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a b s t r a c t

In HCPB blankets, pebble beds are composed of nearly spherical particles in the state of random closed
packing. The packing structure is important to understand responses of pebble beds, e.g., mechanical
eywords:
ranular materials
ebble beds
andom close packing
acking structure
usion blankets

stresses and effective thermal conductivity. In this paper, an algorithm for random close packing of
polydisperse particles is presented which can be used for arbitrary pebble bed containing geometries.
The microstructure of a packed bed in both the bulk and near-wall regions can be determined. Computer-
generated samples are compared to recent X-ray tomography results of non-compressed pebble beds,
including the packing factors and coordination number. Moreover, initial configurations obtained by this
method can be used in discrete element simulations of random configurations of pebbles to investigate

ebbl
the overall behaviour of p

. Introduction

Pebble beds consist of nearly spherical particles filled into
elium-cooled pebble bed (HCPB) blanket systems, as tritium
reeder (e.g., Li4SiO4 pebbles) and neutron multiplier (beryllium
ebbles) materials. The packing structure of these particles is

mportant in blanket applications, since it influences the over-
ll mechanical response [1], the effective thermal conductivity
f the bed [2,3], and the interfacial thermal conductance of the
ebble–wall interface [4].

From a microscopic point of view, the configuration of particles
nside an assembly plays a major role in their overall constitu-
ive behaviour, for instance, different packing factors introduce
ifferent mechanical responses to the external excitation [5]. In
usion blankets, the packing factor is one of the key parameters
ue to the fact that the pebble beds expand during the increase
f temperature, and hence thermal stresses are induced. These
tresses can change significantly the effective thermal conduc-
ivity of the pebble beds. A low packing factor will provide a
ow effective thermal conductivity, which might be insufficient to
onduct the heat generated by neutron irradiation in the pebble
ed.

Moreover, gap formation might occur for a loosely packed bed

etween pebbles and the cooling structure after a few thermal
ycles.

The packing factor of a pebble bed depends on different fac-
ors: the size and size distribution of pebbles, the dimensions of the

∗ Corresponding author. Tel.: +49 0 7247 823459; fax: +49 0 7247 822347.
E-mail addresses: yixiang.gan@kit.edu, yixiang.gan@sydney.edu.au (Y. Gan).

920-3796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.fusengdes.2010.05.042
e beds under fusion-relevant conditions.
© 2010 Elsevier B.V. All rights reserved.

blanket, and filling technology [6]. For pebble beds in fusion blan-
kets, the packing factor for mono-sized particles is in the range of
63–64% [7]. To investigate the packing structure and the microme-
chanics of pebble beds by means of the discrete element method
(DEM [8,9,5]), an initial packed configuration should be provided
in the range of reasonable packing factors. It is crucial to prepare
an initial state of the assembly with both a practical packing factor
and topology before the DEM simulation.

The ordered close packing of hard mono-sized spheres has
a maximum packing factor of � = �/(18)1/2 ∼= 0.7405, when the
spheres are packed in either the face-centered cubic (FCC) or the
hexagonal close-packed (HCP) structure. On the other hand, the
packing factor � for experimental packing of mono-sized spheres
varies with the method of packing. [10] noted that the experimen-
tally obtainable values of random close packing (RCP) are in the
range of 0.64 ± 0.02. The computer simulation of RCP has been
studied by various researches [10–14]. Several algorithms have
been proposed to get more realistic initial configurations, among
which the one suggested by [11] has the advantage to control the
final packing factor by a parameter, called the contraction rate
�.

In this paper, we focus on packing issues related to fusion
blankets, such as polydisperse packings and packing structures
within containers. The algorithm for random close packing of
mono-sized particles will be introduced and then extended to poly-
disperse spherical packing in Section 2. In Section 3, assemblies

composed of either mono-sized particles or binary mixtures are
generated with the algorithm. In Section 4, comparisons are pre-
sented between computed and experimentally determined packing
structures [15,16]. Finally, some conclusions will be drawn in Sec-
tion 5.

dx.doi.org/10.1016/j.fusengdes.2010.05.042
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:yixiang.gan@kit.edu
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3.1. Mono-sized particles
Fig. 1. The definition of rout and rin in a two-particle system.

