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a b s t r a c t

In this paper, a discrete element simulation scheme for pebble beds in fusion blankets is

presented. Each individual pebble is considered as one element obeying equilibrium

conditions under contact forces. We study not only the rearrangement of particles but

also the overall behaviour of an assembly under the action of macroscopic compressive

stresses. Using random close packing as initial configurations, the discrete element

simulation of the uniaxial compression test has been quantitatively compared to

experiments. This method yields the distribution of the inter-particle contact forces.

Moreover, the micro–macro relations have been investigated to relate the microscopic

information, such as the maximum contact force and the coordination number inside

the assembly, to the macroscopic stress variables.

& 2009 Published by Elsevier B.V.

1. Introduction

Nuclear fusion provides a promising and sustainable solution for the future energy demand, in particular the electricity
demand, without long-term radioactive waste and greenhouse gas emission. Working as tritium breeder and neutron
multiplier in fusion reactors, lithium-based ceramic, such as Li4SiO4 (Knitter et al., 2007), and beryllium pebble beds,
respectively, are under severe thermo-mechanical loads (Reimann et al., 2002). Thus, the thermo-mechanics of these
materials being composed of nearly spherically shaped particles is not only essential to understand the behaviour due to
external excitations, but also important for the design, characterization and diagnostics of components in fusion blankets.

Similar to sand and soil, pebble beds can be modelled by either a discrete element method (An et al., 2007a, b) or a
continuum approach (Gan and Kamlah, 2007). The first approach is usually used to investigate the physics behind the
macroscopic behaviour of the material, and the second one is practical in engineering applications, such as fully coupled
thermo-mechanical analyses of structures containing pebble beds. The aim of both approaches is to represent the
constitutive behaviour of the material in the framework of different models. The agreement between predictions of models
and experimental results, such as the uniaxial compression test, is the key to show the applicability of material models.
Besides the similarities to the plastic behaviour of metals, namely, nearly rate-independent plastic deformation and yield
stress, granular materials have relatively strong dependence on pressure and volume changes. Increasing the hydrostatic
pressure on a granular material can introduce further irreversible deformation which can be accompanied by a reduction in
volume. The changes in volume can either harden or soften the material assemblies. Another common feature of granular
materials is the dilatancy under shear stresses. When sheared, the interlocking particles in a compacted state move and
produce a bulk expansion of the material. The overall plastic deformation of pebble beds results from a combination of the
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plastic deformation of individual pebbles and the irreversible rearrangement of pebbles. Furthermore, other behaviour, like
effective thermal conductivity and thermal expansion, depends sensitively on the packing and inter-particle force chains
in the granular materials (Jaeger et al., 1996). To describe these properties, both a micro-mechanical description and a
phenomenological model can be employed. The link between these micro- and macro-quantities can be studied by
concurrent multiscale modelling. However, as sequential multiscale modelling, a micro-mechanics based phenomen-
ological model for granular materials remains rare in literature.

Due to their discrete nature, in this paper, the constitutive behaviour of pebble beds will be studied by means
of the discrete element method. The discrete element method (DEM), or distinct element method, was first introduced by
Cundall and Strack (1979) to study the mechanical response of assemblies consisting of discrete particles. DEM has been
employed in either dynamic or static analyses of granular media (Herrmann and Luding, 1998). DEM has been developed
based on the idea that discrete particles could be displaced independently from one another and interact with each other
only at contact points. Contact laws are applied to describe inter-particle forces, i.e., normal and friction forces. New
contacts can be automatically detected. The interaction in the assembly is monitored contact by contact, and the motion of
particles is modelled particle by particle. Using this method, the deformation, as well as the internal force distribution of
the assembly can be obtained numerically (Thornton and Antony, 1998; Antony, 2000; Redanz and Fleck, 2001; Martin
et al., 2003; Martin, 2004; Gilabert et al., 2007). These types of information are crucial to understand the mechanism of
macroscopic behaviour of granular media, such as the yield surface (Redanz and Fleck, 2001) and the crush probability of
single particles inside an assembly (Marketos and Bolton, 2007). Some early approaches have made some assumptions to
simplify the problem under consideration, such as using two-dimensional cases, or simulating limited number of particles
contained by rigid walls. However, these assumptions would not be valid if DEM is applied to pebble beds in fusion
blankets.

With the help of DEM, thermal creep of a ceramic breeder pebble bed has been investigated by a 3D discrete
numerical thermo-mechanics code (Lu et al., 2000; Ying et al., 2002). Recently, the contact force distribution inside
pebble beds has been investigated (An et al., 2007a, b). For these existing studies, six rigid walls are applied as boundaries
for the assembly containing a few thousand particles. Initial packing factors reached in these investigations are 6070:5%.
This range is below the reference value in fusion blanket applications. To provide a representative result, and to eliminate
the effect of a rigid wall at the same time, a large number of particles should be considered. Periodic boundary conditions
are hence essential to perform the discrete element simulation (Gilabert et al., 2007). Other researchers (Aquaro and
Zaccari, 2005, 2006) simplify the particles in regular lattices as beam elements, which represent the interaction forces
between pebbles, and the overall response can be obtained. By using regular lattices, analytical solutions can be obtained,
and the initial packing factor can be varied by using different types of lattices. However, this approach eliminates the
influence of the rearrangement of particles, which is another important factor to understand the overall plastic strains of
the assembly.

