modelling of the thermo-mechanical behaviours
f pebble beds. Since the ratio of pebble size to the
ed dimension is sufficiently small, this appears to be
ustified for both the experimental and the theoretical

nvestigations.

The present material model is mainly based on sys-
ematical thermo-mechanical experiments [4,7,16–19]
nd a modified Drucker-Prager-Cap theory [1]. By
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nalyzing the macroscopic deformation mechanism of
he oedometric test, a new method was developed to
dentify the possible set of material parameters in the
rucker-Prager-Cap theory, including the temperature
ependent hardening law. With the new method, the
mpirical equations representing the experimental data
or pebble beds, the so-called Reimann fits, can be used
irectly. In particular, the thermo-plastic behaviour of
ebble beds is represented in terms of the temperature-
ependence in the hardening law. Furthermore, the
train dependence of the thermal conductivity of beryl-
ium pebble beds is taken into consideration in the
resent model.

This model is implemented in ABAQUS by user
ubroutines (USDFLD and CREEP, see ref. [3]). Sev-
ral comparisons between the predictions of model and
xperiments are shown in this paper.

This paper is organized as follows. In Section 2,
he present constitutive model for the representation
f the material properties mentioned above is intro-
uced. The analysis of the oedometric experiments and
he method of the determination of material parame-
ers from experimental data and empirical curves are
iscussed in Section 3, with special emphasis on the
ardening law in the Drucker-Prager-Cap theory. The
alidations of the present thermo-mechanical model are
isted in Section 4, and the improvement brought about
y the present identification method and the validation
f the resulting model is discussed. Furthermore, in
ection 4, the present model is applied in the analysis
f the pre-compaction procedure of pebble beds assem-
ly. A few conclusions on the model and the obtained
esults are drawn in Section 5.

. Constitutive modelling of pebble beds

In the HCPB concept, a pebble bed has typical
imensions on the order of 10−1 m, but is composed
f nearly spherical particles with a typical diameter
f 10−3 m. Thus, a continuum mechanics approach
s appropriate for the investigation of the thermo-

echanical response to external excitation.
The main experimental phenomena of pebble beds
re non-linear elasticity, volumetric plasticity, volumet-
ic creep and strain dependent thermal conductivity.
o describe the thermo-mechanical behaviour of peb-
le beds, the present material model is mainly based

m
s
e

and Design 82 (2007) 189–206 191

n the following: a non-linear elasticity law describes
he observed stress dependent elasticity; the modified
rucker-Prager-Cap model predicts the yielding and
ardening behaviour; the time-dependent behaviour
r the thermal creep is modelled by a so-called con-
olidation (cap) creep mechanism; finally, the strain
ependent thermal conductivity and the thermal expan-
ion obtained in experiments are also implemented in
he present material model. In this section, the present

aterial model will be discussed in detail.

.1. Non-linear elasticity law

For stress states inside the yield surface, it is
ssumed that the material behaves elastically. During
nloading and reloading in the experiments (oedo-
etric compression experiments), non-linear and

on-hysteretic behaviour is observed. Since in the
xperiment, the unloading paths are parallel at dif-
erent deformation levels, we consider the non-linear
lastic properties a function of the stresses. The
ork of Coube [2] on powder die compaction deals
ith a material with microstructure having similar

haracter as the pebble beds under consideration
n this work. Therefore, the non-linear elasticity
aw proposed by Coube is adopted for the present

aterial model. This law possesses the structure of
he classical Hooke’s law, however, Young’s modulus
ependents on the current stress state via the von
ises stress q and the hydrostatic pressure p in the

orm:

= Ae

[
1 + ν

3
q2 + 3

(
1

2
− ν

)
p2

]s/2

+ E0. (1)

Here, Ae, s and E0 are material parameters, ν the
oisson’s ratio and q and p may be expressed in terms
f the principle stresses as:

q =
√

1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2]

p = −σ1 + σ2 + σ3

3

.

(2)
Fig. 1 gives an example of the contours of Young’s
odulus according to Eq. (1) in the q–p plane, and the

hape of the contours are controlled by material param-
ters ν and s. This non-linear elasticity law has been
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ig. 1. The contour plot of Young’s modulus (Eq. (1)) in the q–p
lane (ν = 0.25, s = 0.6).

mplemented by a user-defined-field routine (USD-
LD) in ABAQUS [1].

.2. Drucker-Prager-Cap theory

In the present model, the plasticity of pebble beds is
escribed by the Drucker-Prager-Cap model, which is
commonly used in geomechanics. This model has

een implemented in the commercial finite element

rogram ABAQUS [3] representing the yielding, hard-
ning and time-dependent mechanical behaviour. The
ield surface consists of the shear failure surface Fs
nd the cap surface Fc. Fig. 2 gives a representation of

Fig. 2. The Drucker-Prager-Cap model (ABAQUS [3]).
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he Drucker-Prager-Cap model in q–p plane. The shear
ailure surface Fs characterizes the pressure-dependent
hear failure loading: as the pressure increases, a higher
hear loading is needed to initiate shear failure. The
ap surface Fc describes the plastic behaviour under
he hydrostatic compression, which is not present in
lassical metal plasticity.

