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This paper presents an analytical solution for the stress distributions within spherical ceramic pebbles
subjected to multiple surface loads along different directions. The method of solution employs a displace-
ment approach together with the Fourier associated Legendre expansion for piecewise boundary loads.
The solution corresponds to spherically isotropic elastic spheres. The classical solution for isotropic
spheres subjected diametral point loads is recovered as a special case of our solution. For the isotropic
pebbles under consideration, stresses within spheres are numerically evaluated. The results show that
the number of loads does have significant influence on the maximum tensile stress inside the sphere.
Moreover, the applicability of solutions using the series expansion method for stresses near surface load
areas is also examined. The stresses evaluated with large enough number of terms agree quite well with
those derived from FEM simulations, except around the edge of circle load area.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the development of fusion technology, ceramic pebbles con-
stituting pebble beds will be used in helium cooled pebble bed
(HCPB) blankets (Giancarli et al., 2000; Poitevin et al., 2005;
Boccaccini et al., 2009). The two kinds of ceramic pebbles under
consideration are: lithium orthosilicate (Li4SiO4) pebbles having a
good spherical shape (Knitter, 2003; Knitter et al., 2007) and lith-
ium metatitanate (Li2TiO3) pebbles having an ellipsoidal shape
(van der Laan and Muis, 1999; Tsuchiya et al., 2005). Individual
pebbles might be crushed due to thermal mismatch between peb-
bles and their confinement walls. The crushed pebbles will lead to
negative consequence. For instance, the fragments of crushed peb-
bles might block the evacuation of helium gas which brings the
generated tritium away for further fusion reaction, i.e., deute-
rium–tritium reaction. Therefore, it is essential to study the
mechanical strength of the pebbles.

The strength of pebbles is considered to be a material property
characterizing when a pebble will fail. This pebble property has not
yet been identified in experiments although many crush tests have
been carried out where pebbles are crushed between two parallel
plates, as shown in Fig. 1 (1). Crush loads at which pebbles fail
are derived from the tests. The crush load is related to the pebble
strength in this given configuration. However, for pebbles in peb-
ble beds where each pebble has many contacts with neighboring
pebbles, as shown in Fig. 1 (2), the crush load from crush tests can-
ll rights reserved.
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not predict when a pebble will fail under multiple contact loads.
Essentially, pebble failure should be dominated by the stress field,
i.e., pebble strength is some kind of critical stress, such as maxi-
mum tensile or shear stress. This work is not intended to identify
its strength, but to derive the stress field inside a pebble in pebble
beds. Note that Li4SiO4 pebbles under consideration have a good
sphericity (Löbbecke and Knitter, 2009), and can be considered as
a solid sphere consequently.

The number of neighboring contacts is defined as the coordina-
tion number Nc. There are some analytical solutions for stress field
in an elastic sphere with different Nc. For Nc = 1, Dean et al. (1952)
have studied a sphere under a single load which is equilibrated by
body force. The single load is represented by uniform pressure. For
diametral load, i.e., Nc = 2, stress field in an isotropic sphere has
been derived by Hiramatsu and Oka (1966), and that in a spheri-
cally isotropic sphere has been derived by Chau and Wei (1999).
Evaluation of their solution for isotropic sphere subjected to uni-
form pressure shows the influence of Poisson’s ratio on the maxi-
mum tensile stress inside the sphere. A smaller Poisson’s ratio
leads to a higher maximum tensile stress while stresses around
the sphere center are almost independent of the Poisson’s ratio
(see Chau and Wei, 1999, Fig. 4). The Poisson’s ratio does not ap-
pear in the solution by Dean et al. (1952) for Nc = 1, and the super-
imposed results using this solution for diametral load (see
Gundepudi et al., 1997, Fig. 4) show good agreement only near
the sphere center. For Nc > 2, a solution for an elastic sphere sub-
jected to multiple concentrated loads has been obtained by
Guerrero and Turteltaub (1972). However, this solution cannot
represent real contact problems with a finite contact area. No
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Fig. 1. (1) crush tests for single pebbles; (2) pebbles in a pebble bed (Löbbecke and Knitter, 2009).