Considering the micro-structure of pebble beds, the deformation mechanism can be clearly revealed by DEM
approaches, including mechanical behaviour and thermal creep. The physical meanings of some phenomenological
material parameters, such as strain-dependent thermal conductivity, can be explained through an investigation of
assemblies consisting of particles. But on the other hand, the problem remains that, for example, the complexity of the
micro-structure and the plastic contact of pebbles are still idealized in this approach. The homogenization of these
microscopic informations should be studied in order to use results of DEM simulations in a different length scale.
Moreover, engineering applications of DEM into large scale structures, such as a HCPB-TBM (helium cooled pebble beds-
test blanket modulus) blanket, will not be practical without the help of continuum mechanics.

This paper is organized as follows. In Section 2, the theoretical background of the discrete element method
will be briefly introduced, and a stress average method is presented to link the interactions between individual particles to
the macroscopic stress state of the assembly. Some discussion concerning solution techniques will be made in
Section 3. Finally, in Section 4, discrete element simulations to represent the uniaxial compression test of pebble beds are
discussed.

2. Theory

2.1. Discrete element method

The discrete element method is applied to simulate an assembly of particles, in which it allows finite displacement and
rotation of discrete bodies, including complete detachment (Thornton and Antony, 1998; Martin et al., 2003; Martin, 2004;
Gilabert et al., 2007). A custom discrete element code has been developed for analysing pebble beds in this investigation.
The kinematics of two contacting particles are schematically shown in Fig. 1. For normal interaction, only the elasticity of
the bulk material is considered, and the particles are assumed to be spherically shaped. Thus, the classical Hertzian
solution (Johnson, 1985) can be employed depending on the elastic properties of the contacting particles, i.e., I-th and J-th
in the assembly, by

fðI;JÞN ¼ �
4
3E�

ffiffiffiffiffi
R�
p

d3=2
� n: ð1Þ
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Here, d is the overlap of two contacting particles, n is the normal unit vector, E� and R� are the effective Young’s modulus
and the reduced radius, respectively, defined as

1

E�
¼

1� ðnðIÞÞ2

EðIÞ
þ

1� ðnðJÞÞ2

EðJÞ
; R� ¼

RðIÞRðJÞ

RðIÞ þRðJÞ
:

Ceramic breeder pebbles, such as Li4SiO4 considered in this investigation, are produced with good sphericity and with a
narrow size range. For inelastic contact laws, there are different approaches in literature. Concerning the visco-plasticity
properties of the bulk material, Storakers et al. (1999) have provided a solution using the total strain, which can be easily
implemented in the present framework of the discrete element method. In order to take into account the elastic unloading
path, Mesarovic and Johnson (2000) have investigated adhesive contact between elasto-plastic spheres, including the
simplest case of the solution of perfect elasto-plastic contact. Kruggel-Emden et al. (2007) have reviewed the existing inter-
particle contact laws used in discrete element methods. The friction force has a direction opposite to the sliding velocity
D _xT . The magnitude can be defined by different assumptions. For instance, the friction force applied to the I-th particle can
be written as (Bicanic, 2004)

fðI;JÞT ¼ �
D _xT

jD _xT j
minðmf ðI;JÞN ; ksjD _xT j � DtÞ: ð2Þ

Here, m is the friction coefficient of the contacting surfaces, ks represents the coefficient in the case of small tangential
displacement (proportional to the sliding velocity), f ðI;JÞN is the magnitude of the normal contact force between these two
particles, and Dt is the time increment. The second part gives a smooth transition at the region of low relative tangential
velocity jD _xT j.

For the I-th particle, the time evolution of the degrees of freedom is governed by the equations

mðIÞ €xðIÞ ¼
X

J

FðI;JÞ; IðIÞ _xðIÞ ¼
X

J

CðI;JÞ: ð3Þ

Here, mðIÞ and IðIÞ are the mass and the moment of inertia of particle I, respectively. FðI;JÞ and CðI;JÞ denote the inter-particle
force and moment from the J-th particle on the I-th one. The most widely used method for integrating the equations of
motion is the algorithm initially adopted by Verlet (1967). Swope et al. (1982) proposed a Verlet-equivalent algorithm,
which stores positions, velocities and accelerations all at the same time t. Another important issue is the time step of each
iteration for the explicit scheme. In this work, the time step is determined using the method proposed by Cundall and
Strack (1979) as dt¼ 2ft

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=K0

p
, where ft is less than unity to ensure stability of the calculation, m0 is the smallest particle

mass and K0 is the maximum contact stiffness, defined by the contact law. Here, ft ¼ 0:4, and thus a typical value of dt is
around 10�7 s. The simulation for quasi-static deformation can be carried out either using a global damping method
(Cundall and Strack, 1979) or by scaling the density of the particles by a factor of b with a typical value of b¼ 1012

(Thornton and Antony, 1998). The details will be discussed later in Section 3.