.2.1. Formulas and material parameters
In detail, the yield criterion Fs and the non-

ssociated plastic flow-potential Gs for shear failure
urface are defined as:

Fs = q − p tan β − d = 0

Gs =
√

[(p − pa) tan β]2 + (q)2
, (3)

here

a = pb − Rd

1 + R tan β
. (4)

For the cap surface, the yield criterion Fc and the
ssociated flow-potential Gc read as:

Fc =
√

(p − pa)2 + (Rq)2 − R(d + pa tan β) = 0

Gc =
√

(p − pa)2 + (Rq)2

.

(5)

The plastic flow-potentials Gc and Gs are parts of
llipses forming together a continuous and smooth
otential surface. There are several material parame-
ers that need to be identified, such as the constants β,
, d and the material function pb.

Constant β is the Drucker-Prager friction angle
efining the slope of the shear failure surface Fs. It is
ot identical with the friction angle of granular materi-
ls, and the relation between these two “friction angles”
ill be discussed in Section 4.2. Constant d represents

he value of the von Mises stress related to the cohesion
f the material. For the pebble beds under consideration
ere, the value of d is almost to 0. Constant R con-
rols the shape of the elliptic cap surface Fc. Finally,
b defines the position of ellipse Fc. The dependence
f p on the loading history is assumed to represent the
b
ardening properties of material under consideration.
or instance, in ABAQUS pb is taken to be function
f the inelastic volumetric strain, i.e. pb(εin

vol) (default
ith “*CAP HARDENING”). Furthermore, it is also
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ossible to implement a plastic volumetric hardening
aw pb(εpl

vol) or a work hardening law by a USDFLD
outine.

.2.2. Plastic flow theory
Since the plastic flow rule of Drucker-Prager-Cap

odel is not given in detail in the ABAQUS manual,
hey will be deduced in the following. We discuss the
lastic flow in multi-surface and non-associated plas-
icity with fI(σ,κ) = 0 and GI(σ) as the I-th yielding
failure) criterion and the plastic flow-potential, cor-
espondingly, where κ is a hardening parameter (an
nternal variable). For instance, in the Drucker-Prager-
ap model, Eqs. (3) and (5) give the description of yield

failure) surfaces and the plastic flow-potentials on the
hear failure surface and cap surface, respectively. The
lastic strain increments can be written as

ε
pl
ij =

I0∑
I=1

dλ
∂GI

∂σij

, (6)

here dλ is a factor of proportionality and I0 is the num-
er of the active yield surfaces. If the I-th yield (failure)
urface is active, the corresponding consistency condi-
ion gives by differentiation

f I = ∂f I

∂σij

dσij + ∂f I

∂κ
dκ = 0, (7)

r in another form

T dσ − A dλ = 0, (8)

here

= ∂f I

∂σ
=

[
∂f I

∂σ11
,

∂f I

∂σ22
,

∂f I

∂σ33
,

∂f I

∂σ12
,

∂f I

∂σ23
,

∂f I

∂σ13

]T

(9)

= − 1

dλ

∂f I

∂κ
dκ. (10)

The scalar function A depends on the hardening law.
f the hardening parameterκ can be written as a function
f the plastic strains,

= κ(εpl), (11)
he differentiated form is:

κ = ∂κ

∂εpl dεpl. (12)

t
c

G
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Substituting Eq. (12) into Eq. (9) and replacing dεpl,
can be obtained as

= −∂f I

∂κ

∂κ

∂εpl

∂GI

∂σ
= −∂f I

∂κ

∂κ

∂εpl β, (13)

here

= ∂GI

∂σ
=

[
∂GI

∂σ11
,

∂GI

∂σ22
,

∂GI

∂σ33
,

∂GI

∂σ12
,

∂GI

∂σ23
,

∂GI

∂σ13

]T

.

(14)

If time-dependent effects are taken into consider-
tion, and only yielding (hardening) mechanism I is
ctive, the total strain increment can be decomposed
nto elastic, plastic and creep strains as:

ε = dεe + dεpl + dεcr = D−1 dσ + dλ
∂GI

∂σ
+ dεcr,

(15)

here D is the elastic stiffness matrix. Multiplying the
oth sides of Eq. (15) with αTD gives

TD(dε − dεcr) = αT dσ + αTDβ dλ. (16)

Due to Eq. (8), αT dσ at the right-hand side can be
eplaced by A dλ resulting in

TD(dε − dεcr) = A dλ + αTDβ dλ. (17)

Thus, the factor of proportionality is obtained as

λ = αTD(dε − dεcr)

A + αTDβ
. (18)

.3. Representation of creep processes

For the Drucker-Prager-Cap model, two types of
reep laws are defined in ABAQUS: consolidation
reep and cohesion creep [20]. In this investigation,
nly the consolidation creep mechanism is taken into
ccount. This seems justified since pebble beds in
usion reactors are mainly in a tri-axial compression
tress state. For consolidation creep, the creep poten-

ial is equal to the plastic flow potential, Eq. (5), of the
ap yield surface, i.e.

cr
c =

√
(p − pa)2 + (Rq)2. (19)
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The corresponding creep flow rule is given by