. Random close packing algorithm

Jodrey and Tory [11] have proposed an algorithm to obtain RCP
f equal-sized spheres by both removing the overlaps and reducing
he radius of particles iteratively. First, N spherical particles are gen-
rated randomly into a L × L × L cube. Initially, the so-called outer
adius (rout) of an assembly of N equal-sized particles is set to make
he packing factor equal to 1.0, despite the fact that there are over-
aps between particles. Meanwhile, a so-called inner radius (rin) is
et to be half of the distance between the two closest particles’ cen-
ers. That means if all particles had a radius of rin, there would be no
verlap between particles inside the whole assembly. The defini-
ions of the outer and inner radii are schematically shown in Fig. 1
or the simplest case of two overlapping particles. Each iteration has
wo functions: first, the worst overlap is removed by moving the
wo particles away from each other by an equal distance of rout − rin,
long the line connecting the two centers; second, the outer radius
s contracted according to

(i+1) = �(i) − (1/2)j�

N
, (1)

here �(i) = r(i)
out/r(0)

out, and j = � − log 10��(i)�. Here, i denotes the
umber of iterations, N is the number of particles (e.g., N = 5000 in
his investigation), �� is the difference between the packing fac-
ors calculated by the outer and inner radii (rout and rin), namely,
he nominal packing factor �n and the true packing factor �t,
espectively. The operator � • � is the greatest integer function. The
arameter �, which is independent of the size and number of the
pheres, characterizes the contraction rate of the assembly. The
nal configuration is reached, if the condition rout ≤ rin is satis-
ed. In an assembly with periodic boundary conditions (PBCs), the
arameter � is the only one to control the contraction rate, and
ence different packing factors can be reached by changing �.

This algorithm was originally based on the idea of concurrently
emoving the worst overlap and reducing the outer radius, and it
an be extended to solve the initial packing problem of polydisperse
multi-sized) particles. To make use of this algorithm in an assem-
ly of polydisperse particles, the outer radius rout and inner radius
in have to be redefined. These radii depend on the size distribu-
ion of particles in the assembly. Based on these radii, the method
an be specified. Contrary to the mono-sized packing as discussed
bove, the outer radius and inner radius of each particle may not
e identical to the ones of other particles for polydisperse packing.

It is assumed that the distribution of the radii obeys some func-
ion f(I) where 1 ≤ I ≤ N (e.g., f(I) ≡ 1 for mono-sized particles). In an
ssembly of different-sized particles, the radius of each individual
article (e.g., the I-th particle) in the current step, called the outer

(I) (I)
adius rout, can be written as rout = f (I) · r̃out. Here, r̃out is an outer
caling radius of the assembly.

The value of r̃out is initially set to yield the nominal packing factor
n = 100%, irrespective of the existence of overlaps in the assembly.
or each particle, the corresponding inner radius is r(I)

in = f (I) · r̃in.
Design 85 (2010) 1782–1787 1783

The inner scaling radius r̃in is chosen in such way that there is no
overlap in the assembly. If the distance between two particles I and
J is ı(I,J), then the inner radius of the assembly is defined as

r̃in ≡ min
I<J

[
ı(I,J)

f (I) + f (J)

]
. (2)

The value of r̃in is determined by searching all overlaps in the
target domain as Eq. (2). This pair of particles giving the mini-
mum according to Eq. (2) (for instance, the I-th and J-th particles)
is defined as the worst overlap for polydisperse packing. This is
reduced to the equal-sized packing case, if f(I) ≡ 1. With the size dis-
tribution f(I) /= 1, the worst overlap might not equal to the absolute
minimum distance, due to the presence of different-sized particles.