2.2. Micro–macro relations

The objective here is to determine the relation between the contact forces obtained in the discrete element calculation
and the macroscopic stress tensor. This relation is necessary to link quantities from the length scales of a particle and the
bed, and, thus, helps to understand the physics behind the macroscopic behaviour. In micro-mechanics, the unweighted
volume average stress, taken over the volume V of the representative volume element (RVE), denoted by r is defined as

r �
1

V

Z
V
rdV : ð4Þ

Applying the Gauss divergence theorem and the equilibrium, sij;i ¼ 0, of stresses, if both the body force and acceleration are
zero, we have

s ij �
1

V

Z
V
sij dV ¼

1

V

I
S
sljxinl dS¼

1

V

I
S

~F jxi dS: ð5Þ
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Fig. 1. (a) Kinematics of two contacting particles; (b) decomposition of the relative velocity in the contact region A.
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In this way, the macroscopic average stress s ij has been related to the external forces ~F j distributing on the surface S of the
considered body.

A pair of contacting spherical particles, namely, the I-th and J-th particles, subject to discrete element analysis is
illustrated in Fig. 2. To describe the coordinate of the contact point, it can be either denoted as xðIÞ in the local coordinate
with respect to the origin O

ðIÞ
or as x in the global coordinate system with the origin O. In the following, these two

approaches are discussed. All contacts are assumed to be point contacts, and thus for particle I,I
S

~F jxi dS¼
X

J

FðI;JÞj xðJÞi : ð6Þ

Here, xðJÞi denotes the position of the contact point with particle J.

2.2.1. Local coordinates

It is convenient to place the origin O
ðIÞ

of the I-th particle coordinate system in the centre of the sphere, and the local
coordinate system is named as xðIÞ. In this pair of contacting particles, the relations

FðI;JÞj ¼ f ðI;JÞN njþ f ðI;JÞT tj;

FðI;JÞj ¼ � FðJ;IÞj ;

xðI;JÞi � xðJ;IÞi ¼ dðI;JÞni ð7Þ

are valid. Here, f ðI;JÞN and f ðI;JÞT are the magnitudes of the normal and tangential forces applied from particle J on I, dðI;JÞ

denotes the distance between the centres of particles, and the unit vectors n and t are the normal and
tangential unit vectors, respectively. The coordinate xðI;JÞi describes the position of the J-th contact point in the local
coordinate on particle I. The signs of the forces are defined by the vectors, i.e., a compressive force is negative. Since there is
no stress present in the matrix (void), the integral of the assembly volume V can be obtained by summing each particle’s
volume V ðIÞð1rIrNÞ in the assembly. Eq. (5) can be written for the N-particle assembly by summing up all the existing
contact pairs

Z
V
sij dV ¼

XN

I ¼ 1

Z
V ðIÞ
sij dV ¼

XN

I ¼ 1

I
SðIÞ

~F jx
ðIÞ
i dS¼

XN

I ¼ 1

X
J

FðI;JÞj xðI;JÞi : ð8Þ

With Eqs. (7) and (8), the average stress can be obtained as

r ¼
1

V

X
Io J

dðI;JÞf ðI;JÞN n� nþ
X
Io J

dðI;JÞf ðI;JÞT n� t

 !
: ð9Þ

This equation is consistent with the derivation by Christoffersen et al. (1981), and it has been implemented in DEM
calculation in literature (Thornton and Antony, 1998; Martin et al., 2003; Martin, 2004; Gilabert et al., 2007).

2.2.2. Global coordinates

For the global coordinate system, a simulation box has been sketched in Fig. 3. The contact forces in Eq. (5), of two
contacting particles inside the simulation box, are opposite while the position x is identical. Therefore, the summation over
all interactions between particles inside the simulation box is zero. Only the terms stemming from contacts across the
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Fig. 2. Two contacting particles.
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boundaries are non-zero. Considering two types of boundary conditions, we have:

� Generalized boundary conditions

s ij ¼
1

V

X
I

X
BC

FðI;BCÞ
j xi: ð10Þ

� Periodic boundary conditions

s ij ¼
1

V

X
Io J

FðI;JÞ;BC
j

~L
ðJÞ

i : ð11Þ

In the first case, the interaction FðI;BCÞ denotes the interactions between the I-th particle and objects outside the box (e.g.,
the wall condition). In the second case of periodic boundary conditions, two contacts exist on the corresponding
boundaries of the box, as shown in Fig. 3. The J-th particle has been shifted by the vector ~L ðJÞ, in order to satisfy the periodic
boundary conditions, and as a result, it contacts with I-th particle inside the box. By summing up the corresponding
interactions, the second expression can be obtained.

2.2.3. Discussion on the averaging methods

Being independent of observers, the stress tensors obtained from both coordinates systems have to be identical. This
can be proven from the DEM calculation, by implementing both methods and comparing to each other. There are some
differences between these two methods:

� The first method, using the local coordinate, can be employed to calculate the local stresses inside the simulation box,
for instance, the stress state of a small assembly of particles.
� The latter method, using global coordinates, can be also applied for systems of non-spherical particles. In this case, the

first method is no longer valid, since Eq. (7) is not fulfilled.
� The latter method is more cost-efficient for larger system, since only the summation over particles on the boundaries is

taken into consideration. However, the difference is ignorable in the calculation of systems of a limited number of
particles.
� Both methods are obtained for the assumption of zero body force, as well as the term of the acceleration r €x. Therefore,

during the DEM calculation, an additional criterion has to be adopted to ensure a quasi-static state, and to obtain the
exact macro-stresses from the current assembly. The real quasi-static state has not been reached until the difference

sðextÞ
ii � sðintÞ

ii

sðintÞ
ii

�����
�����oB

is smaller than a certain value. Here, the subscripts (ext) and (int) indicate the global and local methods, respectively,
and B is a tolerance.
� If only normal contact is considered, Eq. (9) ensures the symmetry of the stress tensor. On the contrary, Eq. (11) would

provide a slightly asymmetric tensor during the calculation.