εcr = dε̄cr

f cr

∂Gcr
c

∂σ
. (20)

Here, dεcr is the work conjugate to the stress tensor
. The work conjugate of the equivalent consolidation
reep stain dε̄cr is denoted by σ̄cr. Thus, fcr is a propor-
ionality factor defined as

cr = 1

σ̄cr σ :
∂Gcr

c

∂σ
. (21)

Buhler [13] has used a strain hardening formulation
or the creep law reading in integrated form of equiva-
ent consolidation creep stain dε̄cr as:

ε̄cr =
[(

1

m
A∗ exp

(
−B

T

)
pn

)1/m


t

+ (ε̄cr,0)
1/m

]m

− ε̄cr,0, (22)

here p is the hydrostatic pressure, ε̄cr,0 the creep strain
t the beginning of the time step 
t, and A*, B, m, n
re material parameters to be obtained from the exper-
mental results.

In ABAQUS, consolidation creep occurs for stress
tates inside the area between the cap yield surface
c and the critical line p = pa (see Fig. 2). This means

he condition for starting consolidation creep is p > pa.
urthermore, in the “*CAP CREEP” option, the driv-

ng force for creep, i.e. the effective creep pressure
s defined as σ̄cr = p̄cr = p − pa, providing a smooth
ransition to the areas in which consolidation creep
n not active (p < pa). For the purpose of this work,
he ABAQUS consolidation creep option is not suf-
cient for the following reason: while the creep strain

ncreases, by the hardening law pb(εin
vol), the value of pa

ill increase simultaneously. For creep under constant
ydrostatic pressure p, this means that the driving force

¯ cr = p − pa will vanish gradually and, eventually,
reep will be stopped. For instance, the starting point
f the creep calculation locates inside the cap yield
urface, once the creep strains are increasing the cap
urface will be moved by the hardening effects of mate-

ial until the critical line p = pa surpasses the starting
oint, which terminates the increasing of creep strains.
ne possible modification is to define the hardening

aw as pb(εpl
vol), which totally avoids any hardening

t
m
i

and Design 82 (2007) 189–206

ffects introduced by creep strains. However, in two
tep creep experiments [21], the compressive stress is
pplied in two different steps at the same bed tem-
erature, showing that hardening behaviour may also
e introduced by creep strains. The selection of the
ypes of the hardening law depends on the amount of
olumetric creep strains present in the material under
onsideration. For materials with a small range of creep
trains, the original ABAQUS definition is sufficient. If
here are large creep strain amplitudes, the modification
ased on pb(εpl

vol) is necessary to obtain correspond-
ngly larger values of the creep strains.

.4. Other thermo-mechanical material properties

The thermal conductivity of pebble beds is related
o the contact areas between particles, which depend
n the current stress–strain state. Experiments have
een carried out to measure of thermal conductivity
f beryllium pebble beds [4,22] and ceramic breeder
ebble beds [23]. It is found that the thermal con-
uctivity of beryllium pebble beds changes signifi-
antly between un-compacted and compacted pebble
eds. This change has a notable impact on the thermo-
echanical analysis. It gives rise to a full (and non-

inear) thermo-mechanical two-way-coupling, exclud-
ng the classical staggered approach of first solv-
ng the thermal boundary value problem and then
n a second step computing mechanical equilibrium
or the obtained thermal strains. So, it is essen-
ial to model the material behaviour with respect to
he change of thermal conductivity. By systemati-
al experimental investigation on the thermal con-
uctivity of pebble beds under different compressive
trains and temperatures [4], an empirical equation
escribing the strain dependent thermal conductivity is
btained:

(W/(m K)) = 1.81 + 0.0012T (◦C) − 5

× 10−7T (◦C)2 + (9.03 − 1.386

× 10−3T (◦C) − 7.6 × 10−6T (◦C)2

+ 2.1 × 10−9T (◦C)3)ε (%) (23)
The functional form of Eq. (23) is adopted from
he semi-empirical Schluender–Bauer–Zehner (SZB)

odel and the coefficients are identified from exper-
ments. It has been determined for bed temperatures
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etween 200 and 650 ◦C and for a maximum pebble
ed deformation of 3.5%.

Eq. (23) makes a fully coupled thermo-mechanical
nalysis necessary, as the change of deformation has
strong influence on the thermal conductivity and,

hus, on the temperature field. The volumetric inelastic
train-dependent thermal conductivity k(εin

vol, T ) found
n experiments, which is represented by Eq. (23), has
een implemented in ABAUQS by a USDFLD routine.

Furthermore, the coefficient of thermal expansion
nd the specific heat for the different materials [15],
hich have been obtained from experiments, have been

mplemented in ABAQUS as functions of temperature.

. Determination of material parameters

The present model describes the thermo-mechanical
roperties of pebble beds in terms of non-linear elastic-
ty, plasticity, time-dependent effects and the thermal-

echanical interactions by a multi-parameter system.
he only available experimental basis for the deter-
ination of the material parameters is the oedometric

est, which is not a strictly proportional stress loading.
herefore, it is necessary to find relations between the
xperiments and the material parameters in the con-
titutive model. In this section, such relations and the
etermination of the material parameters in present
odel are discussed and some validations are shown in
ection 4. With the present method the relation between

he hardening law and experimental results can be
etermined uniquely, and no try-and-error method is
ecessary. This method is mainly based on the analy-
is of the stress–strain state of oedometric compression
xperiments, therefore, the experiments will be intro-
uced first.