Using r̃out and r̃in, we have the maximum overlap as � = r(I)
out +

r(J)
out − ı(I,J). To remove this overlap, several different laws can be

applied. Here, we propose the general expression of the movement
of the I-th particle as

d(I) = �
[f (J)]n

[f (I)]n + [f (J)]n . (3)

Here n can be set to 0, 1, 2 and 3, for equal/linear/square/cubic
interpolation, respectively. Equal interpolation means that there is
no weight function applied to the movements of the different-sized
particles; the cubic interpolation means that the weight function is
inverse proportional to the mass of the spherical particles, if they
have the same density; n equal to 1 or 2 is something in between.
In this investigation, n = 1 is used for the sake of simplicity.

According to r̃in and r̃out, the worst overlap is removed and the
outer radii of particles, i.e. r(I)

out (I = 1, 2,...,N), are contracted iter-
atively for polydisperse packing. For each iteration, the nominal
and true packing factors are calculated by r̃out and r̃in, respectively,
and the inner radius r̃in is calculated from the worst overlap by Eq.
(2). The worst overlap � is removed, the consequence of which is
to increase the inner radius r̃in. Then the outer radius r̃out of the
particle assembly is reduced by Eq. (1), while the distribution func-
tion f(I) stays unchanged. The iteration will stop and the assembly
reaches the finial packing factor, if the difference between r̃in and
r̃out is smaller than the tolerance.

The evolution of the nominal packing factor �n and the true
packing factor �t is similar to mono-sized packing.

For polydisperse packing, the radii distribution function f(I) can
be varied by several parameters. For instance, a uniform distribu-
tion, a normal distribution, etc. can be applied to describe different
types of polydisperse packing. The simplest case of polydisperse
packing next to the equal-sized packing will be the packing of
binary mixtures. The sizes of pebbles vary also in HCPB blankets.
For the reference Li4SiO4 pebbles, the diameter lies in the range of
0.25–0.63 mm [17].

3. Packing factors for the bulk region

With the implementation of periodic boundary conditions
(PBCs), the assemblies represent the bulk region inside pebble
beds. Here, we choose mono-sized particles and binary mixtures
as examples to demonstrate the RCP algorithm.
Assemblies with 5000 equal-sized spherical particles have been
generated by the RCP algorithm. The contraction rate � varies from
1 × 10−5 to 1 × 10−3. For each given contraction rate, several sam-
ples have been generated independently.

Fig. 2 shows that we can produce randomly packed assemblies
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ig. 2. Variation of packing factor � with the contraction rate �, N = 5000. The dashed
ine shows the fit for assemblies with 1000 equal-sized particles [11].

or which 0.625 ≤ � ≤ 0.645. The packing factor can be controlled
oughly by the value of the given contraction rate �. For the same
ontraction rate, differences between samples are relatively small.
he fitting curve for N = 1000 assemblies from [11]. It has to be men-
ioned that they focused on the region of the dense close packing,
s plotted as dashed line for comparison.

.2. Binary mixtures

One way to increase the packing factor is to fill the spaces
etween particles with smaller spheres, i.e. to use a binary mix-
ure. There are two parameters to describe the size distribution
f particles: the size ratio of large and small particles, rL/rS, and

he volume fraction of each group of particles, �L and �S, where
L + �S = 1.0. The relative size and population of the large particles
an fully describe the size distribution of the assembly. By varying
hese two parameters, the packing factor will be changed, and it is
nteresting to find out the maximum packing factor among different

Fig. 4. Visualization of binary mixtures: (a) rL/rS =
Fig. 3. Packing factors of binary mixtures.

types of binary mixtures used for tuning packing factors inside the
blanket. However, large rL/rS may introduce size segregation under
vibration inside the assembly, and a critical value of rL/rS = 2.78 has
been suggested [18]. In practice, measures have to be taken to avoid
segregation effects [19].