ARTICLE IN PRESS

Fig. 3. Average stress using the global coordinate.
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� Moreover, in strain-controlled tri-axial compression, the shear stresses are not exactly zero, but a few magnitudes
smaller than the normal stresses. This is caused by a slightly anisotropic packing state, which will be ignorable by using
systems of a larger number of particles.

3. Solution techniques

In this section, some techniques used in the current discrete element study will be discussed. Periodic boundary
conditions (PBCs) for the simulation box, as well as strain- and stress-controlled mechanical loading, has been
implemented. The convergence condition and the damping methods to accelerate the convergence rate are also discussed.

3.1. Periodic boundary conditions

Since the main focus in this investigation is to study the bulk behaviour of this type of materials, periodic boundary
conditions have to be considered. The initial periodic configuration is formed by shifting the particles in the objective zone,
a representative volume element (RVE), by a vector LðnÞ to the (n)-th periodic zone, where n¼ 1; . . . ;26 in the three
dimensional case. After an infinitesimal deformation, the RVE has an overall strain tensor e, and the change of LðnÞ can be
represented by the strain tensor. Here, the vector LðnÞ changes to vector ~L

ðnÞ
with respect to the strain tensor e as

~L
ðnÞ
¼ ðIþeÞT � LðnÞ: ð12Þ

Here, I is the second order identity matrix and dij is the Kronecker delta. Fig. 4 shows the vector ~L
ðnÞ

varies with respect to
the strain tensor e.

3.2. Ways of mechanical loading

Changing the strain tensor, strain control of the RVE can be realized by Eq. (12). In order to control the deformation of
the periodic cell, an incremental strain tensor Deij is specified, according to which the centres of all the particles in the
assembly are initially moved by Dxj ¼Deijxi, at the beginning of each loading step, as if they are points in a continuum.
Then the calculations to reach the equilibrium state are carried out iteratively. The applied deformations of particles in the
RVE result in stresses, which can be calculated by interaction forces, see Eq. (9) or (11).

Moreover, to implement stress proportional loading, the stress can be controlled by a proportional–integral–derivative (PID)
controller (Ziegler and Nichols, 1993). The PID controller algorithm involves three separate parameters: the proportional,
integral and derivative values. The proportional value determines the reaction to the current error eðtÞ, the integral value
determines the reaction based on the sum of the recent errors and the derivative one determines the reaction to the rate at
which the error has been changing. The weighted sum of these three actions is used to adjust the process via a control element.
The manipulated variable (MV) can be expressed as the standard form of the PID controller in devices as

MVðtÞ ¼ Kp eðtÞþ
1

Ti

Z t

0
eðtÞdtþTd

deðtÞ

dt

� �
; ð13Þ

where Kp is the proportional gain, and Ti and Td are the integral time and derivative time, respectively.
Assuming the materials being initially isotropic, the incremental form of Hook’s law can be expressed in the Cartesian

coordinate system ðx1; x2; x3Þ as

deij ¼
1

E�
½ð1þnÞdsij � ndij dskk�: ð14Þ

If sðnÞij is the desired value of stress and sðnÞij is the calculated value, the strain tensor can be updated by the current error

dsðnÞij ¼ s
ðnÞ
ij � s

ðnÞ
ij of the stress tensor and the counterpart dsðn�1Þ

ij at the previous step, in the framework of the PID

ARTICLE IN PRESS

Fig. 4. A schematic drawing of the vector ~L
ðnÞ

: (a) the initial configuration and (b) an infinitesimally deformed shape.
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controller as

deðnÞij ¼ deP;ðnÞ
ij þdeI;ðnÞ

ij þdeD;ðnÞ
ij ;

eðnÞij ¼ e
ðn�1Þ
ij þdeðnÞij : ð15Þ

Here, the respective contributions of the PID parts are

P : deP;ðnÞ
ij ¼

1

E�
½ð1þnÞdsðnÞij � ndsðnÞkk dij�;

I : deI;ðnÞ
ij ¼ deI;ðn�1Þ

ij þ
1

E�
dt

Ti
½ð1þnÞdsðnÞij � ndsðnÞkk dij�;

D : deD;ðnÞ
ij ¼

1

E�
Td

dt
½ð1þnÞðdsðnÞij � dsðn�1Þ

ij Þ � nðdsðnÞkk � dsðn�1Þ
kk Þdij�: ð16Þ

Therefore, by summing up these parts, we have

deðnÞij ¼ deI;ðn�1Þ
ij þ

1þn
E�

1þ
dt

Ti

� �
dsðnÞij þ

Td

dt
ðdsðnÞij � dsðn�1Þ

ij Þ

� �
�

n
E�

dij 1þ
dt

Ti

� �
dsðnÞkk þ

Td

dt
ðdsðnÞkk � dsðn�1Þ

kk Þ

� �
: ð17Þ

The value of E� and n can be set rather arbitrarily, and they are not necessarily equal to the ones of the assembly. If we only

consider the integral part of the PID controller, as deðnÞij ¼ deI;ðnÞ
ij , and set n¼ 0, we have the form of

_eðnÞij ¼
_eðn�1Þ

ij þ
1

E�Ti
dsðnÞij : ð18Þ

Thus, the general form in Eq. (17) implicitly contains the servo-control of strain rate used in literature (Thornton and
Antony, 1998; Antony, 2000) as a special case.