.1. Oedometric compression experiments

The oedometric compression test (see Fig. 3) is one
f the basic experimental setups for characterizing the
roperties of granular materials, such as soil and sand.
n Fig. 3, the loading force Fy and the displacement
f the pressure plate represent the overall stress and

train states in the experiments. On the other hand, in
edometric compression experiments, the walls around
pecimens are fixed in the oedometric test. In contrast to
niaxial compression or hydrostatic compression, this

H

Fig. 3. A sketch of oedometric compression experiments.

eans a combination of stress and strain boundary con-
itions. The experimental investigation for the ceramic
reeder and beryllium pebble beds has been performed
y FZK [16,18,24]. The analysis of the stress state of
edometric compression will be discussed later.

Oedometric tests are carried out for various temper-
ture levels, starting from room temperature to 900 ◦C
or Li4SiO4 and 480 ◦C for beryllium pebble beds. The
oading and unloading branches of the stress–strain
urves are represented by separate temperature depen-
ent empirical fit functions, the so-called Reimann fits:

σL = [CL
1 (CL

2 + CL
3 TCL

4 )ε]
1/1−CL

5

σU = [CU
1 (CU

2 + CU
3 TCU

4 )ε]
1/1−CU

5

. (24)

Superscripts L and U indicate the loading and
nloading branches. For each material, parameters CL

i

nd CU
i are chosen such to yield optimum representa-

ion of the experimental loading and unloading curves.
Also, results of a few biaxial compression experi-

ents can be found in the literature [25]. While usu-
lly the pebble beds are under triaxial compression in
orking conditions, triaxial results are difficult to be
btained in experiments. Therefore, the material model
ill have to be developed based on available experi-
ental data.

.2. Deformation mechanism of oedometric
xperiments

The stress state of the oedometric compression
xperiments, Fig. 3, can be sketched as Fig. 4. Since,
x = σz, the problem is reduced to an axisymmetric one.

ere, q and p are given by:

q = |σy − σx|
p = −σy + 2σx

3

. (25)
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ig. 4. The stress state of oedometric experiments (Hofer and Kam-
ah [1]).

As the material deforms elastically, the following
elations can be obtained by the theory of isotropic
lasticity:

x = σz = ν

1 − ν
σy, (26)

y = 1 − ν

(1 + ν)(1 − 2ν)
Eεy. (27)

With Eq. (26), non-linear Young’s modulus, Eq. (1),
eads as

= E0 + Ae

[
2(1 − ν)

(1 + ν)(1 − 2ν)

]−s/2

(σy)s, (28)

The above relation is valid during pure elastic defor-
ation only, since use has been made of the elas-

ic relation in Eq. (26). During elasto-plastic loading,
he ratio between axial and lateral stresses is differ-
nt from the elastic one in Eq. (26), and Eq. (28)
eeds to be updated. Thus, Eq. (28) is called the
elastic prediction” of Young’s modulus in oedometric
xperiments.

A sketch of the loading and unloading path in the
y − σx plane is plotted in Fig. 5. This is an alter-
ative representation of the Drucker-Prager-Cap yield
urface valid for the special type of axisymmetric

tress states acting in the oedometric test. The dot-
ed line is the yield (failure) surface, transferred to
y − σx plane. If during loading in the oedometric

est, cap yielding is active, the following equations

p

t

ig. 5. A sketch of the loading and unloading path of oedometric
xperiments in the σy–σx plane.

re satisfied by the yielding criterion and plastic flow
otential:

Fc = 0

∂Gc

∂σx

∣∣∣∣
σx=σz

= 0
(29)

The first equation is the cap yield criterion, sat-
sfied while cap yield is active, and the second one
s derived from the plastic flow potential by taking
nto account the condition of rigid side walls in the
edometric test (see Section 2.2.2). During the com-
ression, εx = εz = 0 is valid due to the rigid wall con-
ition, but for the increments of plastic strains in
he transverse plane, the second equation in Eq. (29)
s the approximation to the condition on the total
train.

Expressing this in terms of the principle stresses
or the case of axisymmetric loading, and this sys-
em of equations can be solved for the hardening
arameter pb as a function of stress component σy,
iving

3sec2β(cos β + R sin β)√

b = − × (−3 cos β + 4 + 9R sin β)

−9 + (4 + 9R2) tan2 β
σy. (30)

Although Eq. (30) cannot provide the exact defini-
ion of hardening law yet, there is possibility to reveal
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stresses–temperature–space. In this way, the inelastic
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he relation between compression stress and plastic
train through Reimann fits.