First the contraction rate is fixed as � = 1 × 10−4 in this investiga-
tion. The changing of the packing factor depending on rL/rS and �L

can be found in Fig. 3. Sets of calculations with different size ratios
(5/3, 3 and 7) are carried out, and for each data point, 5 samples are
made for statistical purposes. For larger size ratios, a higher packing
factor � can be obtained for the same volume fraction �L, while for
the same size ratio, the maximum value is reached in the range of
volume fraction between 0.7 and 0.8. In literature, the theoretical

value of �L = 0.735 for the highest packing factor has been suggested
[20]. For rL/rS ≈ 15, a value of � ≈ 82% was found in experiments
[19]. Two obtained assemblies are visualized in Fig. 4(a) rL/rS = 5/3
and �L = 0.7, with a packing factor of � = 0.6606; (b) rL/rS = 3.0 and
�L = 0.7, with � = 0.7123.

5/3 and �L = 0.7; (b) rL/rS = 3.0 and �L = 0.7.



Y. Gan et al. / Fusion Engineering and Design 85 (2010) 1782–1787 1785

F b) pac
p o the c

4

c
e
t
i
b
m
p
d
n

r
n
a
p
N

4

e

ig. 5. (a) Radial distribution of particles, particles are projected to the r − � plane; (
articles are projected to the r − z plane; (d) packing factor varies over the distance t

. Application to pebble beds in cylindrical containers

The pebble arrangements in the vicinity of rigid walls differs
haracteristically from that in the bulk and results in a differ-
nt heat transfer behaviour. Detailed high resolution 3D X-ray
omography experiments were performed with aluminium spheres
n cylindrical containers in order to determine for both for the
ulk and the wall regions the structure of the pebble arrange-
ents, coordination numbers, contact surfaces [15,16]. The sphere

ackings (sphere diameters d = 2.3 mm or 5 mm, inner cylinder
iameter D = 48.9 mm, height H ≈ 50 mm) were investigated for a
on-compressed or uniaxially compressed state.

In the following, the results from the modified RCP algo-
ithm will be used for comparisons with the results for the
on-compressed sphere packing (d = 2.3 mm, H = 46.3 mm), where

packing factor of � = 61.7% was achieved. The number of
articles is calculated by the packing factor and volume, as
= 3�D2H/(2d3) = 8421.
.1. Modification to the original code

Concerning the cylinder containers used in X-ray tomography
xperiments, rigid wall conditions are introduced by the borders
king factor varies over the distance to the wall; (c) vertical distribution of particles,
enter plane. The experimental data are shown in (b) and (d) as dots for comparison.

of the container. The implementation of rigid wall conditions is
realized by monitoring the positions of particles. As long as the
particle is overlapping with the rigid wall, the overlap is removed
by shifting the particle into the interior of the container. The path
of this shifting is in the opposite direction of the surface normal
of the container. This is an additional step, and it is independent
of removing the worst overlap in the original code with PBCs. The
CPU time for generating assemblies in the container does not differ
much from the original RCP algorithm discussed previously in the
Section 2.

The previous RCP code for N-particle system is dimensionless.
The relative value between the particle size and box size is deter-
mined by the packing factor, i.e. a denser assembly has a smaller
container if the size of particles is fixed. However, in the present
case, not only the packing factor � but also the dimensions of
the container and particles are fixed and pre-determined. These
quantities are related as � = 2Nd3/(3D2H). To solve this issue, the
contraction rate � is varied to find a packing factor corresponding

to the experiment (� = 61.7%). Therefore, if the objective packing
factor is achieved, the diameter of the particle would be exactly
2.3 mm.

The same principles can be applied to arbitrary pebble bed con-
tainers. If an engineering structure is involved, the geometry of the
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ig. 6. Cross-sections at r − � planes. The first row is the plot from simulation, an
ndicated in Fig. 5(c).

ontainer should be first transferred into the code to identify the
nterior and exterior regions. If overlaps are found between the con-
ainer wall and pebbles, the pebbles are shifted into the interior
egion of the container in the direction of the surface normal.