Since the particle assembly has a random structure (slight anisotropy), a small shear strain/stress is present, if the
principle stresses/strains are applied on the assembly. Two strategies can be used to eliminate either shear stresses or
shear strains: (1) let eij ¼ 0 for iaj, and accept shear stresses to be present; or (2) let sij ¼ 0 for iaj, and accept shear strains
to be present.

3.3. Convergence control

The most simple example for the determination whether a system reaches the equilibrium state is a single spring–mass
system. In terms of energy, all systems have two types of energy, potential energy V, and kinetic energy K. When a spring is
stretched or compressed, it stores elastic potential energy, which may then transfer into kinetic energy. If the system is a
dissipative one (e.g., a spring-dashpot-mass system), the total energy will finally be transformed into heat. The steady-state can
be reached eventually (as t-1) by not only minimizing potential energy ðminVÞ but also removing all kinetic energy ðK¼ 0Þ.

In an assembly, the network of contacts can also be simplified into spring-dashpot-mass systems. Thus, to achieve convergence
in such a simple system, the criterion of unbalanced force is not sufficient for equilibrium. Additionally, the criterion of the kinetic
energy should be taken into account. The principle stays unchanged for the whole assembly. The velocity (kinetic energy) and
acceleration, representing the unbalanced force, of particles should be checked at the same time. The criteria can be expressed as

dfrdf0; KrK0: ð19Þ

Here, df0 and K0 are two inputs for the convergence criteria, namely maximum allowable unbalanced force and maximum
allowable average kinetic energy, respectively.

For force convergence (unit: N), we have

df0rmaxðdfmin;a0 � faveÞ; ð20Þ

where fave is the average contact force in the assembly, and the tolerance for the unbalanced force dfmin and the ratio to the
average contact force a0 are constants. The average kinematic energy (unit: J) of the assembly is given by

K ¼ 1

N

XN

I ¼ 1

1

2
mðIÞðvðIÞÞ2þ

1

2
IðIÞðxðIÞÞ2

� �
: ð21Þ

In this investigation, we assume that the equilibrium state of the assembly is not reached, until Eq. (19) is satisfied.

3.4. Damping method

In order to remove the kinetic energy and to achieve convergence inside the assembly, a dissipation mechanism should
be introduced. This is divided into two parts: local damping and global damping.
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For the I-th and J-th particles in contact, if only the dependence on the relative normal velocity _xðI;JÞN is taken into
account, the local damping force is given by

fðIÞd ¼ �meffZd
_xðI;JÞN : ð22Þ

Here, meff ¼mðIÞmðJÞ=ðmðIÞ þmðJÞÞ is the reduced mass. The local damping factor Zd can be found for different materials in
Kruggel-Emden et al. (2007). The local damping forces will vanish when relative velocities _xðI;JÞN are approaching zero.

In addition to local damping, a global damping mechanism is introduced to speed up convergence. For the I-th particle,
the global damping force is

fðIÞD ¼ �mðIÞZD
_xðIÞ;

CðIÞD ¼ � IðIÞZDxðIÞ: ð23Þ

Here, ZD is the global damping factor. Similar to the local damping mechanism, global damping forces will vanish when
velocities _xðIÞ and xðIÞ are approaching zero. For a quasi-static analysis, global damping can be used to absorb the kinetic
energy, and enhance the convergence rate to the equilibrium for the assembly.

4. Simulation of uniaxial compression tests

In this section, simulations of uniaxial compression tests on assemblies of Li4SiO4 pebbles are carried out using the
discrete element method. This type of experiments has been used to characterize the thermo-mechanical behaviour of
pebble beds (Reimann et al., 2002, 2005). In this work, we consider ‘‘soft’’ compaction, meaning, compaction without
sintering and crushing.

The loading conditions of the assembly are defined by the macro-strain tensor: e33 increases from 0 to 1.25% and the
other components are zero. Periodic boundary conditions for the assembly are implemented by Eq. (12) with respect to the
current configuration, and the overall stress tensor is calculated by Eq. (9).

4.1. Material parameters

Young’s modulus for bulk Li4SiO4 has been measured by Dienst and Zimmermann (1988) and Zimmermann (1989), and
it depends on both porosity of the material and temperature. The relation is expressed as

E¼ 110ð1� ~pÞ3 	 ½1� 2:5	 10�4
ðT � 293Þ� ðGPaÞ: ð24Þ

Here, ~p is the porosity of the bulk material and T is the temperature in Kelvin. For Li4SiO4 pebbles, ~p ¼ 526% (Knitter et al.,
2007), and the temperature is around 20 3C. Therefore, the material parameters are set as E¼ 90 GPa and n¼ 0:24. Only
elastic contact is taken into account in this simulation, which seems to be justified, since the bulk material is Li4SiO4

ceramic in this study, whose plastic deformation is negligible. The normal interaction is described as Eq. (1), and the elastic
potential energy for each contact is 8

15 E�
ffiffiffiffiffi
R�
p

d5=2. The density of the bulk material is 2260 kg=m3 (Loebbecke and Knitter,
2007). For tangential interactions, the friction coefficient is set to 0.1 due to lack of experimental data. A low friction
coefficient increases instability of the assembly and introduces larger displacements of particles. As a result, it reduces
overall loads (Procopio and Zavaliangos, 2005).