.3. Reimann fits for loading and unloading

First, we recall the empirical curves by Reimann for
he oedometric experiments. While in the unloading
ranch σU of Eq. (24), the strain ε represents purely
lastic strain changes during unloading, the strain in
he loading branch σL is the sum of the elastic and
lastic strain changes during loading. Thus, Eq. (24)
an be written as

σL
y = [CL

1 (CL
2 + CL

3 TCL
4 )(εel + εpl)]

1/1−CL
5

σU
y = [CU

1 (CU
2 + CU

3 TCU
4 )εel]

1/1−CU
5

. (31)

Comparing the non-linear Young’s modulus in Eq.
28) to the elastic (unloading) part of the Reimann fits
q. (31), we identify

E0

E
→ 0

s = CU
5

Ae = 2CU
1 (CU

2 + CU
3 TCU

4 )f (ν)1−s/2g(εin
vol)

, (32)

here

f (ν) = (1 + ν)(1 − 2ν)

2(1 − ν)

g(εin
vol) = 1 + εin

vol

ε
in,0
vol

(33)

In Eq. (32), g(εin
vol) is a function to adjust the dif-

erence between the elastic prediction according to Eq.
28) and the exact elasto-plastic loading path. Eq. (28)
s valid only in pure elastic deformation. Once the

aterial had behaved irreversibly, the ratio of stresses
ill be different from Eq. (26) even for the case of

lastic unloading. The present non-linear elasticity law
epends on the stress state, however the elastic pre-
iction is different from the elasto-plastic loading path
ecause of the changing of inelastic strains. The differ-
nce in these two stress states is accounted for approx-

mately by the function g(εin

vol). Only a first order, i.e.
inear functional form of g(εin

vol) is taken into account,

nd the values of ε
in,0
vol are chosen to fit the empirical

urves.

r
b
t
o

and Design 82 (2007) 189–206 197

Next, we eliminate the elastic strain change in the
lastic (loading) part of Eq. (31) by means of the corre-
ponding unloading part and solve for the plastic strain
hange to obtain

pl = (σy)1−CL
5

CL
1 (CL

2 + CL
3 TCL

4 )
− (σy)1−CU

5

CU
1 (CU

2 + CU
3 TCU

4 )
.

(34)

Note the dependence on both the CL
i and CU

i .
Combining Eqs. (30) and (34), the hardening

aw pb ∼ εpl is obtained. To each value of εpl,
here is related a unique value of pb in analyti-
al form depending on the values of CL

i and CU
i

s they are provided by Reimann fits representing
he experimental data. So, with the procedure dis-
ussed above, the elasto-plastic parameters in the
resent model can be determined unambiguously from
he experimental results without any try-and-error

ethod.

.4. The advantages of the improvement

There are two main advantages of this improve-
ent. First, it is possible to directly use the empir-

cal Reimann fit equations from the experiments to
etermine uniquely the set of material parameters,
specially the hardening laws, instead of using a try
nd error method. It turns out that the latter method
ay deliver various sets representing the oedomet-

ic experiment more or less well, however, they may
esult in totally different and possibly unphysical
esponses for other loading histories. By the method
eveloped in this work, we identify the right set of
arameters.

Second, since this procedure can be carried out for
ach temperature level, the temperature dependence
f the hardening law is introduced into the model in
n unambiguous way. This means that the thermo-
lastic generalization of the constitutive model for
ebble beds is obtained in a straight forward man-
er from the temperature dependent Reimann fits.
ig. 6 shows a sketch of the yield (failure) surfaces in
esponse of the material for different temperatures can
e predicted. For instance, if the temperature varies,
he theory might describe changed yielding behaviour
f the material [26].
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ig. 6. A sketch of the Drucker-Prager-Cap yielding/failure surfaces
f thermoplasticity.

. Validation and discussion

.1. Validation for hardening law

For the purpose of validation of the method dis-
ussed above, the material data from oedometric com-
ression experiments are needed. Table 1 gives a set of
arameters of Reimann fits, Eq. (31), for both breeding
eramics, Li4SiO4 and beryllium pebble beds [15].

For beryllium pebble beds, the Poisson ratio
= 0.05, and for Li4SiO4 breeder pebble beds, ν = 0.25

27]. The procedure of determining the material param-
ters has been implemented in a USDFLD routine.

Fs = q–p tan β − d
nd for beryllium pebble beds, we take ε
in,0
vol = 0.02,

nd for Li4SiO4 breeder pebble beds, ε
in,0
vol = 0.05 is

able 1
he parameters of “Reimann fits” for oedometric compression

Li4SiO4 Beryllium

CL
i CU

i CL
i CU

i

154.0 170.0 154.0 870.0
1.0 1.0 1.0 1.0
−8.5E−10 −8.5E−10 0.0 0.0
3.0 3.0 1.0 1.0
0.47 0.60 0.586 0.65

w
σ

o
b
a

i

and Design 82 (2007) 189–206

sed. As validation, we simulate the oedometric exper-
ment with the present model and compare the pre-
icted results with the experiments. Fig. 7 presents the
omparison between the present FEM model and the
xperiments for both ceramic breeder pebble beds and
eryllium pebble beds. The FEM results include an
nloading and reloading path at 3 MPa. Fig. 7 shows
good agreement of the prediction by the model with

he empirical curves during both loading and unload-
ng branches. This validation proves the accuracy of
he method discussed above to determine the mate-
ial parameters of both elasticity and plasticity in the
resent model.