Fig. 2. Spherical coordinate system (r,h,u).
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complete solution has been reported for stress field in a sphere
subjected to multiple contacts with a finite contact area. On the
other hand, superimposition of solutions for Nc = 1 or Nc = 2 has
been used to solve special problems for Nc > 2 (Gundepudi et al.,
1997; Russell et al., 2009). The limit of the superimposed method
using the solution for Nc = 1 will be the inaccuracy around where
maximum tensile stress inside sphere appears. The limit of the
superimposed method using the solution for Nc = 2 is that Nc

should be even and contact forces must be pairs of diametral loads.
In this paper, we derive an analytical solution for stress distri-

butions within a spherically isotropic elastic sphere in equilibrium
subjected to multiple normal surface loads along different direc-
tions. Stresses tangential to the surface are taken to be zero, and
the body force is neglected. The general theory for a spherically
isotropic medium has been studied by Hu (1954) and Chen
(1966). This theory is suitable for considering multiple mechanical
loadings to the surface of a solid sphere. Chen (1966) has further
studied problems taking into account body forces. There have been
already some theoretical analyses by Ding and Ren (1991), Chau
(1995, 1998) and Chau and Wei (1999) for spherically isotropic
spheres. The method of solutions used in this work follows the
steps of Hu (1954), Ding and Ren (1991), and Chau and Wei
(1999). We make use of their methods, such as the proposed dis-
placement potentials (Hu, 1954) and introduced variables (Ding
and Ren, 1991), and conclusions, such as the requirements on the
roots (Chau and Wei, 1999) (see Section 2.5). New displacement
functions incorporating the direction of loads are proposed in this
paper. Correspondingly, the piecewise surface load functions are
expanded with Fourier associated Legendre functions. Each load
is distributed across a circular surface area. Note that the pebbles
mentioned before are of isotropic material which is a special case
of a spherically isotropic material. The solution can be reduced to
the case for isotropic spheres corresponding to spherical ceramic
pebbles, i.e., Li4SiO4. Numerical evaluation will be thus performed
mainly for isotropic spheres. The main focus here will be the effect
of Nc on the maximum tensile stress in a pebble. In literature one
finds criteria for the strength of spheres for which other kinds of
stresses such as the maximum shear stress are of importance
(Russell and Muir Wood, 2009; Russell et al., 2009). The failure cri-
terion for the pebbles mentioned above is subject of a separate pa-
per (Zhao et al., submitted for publication).

This paper is organized as follows. In Section 2, first the general
theory and problem formulation for spherically isotropic spheres is
presented. In Section 2.4, the displacement potential functions
used in this work are described. Then the solution methodology
of the boundary value problem (2.5–2.7) will be discussed followed
by the final solution (2.8) for the stress distribution in the form of
an infinite series. In Section 3, the numerical evaluation with a fi-
nite number of terms in the solution mainly for isotropic spherical
pebbles is presented. Maximum tensile stresses along a loading
axis are calculated for Nc = 2,4,6, respectively. Moreover, Hertz
contact theory and FEM simulation results have been used to val-
idate the present solution. The minimum number of terms needed
in the series solution to obtain a specific accuracy is investigated in
Section 4. Section 5 discusses the potential applicability of the
present solution to the failure analysis of pebbles. Finally, the con-
clusions are drawn in Section 6.
2. Theory

2.1. Hooke’s law

With the spherical coordinate system (r,h,u) as shown in Fig. 2,
the relations between the components of stress r and strain e are
expressed by the generalized Hooke’s law for spherically isotropic
spheres (Hu, 1954; Ding and Ren, 1991; Chau and Wei, 1999) as

rhh ¼ ð2A66 þ A12Þehh þ A12euu þ A13err;

ruu ¼ A12ehh þ ð2A66 þ A12Þeuu þ A13err;

rrr ¼ A13ðehh þ euuÞ þ A33err ;

rhu ¼ 2A66ehu; rrh ¼ 2A44erh; rru ¼ 2A44eru;

ð1Þ

where

A12 ¼ �
EðmE0 þ m02EÞ
ð1þ mÞE

; A13 ¼ �
m0E0E

E
; A33 ¼ �

E02ð1� mÞ
E

;

A66 ¼
E

2ð1þ mÞ ; A44 ¼ G0; E ¼ E0ðm� 1Þ þ 2m02E:

ð2Þ

E and E0 are the Young’s moduli governing the deformation in the
isotropic plane and along the direction perpendicular to it, i.e., the
radial direction, respectively. The corresponding Poisson’s ratios
are m and m0, respectively. G0 is the shear modulus governing the
shear deformation in the isotropic plane perpendicular to the radial



Fig. 3. Left: sketch of a special load configuration where the centers of three load
areas lie on the same plane; right: two different choices of pressure distribution.
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direction. Spherical isotropy contains isotropy as a special case. For
the case of an isotropic material, the material parameters reduce to

E0 ¼ E; m0 ¼ m; G0 ¼ E
2ð1þ mÞ : ð3Þ

The relations between the components of small strains e, and small
displacements u, are expressed as

err ¼
@ur

@r
; ehh ¼

1
r
@uh

@h
þ ur

r
; euu ¼

1
r sin h

@uu

@u
þ ur

r
þ uh

r
cot h;

eru ¼
1
2

1
r sin h

@ur

@u
� uu

r
þ @uu

@r

� �
; erh ¼

1
2

1
r
@ur

@h
� uh

r
þ @uh

@r

� �
;

ehu ¼
1
2

1
r
@uu

@h
� uu

r
cot hþ 1

r sin h
@uh

@u

� �
;

ð4Þ

where uh, uu and ur are displacements in the directions of h, u and r,
respectively.

2.2. Equilibrium equations

The equations of equilibrium in spherical coordinates (ignoring
body force) can be written as

@rrr

@r
þ 1

r sin h
@rru

@u
þ 1

r
@rrh

@h
þ 2rrr � rhh � ruu þ rrh cot h

r
¼ 0;

@rru

@r
þ 1

r sin h
@ruu

@u
þ 1

r
@rhu

@h
þ 3rru þ 2rhu cot h

r
¼ 0;

@rrh

@r
þ 1

r sin h
@rhu

@u
þ 1

r
@rhh

@h
þ 3rrh þ ðrhh � ruuÞ cot h

r
¼ 0:

ð5Þ

Substituting Eqs. (1) and (4) into (5), the equilibrium equations read
as

� 2ðA12 þ A66Þ
e1

r
þ A13

@e1

@r
þ 2e1

r
� 2err

r

� �
þ A33

@err

@r
þ 2err

r

� �

þ A44
1
r2r

2
1ur þ

@

@r
e1 �

2ur

r

� �� �
¼ 0;

A12

r sin h
@e1

@u
þ 2A66

1
r sin h

@euu

@u
þ 1

r
@ehu

@h
þ 2 cot h

r
ehu

� �

þ A13

r sin h
@err

@u
þ 2A44

@eru

@r
þ 3eru

r

� �
¼ 0;

A12

r
@e1

@h
þ 2A66

1
r sin h

@ehu

@u
þ 1

r
ehh

@h
þ cot h

r
ðehh � euuÞ

� �

þ A13

r
@err

@h
þ 2A44

@erh

@r
þ 3erh

r

� �
¼ 0; ð6Þ

where

e1 ¼ ehh þ euu;

r2
1 ¼

@2

@h2 þ cot h
@

@h
þ 1

sin2 h

@2

@u2 :
ð7Þ
2.3. Boundary conditions

For the sphere in equilibrium, the ith load of magnitude Fi is ap-
plied on the ith circular load area Ai, which subtends an angle of
2/i from the center of the sphere as shown in Fig. 3. It is assumed that
the load is axisymmetrically distributed in each load area. The sym-
metry axis, namely loading axis, is the line across the center of the
load area (R,hi,ui) and the sphere center. The position of the ith load
is denoted by (hi,ui) in the remainder of this paper. The pressure pi is
distributed along the radial direction in the range of 0 6 / 6 /i. Sub-
sequently, the boundary conditions can be written as
ri
rrð/Þ ¼

pið/Þ 0 6 / 6 /i;

0 in the other areas

�
ð8Þ

and

rru ¼ rrh ¼ 0; ð9Þ

on r = R, where R is the radius of sphere. pi is a pressure distribution
which can be any kind of distribution in this work. In practice, the
pressure distribution is induced by contact, e.g., contact between a
plate and a sphere. The solution obtained in this work allows for
adopting such pressure distributions giving rise to the same stress
state in the sphere as that induced in a real contact. In order to ob-
tain an explicit pressure distribution, its distribution form and the
relation between pressure amplitude and resultant load have to
be assumed. The relevance of our solution in relation to, say, the
experiment depends on the choice of a realistic pressure distribu-
tion in the above sense.