The parameters for the convergence control introduced in Section 3 can be found in Table 1, namely the tolerance for
unbalanced force dfmin and the ratio to the average contact force a0, the maximum allowable average kinetic energy K0, the
local damping factor Zd, and the global damping factor ZD. The tolerance dfmin ¼ 5	 10�4 N will introduce an error of a few
kPa to the stress tensor, while the damping factors result in dissipation forces with a magnitude of less than 1	 10�4 N
after convergence is reached. Experience in calculations shows that these settings are quite strict, and thus errors should be
negligible.

Mono-sized pebbles are generated in the range of packing factors from 63.3% to 64.4% with the random close packing
algorithm proposed by Jodrey and Tory (1985), and the diameter of pebbles is set to 0.5 mm. This algorithm provides the
possibility to control the initial packing factor without introducing any initial stress state (Gan et al., 2009). The samples
are divided into three groups of packing factors: (Low) 63.3–63.5%, (Medium) 63.7–63.9% and (High) 64.0–64.4%, as listed
in Table 2. The number of particles in this simulation is 5000. Since periodic boundary conditions are applied, the number
of particles seems to be sufficient to give a representative result (Gusev, 1997, 2007).
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Table 1
Parameters for the convergence control.

dfmin (N) a0 (1) K0 (J) Zd (1/s) ZD (1/s)

5	 10�4 5	 10�4 1	 10�12 5	 104 5	 104
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4.2. Stress–strain curves

The macro-strain e33 ¼ � 1:25% is applied incrementally to the assemblies, and the stress s33 is calculated from the
interaction forces. After loading, the assemblies are unloaded by gradually removing e33 until the stress s33 reaches zero.
Fig. 5 shows the stress–strain curves from discrete element simulations of assemblies with (a) low, (b) medium and (c)
high initial packing factors, and a typical experimental curve (Reimann et al., 2005) is plotted as the dashed line for
comparison.

The loose-packed assemblies deform significantly up to e33 ¼ � 0:4% for small compressive stresses. Then stresses are
gradually built up, see Fig. 5(a). This suggests that for a loose-packed assembly applying small compressive stresses (i.e., a
few kPa) can increase the packing factor without introducing notable residual stresses inside the assembly. The response of
those assemblies is more compliant than the experimental curve. The congruent unloading paths of simulations and the
experimental curve can be found, although shifts about De33 ¼ 0:5% are present in those assemblies. This indicates that the
elastic constants, e.g., Young’s modulus, of the assembly depend on the stress state rather than on compressive strains.
Friction forces (Makse et al., 2000) and rolling resistance (Gilabert et al., 2007) can form a jammed system and hence lead
to a build-up of stresses inside the assembly (Goldenberg and Goldhirsch, 2005; Richard et al., 2005). However, in this
study the friction coefficient is set to a comparably low value of 0.1 and no rolling resistance has been taken into account
with the goal of making a first step towards the discrete element simulation of pebble beds. Assemblies with medium
packing factors agree satisfactorily with the experimental curve, see Fig. 5(b). The maximum compressive stresses reached
at end of loading are comparable to the experiment. The unloading path shows a similar trend parallel to the experiment,
and, furthermore, gives a macroscopic irreversible strain at the end of unloading, which can be compared quantitatively to
the experimental curve. The close-packed assemblies, in Fig. 5(c), show a much stiffer response than the experiment.
Relatively small irreversible strains can be found. Such assemblies can represent the behaviour of densified pebble beds
after a few cyclic compressive loadings. For the extreme case of Z¼ 64:36%, the compressive stress reaches almost 8 MPa at
the end of loading. The simulation shows that the initial packing factor plays an important role in the mechanical response,
and the group with medium packing factor gives the best fit to the experimental data. The packing factor in the
experiments is 63.5% for the dashed line shown in Fig. 5 (Reimann et al., 2005). The experimental stress–strain curve was
extracted from a cylindrical container with dimensions much larger than the size of pebbles, thus, the experiments are
governed by bulk behaviour of pebble beds and the contribution of the near wall regions is small. The overall packing factor
in the experiments consists of both bulk and near wall regions, and it approaches to the one in the bulk region considering
the dimensions of the container. However, the wall region usually has a lower packing factor (Reimann et al., 2008; Gan
et al., 2009). The packing factor in the bulk region will be slightly higher than the average value, 63.5%. Therefore, the
experiment has to be compared to the group of simulations with medium packing factors (M1, M2, M3) in Fig. 5(b). It can
clearly be seen that this comparison shows qualitatively and quantitatively good agreement.

In summary, the stress–strain curves of three groups differ significantly, suggesting that the sensitivity to the packing
factor is an important issue in pebble beds related problems. Overall plastic strains are observed for the assemblies, despite
the fact that only elastic interactions are taken into account in this investigation. The macroscopic irreversibility found in
the present discrete element simulations has to be attributed to rearrangement of elastic particles.