.2. The softening behaviour in the previous model

In the previous material modelling [1], the Drucker-
rager friction angle has been chosen as 45◦. Unreal-

stic plastic softening behaviour was observed in the
odel when simulating unloading in the oedomet-

ic test to zero stresses resulting in an almost com-
lete vanishing of the plastic strains. Fig. 8 shows the
tress–strain curves for different values of the Drucker-
rager friction angle β (40–60o). The smaller the β

alue, the more pronounced softening behaviour is
ound. In Fig. 5, the slopes of the shear failure sur-
aces are defined by β. For axisymmetric conditions,
he shear failure surface can be transformed from the
–p plane to the σy–σx plane as

I : σx − σy + 1

3
(σy + 2σx) tan β − d = 0

II : σy − σx + 1

3
(σy + 2σx) tan β − d = 0

, (35)

here “I” and “II” refer to the shear surfaces in the
y–σx plane, respectively, see Fig. 5. Thus, we may
btain the coordinates of the intersections (A and B)
etween the shear failure surfaces and the σy- and σx-
xes. We get

A :

(
− d

1 − 2/3 tan β
, 0

)
( ) . (36)
B : 0, − d

1 − 1/3 tan β

For a relatively small d, as in the case of pebble beds,
ntersection A is close to the origin point of the σy–σx
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ig. 7. The prediction of the present model compared with the expe
eds; right, beryllium pebble beds.

lane. Consequently, the main reason for the softening
ehaviour while unloading is that the failure surface
s hit before complete unloading to zero compressive
tresses has occurred. If the unrealistic softening during
nloading is to be avoided, the shear failure surface “II”
hould be parallel to the σx-axis or have an intersection

or σx > 0. This means a condition for the slope, i.e., β,
nd, by Eq. (36), we find

an β ≥ 1.5. (37)

ig. 8. The effects of β on the softening behaviours while unloading.
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l fits (parameters from Fokkens [15]): left, ceramic breeder pebble

As mentioned above, for a small value of β, the
nloading path will hit the shear failure surface before
he axial stress is reduced to zero, initiating the unre-
listic softening behaviour during final unloading,
hile Eq. (37) provides the condition to avoid such
ehaviour.

Note that the Drucker-Prager friction angle β is
ot identical to the friction angle of granular materi-
ls, but it is a function of the real friction angle. The
rucker-Prager friction angle β can be estimated by

he Leonardo da Vinci’s static friction experiment for
granular medium, see Fig. 9 [28]. The static friction

oefficient is defined as

s = T

P
= τ

σn

. (38)

The three-dimensional stress state in the static fric-
ion experiment is shown in Fig. 9 (right). The stresses
n the cubic element represent the stress state in the
heared middle layer of the experimental setup. By
nalyzing the stress state in the middle layer, it is
ound that the middle layer of the static friction exper-
ment is in a similar stress state as the pebble bed in

he oedometric test. The normal stresses in the trans-
erse plane are determined by the effect of the Pois-
on ratio and a condition of axisymmetric symmetry
n this plane. Consequently, the stress tensor can be
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data for ceramic breeder pebble beds ([25] and “Mate-
rial Assessment Report” for ITER), the Drucker-Prager
friction angles of the pebble beds can be calculated
by analyzing the stress state in bi-axial compression.
ig. 9. Left, A sketch of typical experimental setup used to measure t
tate in the sheared middle layer of the setup to the left.

xpressed as

σn τ 0

τ cσn 0

0 0 cσn

⎞
⎟⎠ . (39)

In this stress tensor, the stress ratio c = ν*/(1 − ν*)
epends on the kind of loading. For pure elastic defor-
ation, ν* = ν is the elastic Poisson ratio, Eq. (26). In

he case of elastic–plastic deformation, ν* = νpl is some
istory dependent quantity with a value in the range
≤ νpl ≤ 0.5. Expressing this stress state in Drucker-
rager-Cap theory as

q =
√(

1 − 2ν∗

1 − ν∗ σn

)2

+ 3τ2

p = 1 + ν∗

3(1 − ν∗)
σn

, (40)

e have

an β = 3

√
(1 − 2ν∗)2 + 3μ2

s (1 − ν∗)2

1 + ν∗ . (41)

Here, the Drucker-Prager friction angle β is
xpressed as a function of the static friction coefficient
s and the Poisson ratio ν* (=ν or =νpl), see Fig. 10.
he value of β is a monotone function of μs for μs ≥ 0.

The value of μ can be obtained by several kinds of
s
xperiments, and on the basis of μs, a rough range of the
rucker-Prager friction angle can be estimated. For the

hear failure surface to be parallel to the σx = σz-axis,
he condition tan β = 1.5 has to be satisfied (see Fig. 5

F
t

ficient of the static friction μs of a granular material; right, the stress

nd Eq. (37)). By solving Eq. (41), and considering
he extreme condition μs = 0 for a totally non-friction

aterial, ν* ≤ ν0 = 0.2 guarantees that the unloading
ath will not hit the shear failure surface. With lager val-
es ofμs, the critical value of Poisson ratioν0 increases,
or instance, ν0 = 0.5 while μs ≥ √

3/2. By Eq. (41),
he region satisfying tan β ≥ 1.5 can be found in Fig. 10.