.2. Comparison with the experiment

A sample with the packing factor of 61.7% was obtained by set-
ing the contraction rate to � = 3.5 × 10−4. This sample was used in
he following for validation.

The calculated particle and packing factor distributions are
hown in Fig. 5, with the corresponding experimental results.

First, radial distribution of particles in the r − � plane is plotted
n Fig. 5(a), with the distribution of corresponding packing factor
long r-axis in Fig. 5(b). In Fig. 5(a), there is a transition from reg-
lar distribution, in the first few cycles next to the container wall
marked by the solid-black cycle), to random spacial distribution in
he interior of the container. In Fig. 5(b), a variation of the packing
actor becomes obvious in the region close to the cylindrical wall
t a distance of 4–5 particle diameters, as pointed out in literature

15,16,20].

Second, the vertical distribution of particles in the r − z plane
s shown in Fig. 5(c). Next to the container wall, there are sev-
ral regularly packed layers, which have also been observed in the
xperiment. A corresponding distribution of the packing factor is

Fig. 7. (a) Probability density of coordination number for internal particles; (b
second row is from the experiment [16]. The z-positions of the cross-sections are

plotted in Fig. 5(d) as a function of the distance to the center plane.
In this case, the regions close to the top and bottom walls have
a variation in the packing factor distribution. The corresponding
experimental data are shown as dots in Fig. 5(b) and (d) for compari-
son. The near-wall packing structure differs from the one in the bulk
region, which may introduce additional heat transfer resistance to
the pebble–wall interface. Since there is no gravity acting on each
particles in the simulations, the vertical distribution of packing fac-
tor is different from the experiment where asymmetry of the top
and bottom regions has been found for un-compressed beds.

Fig. 6 contains results for horizontal cross-sections at distinct
vertical distances from the bottom, namely 1.1, 4.8 and 8.9 mm (1st,
3rd and 5th layer from the bottom), respectively, compare Fig. 5(c).

For both the simulation and tomography results, regular hexag-
onal structures in the inner zone are observed for z = 1.1 mm.
With increasing distance, a random packing develops. In near-wall
regions, the transition from regular to random packing is of major
influence on the near-wall heat transfer mechanism which needs
to be properly taken into account in the design of fusion blankets.

The original samples generated by the RCP algorithm remove all

overlaps in the assembly [11]. That is to say, initially, the coordina-
tion number is strictly zero for the assembly.

However, in order to compare to the coordination number in
experiments, we set an outer radius, rS = (1 + ı)r0 (with ı = 0.025
and r0 = 1.15 mm), for searching neighboring particles in contact. If

) visualization of the packing structure inside the cylindrical container.
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article J enters this thin shell region between r0 and rS of particle
, we define these two particles as contacting particles. Following
his assumption, we plot the probability density of coordination
umber in Fig. 7(a). In this plot, the contacts between the particle
nd container wall are not taken into account. The coordination
umber is in the region of nC = 2–12 and a peak exists at nC = 7. This
lot has similarities with the experimental data [16], in particular
ith the compressed samples.

Finally, a visualization of particles inside the container can be
ound in Fig. 7(b). Near the region of container wall, some regular
acking structures can be identified.

. Conclusion

In this paper, we propose an algorithm for the calculation of the
acking structures of pebble beds. Computer simulations using this
andom close packing algorithm have been applied to assemblies
f mono-sized and polydisperse sphere packings. The algorithm
an be applied for different types of containers and determines
acking structures in the bulk and near-wall zones. The compar-

son between the simulation and recent X-ray tomography results
re shown as a verification of the method. Results, generated by this
ethod, are required to describe the coupled thermal–mechanical

ehaviour of ceramic breeder blankets.
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