Two pressure distributions, i.e., uniform pressure pu and Hertz
pressure ph, are considered

pu
i ð/Þ ¼ �pu; ð10Þ

ph
i ð/Þ ¼ �pmax 1� sin /

sin /i

� �2
" #1

2

; ð11Þ

where pu is the uniform pressure and pmax is the maximum pressure
in the load area. Both of them are determined by the relation be-
tween pressure and load. The Hertz pressure distribution in Eq.
(11) conforms to the Hertz pressure expression of Eq. (3.39) in
Johnson (1987) for isotropic material under smooth contact. It
would represent an approximation for a material having spherically
isotropic elasticity.

For the uniform pressure, the relationZ
Ai

pi dA ¼
Z /i

0
pi2pR2 sin /d/ ¼ �Fi; ð12Þ

has been used by Hiramatsu and Oka (1966) and Chau and Wei
(1999) to derive the analytical solutions for stresses in a sphere sub-
jected to a pair of diametral loads (for the case of Ra1 = Ra2 in Fig. 4).
Here, A is the initial surface load area. The pressure is applied on the
initial (undeformed) load area as shown in Fig. 4. The uniform pres-
sure reads as

pu ¼
Fi

2pR2ð1� cos /iÞ
: ð13Þ

Substitution of Eq. (11) into (12) yields

pmax ¼
Fi

pR2

1
1� arctanh ðsin /iÞ cot /i cos /i

: ð14Þ



Fig. 4. Diametral loading on a sphere. Ra1 and Ra2 are two load radii. O0 is a point on
the surface. / ranging from 0 to p/2 is the angle between the loading axis and the
line across O and O0 .
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Both pressure distributions, uniform and Hertz, will be used in
our analysis. The uniform distribution, namely Eqs. (10) and (13),
will be used to validate the solution obtained in this work by com-
parison with the results calculated by Chau and Wei (1999). The
Hertz distribution, namely Eqs. (11) and (14), should be closer to
the one in an elastic contact. Thus, Hertz pressure is better than
uniform pressure to represent the case for elastic contact.

For the Hertz pressure distribution, another relation between
pressure and load reads asZ

Si

pi dS ¼
Z /i

0
pi4pR2 sin / cos /d/ ¼ �Fi; ð15Þ

where S is the area of the load circle with a radius Ra. The pressure is
applied on the circular area along the load axis direction. The de-
rived pmax is exactly the one derived by Hertz (1881) as

pmax ¼
3
2

Fi

pR2
a

¼ Fi

2pR2

3

sin2 /i

: ð16Þ

The Hertz distribution together with Eq. (16) was used by Chau
et al. (2000) for the case of a pair of rigid plates compressing an
elastic sphere. However, the value pmax calculated from Eqs. (14)
and (16), respectively, differ by a small amount. For example, the
difference is less than 0.2% for the same Fi, R and /i = 5�, which
means the corresponding stress difference at any point in the
sphere will be less than 0.2%. Accordingly, the pmax in Eq. (14) is
used in this work.

Force equilibrium requires thatX
i

Fi cos hi ¼ 0;

X
i

Fi sin hi cos ui ¼ 0;

X
i

Fi sin hi sin ui ¼ 0:

ð17Þ
2.4. Displacement functions

It was proposed by Hu (1954) that the displacements under
consideration can be expressed by two displacement potential
functions. In order to get the explicit roots for the governing equa-
tions, Chau and Wei (1999) have made some changes of the vari-
ables introduced by Ding and Ren (1991). As a result, two
displacement potentials Z and U are derived, which satisfy
A44
@2Z
@g2 þ