According to the available bi-axial experimental
ig. 10. tan β as a function of the static friction coefficient μs and
he Poisson ratio ν*, the bolded line shows the critical value of tan β.
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ig. 11. The hydrostatic compression with different values of R: left

ollowing Eq. (35) for shear failure surface “I” in the
xisymmetric stress plane, and assuming d = 0 for sim-
licity, we have:

an β = 3(σ0
y − σ0

x )

σ0
y + 2σ0

x

. (42)

Superscript 0 indicates the failure stress in exper-
ments. As a result, values of almost around 60◦ are
ound for the Drucker-Prager friction angle β of both
eramic breeder and beryllium pebble beds. As dis-
ussed above, such a value is in accordance with the
riterion for avoiding unrealistic softening, i.e. Eq.
37). Consequently, both the experimental results and
heoretical considerations of the Drucker-Prager theory
upport the choice of the Drucker-Prager friction angle
≈ 60◦. On the other hand, as shown before, for such
value no unreasonable plastic softening behaviour

ccurs in the model.

.3. Sensitivity of constitutive model with respect
o material parameter R

Most of the material parameters can be determined
y the method presented above from with the empirical

quations of the Reimann fits. However, some param-
ters are adjusted “manually”, i.e. by try and error,
hich does not effect the predictions in oedometric

est but possibly in other loading paths. In principle,

ε

e

strain curves; right, strains at 5 MPa with different R-values.

hese parameters can be determined by experiments
mploying different loading paths, such as hydrostatic
ompression or triaxial compression. Fig. 11 shows the
mpact of R on the simulation of hydrostatic compres-
ion. In Fig. 11, the left plot shows the stress–strain
urves and the right plot is the normal strain at 5 MPa
ersus the corresponding value of the parameter R.

Only the determination of the value of R is missing
n the present model. This constant controls the shape
f cap surface, and mainly effects the direction of the
lastic and creep flows. However, Fig. 11 clearly shows
hat the stress–strain curves are not very sensitive to
ariations of R over a wide range. From the current
oint of view, these findings indicate that tremendous
fforts for experiments with new type of loading states
n order to identify R exactly seem not to be justified.
nstead, some reasonable estimate for R will be suffi-
ient for the purposes of this work.

.4. Creep properties

In addition, creep experiments have been performed
nd empirical creep equations were obtained [19] of the
ype: ( )

cr = A exp −B

T
σntm (43)

Parameters A, B, n, m have been determined by
xperiments for different materials, such as ceramic
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Table 2
The parameters for the creep experiments (units: MPa/s/K)

Li4SiO4 Beryllium

A 12.12 3.874
B 10220.0 9124.0
n
m
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listed briefly in Table 3, in order to give an overview

F
c

0.65 0.62
0.2 0.35

reeder and beryllium pebble beds. The parameters of
i4SiO4 and beryllium pebble beds are listed in Table 2

17,19].
In view of the discussing in Section 2.3, the param-

ters (A*, B, m, n) in Eq. (22) can be identified from
xperiments for different materials. It has been reported
hat due to a bug the “strain hardening” form of consol-
dation creep is not available in ABAQUS in analyses
f two-step creep [1]. The consolidation creep has
een re-implemented in ABAQUS by a CREEP rou-
ine. In contrast to the ABAQUS formulation reported
n Section 2.3, in this investigation, the effective creep
ressure p̄cr is taken to be equal to the total hydro-
tatic pressure p at the current stress state. By this
pproach, the fit equations for the experimental data
19] can be used directly in the formulation of consoli-

ation creep. Eq. (43) is formulated in term of uniaxial
tress σ, whereas Eq. (22) for the consolidation creep
elies on hydrostatic pressure p. This difference is taken
nto account by the ratio A*/A, while the other param-

o
o
c

ig. 12. The creep prediction of the present model compared with experime
eramic breeder pebble beds; right, beryllium pebble beds.
and Design 82 (2007) 189–206

ters (B, m, n) are the same in both cases. In order
o minimize the difference between the predictions of
he model and experiments, we choose for A*/A the
alue of 2.2 for both Li4SiO4 and beryllium pebble
eds.

The validation of the creep modelling has been made
or different compression stresses and bed temperatures
f Li4SiO4 and beryllium pebble beds, respectively.
ig. 12 shows a comparison between the prediction of
odel and the experimental results. Two typical exam-

les for single step stress loading are given with the
aximum creep strain up to 3% (Li4SiO4 at 2.2 MPa

nd 850 ◦C as well as 6.5 MPa and 650 ◦C) and 2%
beryllium at 1.7 MPa and 635 ◦C as well as 1.7 MPa
nd 635 ◦C). It can be seen that the identification of the
aterial constants has been successful. The two-step

reep experiment of beryllium pebble beds in Fig. 13
ay serve as an independent validation experiment,

ince such a loading history was not the basis of the
dentification of the creep parameters. The comparison
hows that present model is well capable of represent-
ng the creep processes in the pebble beds considered
ere.