4.3. Visualization of the assembly

With the help of OpenGLs, a visualization software has been developed to visualize outputs from the discrete element
simulation. Fig. 6 shows the force chains and the elastic potential energy of an assembly at different loading levels. Two
loading steps of the assembly M1 are chosen as shown in Fig. 5(b). The magnitudes of the strain e33 are 0.75% and 1.25%.
The unit of normal contact forces is N, and the unit of elastic potential energy is 10�6 J. The potential energy depends on
both magnitude and number of contact forces. Close examination of the positions showed rearrangements of particles at
different loading levels.

Force chains are formed at the low strain level, and evolve during loading. Main force chains are developing during
loading and support the whole assembly. Non-uniform distributions of both potential energy and inter-particle forces are
observed. The force chains are important for the understanding of the mechanism of heat transfer inside the assembly,
especially for those materials with high ratio of solid-to-gas thermal conductivities, such as beryllium pebbles. The main
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Table 2
Packing factors of the samples.

Number L: 63.3–63.5% M: 63.7–63.9% H: 64.0–64.4%

1 0.63393841 0.63728178 0.64007780

2 0.63411831 0.63772953 0.64166147

3 0.63479272 0.63859036 0.64355432
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force chains, carrying most of the external load, have less thermal resistance to the heat flux transferring through the
assembly. Based on discrete element methods, it will be possible to formulate an anisotropic thermal conductivity taking
into account the loading history.
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Fig. 5. Stress–strain curves of discrete element simulations of uniaxial compression tests, assemblies with: (a) low; (b) medium; (c) high packing factors.
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4.4. Statistical analyses

In addition to the macroscopic quantities, such as stresses and strains, the interactions can be obtained explicitly by the
discrete element simulation. We focus on the probability distribution of normal contact forces, as well as mean values of
coordination number and contact forces in dependence on the macroscopic stress state. Here, the coordination number is
the total number of contacting neighbours of a central particle.

Fig. 7 shows probability density distributions of the normalized normal forces f ðI;JÞ=fave and normalized maximum
normal forces f ðIÞmax=fave in two assemblies, namely M1 and H3. The average normal force fave is the mean value of all normal
interactions inside the assembly, and the maximum normal force f ðIÞmax of each particle is defined as the maximum absolute
value among all the normal forces applied on this particle.

For both types of probability density distributions, similarities are found not only in different loading levels, namely
0.25%, 0.75%, 1.00% and 1.25%, but also between the two chosen assemblies. Despite the fact that at different loading levels
the average normal contact force and the coordination number (C.N.) in the same assembly vary in a wide range, nearly
congruent probability density distributions can be found. Fig. 7(a) and (c) show non-uniform distributions of the
normalized normal forces. A small fraction of the normal forces is in the high f ðI;JÞ=fave ratio region. The peak of the
distribution is located in the region f ðI;JÞ=faveo1:0. In Fig. 7(b) and (d), however, the peak of the probability distribution
of the normalized maximum contact force is located at f ðI;JÞ=fave 
 1:5, suggesting that most of the particles inside the
assembly have a maximum contact force larger than fave. Moreover, we introduce fit functions for the two types of
normalized contact forces. We assume that the cumulative distribution functions of both types have the form of the
Weibull distribution

PðxÞ ¼ 1� exp �
x

k

� 	m
� �

; ð25Þ

where x is the normalized contact force, m and k are the shape parameter and scale parameter of the distribution,
respectively. The maximum likelihood method was employed to find these Weibull parameters from the force
distributions of different samples. Table 3 shows the parameters obtained from the simulation data. The mean values of all
samples and standard deviations (SD) are also shown in the table. As a result, it turns out that the mean values of these two
types of force distributions represent well the force chains developed during loading in all assemblies with different initial
packing factors.
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Fig. 6. Visualization of simulation results: left, inter-particle force chains (unit: N); right, elastic potential energy (unit: 10�6J).
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Fig. 7. Probability density distributions of: (a), (c) the normalized normal contact forces and (b), (d) normalized maximum normal contact forces of M1

and H3, respectively.

Table 3
Parameters for the Weibull distribution of normalized contact forces.

x f ðI;JÞ=fave f ðIÞmax=fave

Sample m k m k

L1 1.39481 1.10734 2.41910 1.98127

L2 1.34912 1.10201 2.30538 2.00193

L3 1.35363 1.10128 2.32980 2.00033

M1 1.36191 1.10357 2.37626 2.02316

M2 1.35353 1.10384 2.38968 2.02029

M3 1.37461 1.10704 2.45238 2.01730

H1 1.40230 1.11023 2.53839 2.02390

H2 1.36118 1.10059 2.40291 2.03724

H3 1.33579 1.10166 2.42987 2.05977

Mean 1.36521 1.10417 2.40486 2.01835

SD 0.02169 0.00331 0.06846 0.02264
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The change of the average coordination number, named as nC , of an assembly over the macroscopic hydrostatic
pressure, p¼ � sii=3, is plotted in Fig. 8. Assemblies with medium and high packing factors are represented, and the ones
with low packing factors are excluded from the figure since their macroscopic stresses only vary in relatively small ranges.
The average coordination number varies between 5.8 and 6.7, for hydrostatic pressures from 0 to 8 MPa. It rapidly
increases with the increase of compressive stresses in the low stress region, suggesting rearrangement of particles during
loading. New contacts are formed as a result of the compressive stress state, which in turn increases the stiffness of the
assembly. Eventually the average coordination number becomes less sensitive to the increase of hydrostatic pressure,
suggesting a saturation value of nC . The distribution of the data points gives the possibility to fit those data with a simple
function. Equation

nC ¼ 5:80þ0:490p0:288 ð26Þ

gives the best fit for data of different cases between 0 and 8 MPa. This fit curve is also plotted in Fig. 8 as a dashed line for
comparison. The average coordination number is an important quantity. It plays, for instance, an important role for the
strain-dependent effective thermal conductivity of pebble beds (Reimann et al., 2008), which is also one of the critical
issues in design and analysis of blanket systems. Therefore, it is essential to know the dependence of the average
coordination number on the load.

Fig. 9 shows the changes of contact forces, namely the average normal contact forces fave and the maximum contact
forces fmax in assemblies with medium and high packing factors, over the hydrostatic pressure. Here, the average normal
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Fig. 8. Average coordination number over macroscopic hydrostatic pressure.

Fig. 9. Contact forces over hydrostatic pressure: (a) average normal forces; and (b) maximum normal forces.
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contact force is

fave ¼ � 2
X
Io J

f ðI;JÞN =ðnC � NÞ: ð27Þ

For the calculation of the hydrostatic pressure, p¼ � sii=3, from Eq. (9), nini ¼ 1 and niti ¼ 0. Neglecting the changes of the
distance between two contacting particles, we have

p¼ �
2r

3V

X
Io J

f ðI;JÞN : ð28Þ

For mono-sized assemblies, the initial packing factor can be written as Z¼N � 4
3pr3=V , where r is the particle radius. Thus,

the hydrostatic compression can be expressed as follows:

p¼
nCZ
4pr2

fave: ð29Þ

Here, the initial packing factor is chosen as Z¼ 0:64 for all samples and the average coordination number nC is calculated
by Eq. (26). Nemat-Nasser (2000) provided a similar relation for 2D cases, but here the dependency on not only the average
normal contact force but also the coordination number is shown. The present expression takes into account the
contribution of the rearrangement of particles inside the assembly, i.e., the dependence of nC on the load. In Fig. 9(a),
the approximation curve is plotted and gives a good representation of the data. Due to the occurrence of the radius, this
relation can also be applied to different systems with other values of particle radius.

Fig. 9(b) shows the maximum forces fmax inside the assemblies, with respect to hydrostatic pressure. Usually, the
maximum force is 5–6 times of the average normal force in an assembly. Neglecting scatter in the data of the maximum
force, the relation

fmax ¼ ð5:4770:474Þfave ð30Þ

gives the best linear fit for the maximum force as a function of the average force. This curve is plotted in Fig. 9(b), agreeing
well with the data from simulations. The maximum force fmax is important for the crush probability of individual pebbles.
Eqs. (29) and (30) make it possible to estimate the maximum contact force based on the value of hydrostatic pressure.

For the crushing of single pebbles in a pebble bed, the following factors are essential: the contact force distributions Pðf Þ

and PðfmaxÞ, the coordination number nC , the maximum contact force fmax in the assembly, as well as the behaviour of single
pebbles (Marketos and Bolton, 2007). Except for the last factor, which needs systematical experimental study on the crush
load of single pebbles, the discrete element simulations presented here are capable to describe all those issues mentioned
above. This offers possibility to investigate the complex blanket system by means of simple experiments.

DEM simulations for common granular materials usually include many simplifications, concerning, for instance, size-
distribution and shape of particles under consideration. In literature, there are many available DEM tools, including
commercial software. However, there are only a few comparisons between simulation and experiment, since in
experiments it is difficult to have an appropriate size ratio of pebble diameter and container dimensions, as well as to have
available particles of close to ideal shape. In the current case, the uniaxial compression test was carried out in large
containers to achieve bulk properties, and the granular material has been produced under controlled conditions with (1)
good sphericity and (2) narrow diameter range. DEM simulations of such simple systems, where common simplifications
are justified in a natural manner, and the comparison to corresponding experimental data show not only that DEM is a
promising tool in future applications, but also supports and justifies the DEM theory proposed in recent decades as a
valuable numerical tool.

5. Conclusion

In this paper, the discrete element method has been used to analyse the mechanical response of assemblies of pebbles.
In addition to the basic theoretical background of DEM, the micro–macro relations have been investigated to relate inter-
particle contacts to the macroscopic stresses. The simulation of uniaxial compression tests of Li4SiO4 pebble beds shows
that the initial packing factor plays an important role in the mechanical response to the external excitation. Three groups of
assemblies with a given initial packing factor (with low, medium and high packing factors, respectively) have been
prepared and studied. The group with medium packing factor, which is the packing factor closest to the experiments, can
be quantitatively compared to experimental data in terms of overall stress–strain curve. A macroscopic irreversible
deformation of pebble beds has been observed for assemblies with only elastic particles, suggesting that the
rearrangement of particles is an important mechanism for macroscopic irreversibility. For different external loading
levels and samples, the normalized force distributions are the same in view of statistics. Furthermore, the average
coordination number, as well as the average and maximum normal contact forces are obtained as a function of the
macroscopic hydrostatic pressure. This investigation gives not only a basic understanding of the response of pebble beds,
but also the possibility to characterize the pebbles in a microscopic way. The discrete element method provides promising
solutions for pebble bed related problems, such as the quantitative analysis of the crush probability, and moreover the
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yield surface of pebble beds. These results strongly support the designing and the optimization of a blanket system on
sound theoretical background.
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