In additional, the relations between parameters in
urrent material model and experimental results are
f the present method. CL
i and CU

i are the coefficients
f “Reimann fits” for oedometric compression, which
an be found in Table 1.

ntal fits (Reimann and Worner [19]; Reimann and Harsch [17]): left,
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for the case of uniformly heating to find out the influ-
ence of volumetric inelastic strain on the thermal con-
ductivity of beryllium pebble beds. This influence has
been investigated by experiments [4,22,23], suggesting
Fig. 13. The two-step creep experiment, the comparison of t

.5. Application to pebble beds assembly (PBA)

For the validation purpose, the analysis of the pre-
ompaction procedure of the pebble bed assembly
PBA) capsule used for experiments in the HFR reactor
t NRG Petten is carried out. This procedure has been
nalyzed in detail by Fokkens [15] with the assumption
hat the pebble beds have two different elastic laws
hile loading and unloading. The geometric model
f PBA is sketched in Fig. 14. Ceramic breeder and
eryllium pebble beds are included in PBA. The com-
ression stress σ is applied on the pressure lid, and
ycles at the first mechanical loading with the temper-

ture at 20 ◦C. In the first 37.5 s, the pressure increases
nd decreases at rate of 0.4 MPa/s, and the maximum
ressures are 1, 2, 3 MPa at every loading cycle in 30 s,
nd then reloads to 3 MPa. Second, thermal loading,

able 3
he summary of material parameters used in this paper

Parameters in model Expressed by experimental results

Non-linear elasticity
Ae Eq. (32)
s CU

5
ν 0.05 for beryllium and 0.25 for

Li4SiO4 pebbles [27]
E0 ∼0

Drucker-Prager-Cap theory
R 0.9
β 60◦ [25]
pb Eqs. (30) and (34)
d ∼0

Creep law
A, B, m, n Experimental coefficients in Eq.

(43), i.e. Table 2 [17,19] F
b

iction of the present model and experiment (T = 605 ◦C [4]).

he temperature of PBA is raised uniformly to 350 ◦C
t rate 0.04 ◦C/s under the constant pressure 3 MPa;
hen the whole PBA keeps the constant pressure and
emperature for 24 h; and finally thermal unloading to
0 ◦C at rate 0.04 ◦C/s and mechanical unloading at rate
.4 MPa/s [15]. This calculation has been carried out
ig. 14. A sketch of the axisymmetric finite element model of pebble
ed assembly (PBA).
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hat the one of beryllium pebble beds is more signifi-
ant than ceramics breeder pebble beds, and should be
aken into account for the thermal–mechanical coupled
nalysis.

Using the modified Drucker-Prager-Cap model with
he present identification method of material parame-
ers, the pre-compaction procedure has been analyzed.
he stress–displacement curve on the pressure lid is
hown in Fig. 15, and the result obtained by Fokkens
15] is plotted inside for comparison. The result shows
hat the present model works well in the thermo-

echanically coupled finite element analysis.
With the implementation of the strain-dependent

hermal conductivity in USDFLD, the profile of the
hermal conductivity of beryllium pebble beds can be

redicted by the present material model (see Fig. 16).
he thermal conductivity has been modelled as a func-

ion of both volumetric inelastic strain and temperature,
s Eq. (23). The magnitudes of thermal conductivity

Fig. 15. The stress–displacement curve of the pressure lid during
the entire pre-compaction procedure, small plot is the results from
Fokkens [15].

ig. 16. Thermal conductivity (W/m ◦C) profile of beryllium pebble beds: (left) after the mechanical cycling; (right) after the pre-compaction
rocedure.
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re 8.74–10.1 W/m ◦C after the mechanical cycling and
0.1–11.4 W/m ◦C after the total pre-compaction anal-
sis, compared with the value without any inelastic
trains in the material (about 2 W/m ◦C) at the begin-
ing of the procedure.

. Conclusion

In this paper, the thermo-mechanical properties
f ceramic breeder and beryllium pebble beds are
nvestigated. Because the pebble size is sufficiently
mall compared with the bed dimensions, a continuum
echanics approach is used for the thermo-mechanical
odelling of pebble beds. Motivated by the results of

xperimental investigations, the present material model
s mainly composed of a non-linear elasticity law, the
rucker-Prager-Cap theory, a modified consolidation

reep law and a volumetric inelastic strain-dependent
hermal conductivity. The present material model can
e applied in fully coupled thermo-mechanical finite
lement analysis for pebble beds.

To determine the material parameters in the present
odel, a method is proposed to find the proper set of
aterial parameters from the available experiments.
his method is based on the analysis of the deformation

n the oedometric test, which is the basic experimen-
al setup for characterizing the material properties of
ebble beds. The hardening law of the Drucker-Prager-
ap theory is identified through empirical equations

Reimann fits) representing the experimental data. Val-
dation of the material model of both ceramic breeder
nd beryllium pebble beds shows that the predictions
f model agree well with the experimental results.

Furthermore, the thermo-mechanical model devel-
ped in this work is applied to the analysis of the
recompaction procedure of the pebble bed assembly
PBA) capsule used for experiments in the HFR reactor
t NRG Petten.
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