@Z
@g

 !
þ A66r2

1Z � 2ðA44 � A66ÞZ ¼ 0; ð18Þ

@2

@g2 þ @
@g

� �2
þ 2D @2

@g2 þ @
@g

� �
þMr2

1
@2

@g2 þ @
@g

� �
�4Lþ 2ðN � LÞr2

1 þ Nr2
1r2

1

2
4

3
5U ¼ 0: ð19Þ

Appendix A shows the details including the introduced variables,
such as Z, F, H and g, and parameters, such as D, L, M and N. The dis-
placement components read as

uh ¼ �
1

sin h
@Z
@u
þ d

@

@g
þ 2ðaþ bÞ

� �
@U
@h

;

uu ¼
@Z
@h
þ 1

sin h
d
@

@g
þ 2ðaþ bÞ

� �
@U
@/

;

ur ¼ � h
@2

@g2 þ
@

@g

 !
þ ar2

1 � 2b

" #
U:

ð20Þ

The strain and stress components can be expressed in terms of Z
and U by substitution of Eq. (20) into (4) and (1) subsequently.
Now it is clear that when Z and U are known, the problem is
solved.

Inspired by the displacement functions used by Chau and Wei
(1999), the solution form

Z ¼
X1
n¼0

Xn

m¼0

ekngSnmðh;uÞ ð21Þ

is sought for the displacement function Z, where

Snmðh;uÞ ¼ ðD1
nm cos muþ D2

nm sin muÞPm
n ðcos hÞ: ð22Þ

D1
nm; D2

nm and kn are constants. Pm
n ðxÞ is the associated Legendre

function. Snm satisfies

r2
1Snmðh;uÞ þ nðnþ 1ÞSnmðh;uÞ ¼ 0: ð23Þ

Both n and m are integers. n ranges from 0 to infinity and m ranges
from 0 to n. Substitution of Eq. (21) into (18) yields

k2
n þ kn �Mn ¼ 0; ð24Þ

where

Mn ¼ 2þ ðn� 1Þðnþ 2ÞA66

A44
: ð25Þ

The two characteristic roots for Eq. (24) are

kn1 ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mn
p

2
; kn2 ¼

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Mn
p

2
: ð26Þ

As a result, if kn1 – kn2, Z reads as

Z ¼
X1
n¼0

Xn

m¼0

Dm
n1ekn1g þ Dm

n3ekn2g

 �

cos muPm
n ðcos hÞ

þ
X1
n¼0

Xn

m¼0

Dm
n2ekn1g þ Dm

n4ekn2g

 �

sin muPm
n ðcos hÞ; ð27Þ

where Dm
ni ði ¼ 1;2;3;4Þ are unknown coefficients. Similarly, the

solution form

U ¼
X1
n¼0

Xn

m¼0

elngS0nmðh;uÞ ð28Þ

is sought for the displacement function U, where

S0nmðh;uÞ ¼ ðC
1
nm cos muþ C2

nm sin muÞPm
n ðcos hÞ: ð29Þ

Substitution of Eq. (28) into Eq. (19) yields

ðl2
n þ lnÞ

2 þ 2Pnðl2
n þ lnÞ þ Qn ¼ 0; ð30Þ
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where

Pn ¼ D� nðnþ 1ÞM
2
; Q n ¼ ðnþ 2Þðn� 1Þ 2Lþ nðnþ 1ÞN½ �: ð31Þ

The four characteristic roots for Eq. (30) are

ln1 ¼
�1þ ffiffiffiffiffi1n

p

2
; ln2 ¼

�1þ
ffiffiffiffiffi
nn
p

2
; ln3 ¼

�1� ffiffiffiffiffi1n
p

2
;

ln4 ¼
�1�

ffiffiffiffiffi
nn
p

2
; ð32Þ

where

1n ¼ 1� 4 Pn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

n � Q n

q� �
; nn ¼ 1� 4 Pn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

n � Q n

q� �
:

ð33Þ

If these roots are distinct, U reads as

U¼
X1
n¼0

Xn

m¼0

Cm
n1eln1gþCm

n2eln2gþCm
n5eln3gþCm

n6eln4g

 �

cosmuPm
n ðcoshÞ

þ
X1
n¼0

Xn

m¼0

Cm
n3eln1gþCm

n4eln2gþCm
n7eln3gþCm

n8eln4g

 �

sinmuPm
n ðcoshÞ;

ð34Þ

where Cm
ni ði ¼ 1;2; . . . ;8Þ are unknown coefficients. The proposed Z

and U depend on u, which enables to resolve the solution for asym-
metric boundary conditions. For example, when a sphere is sub-
jected to three loads along different directions, the load boundary
condition is asymmetric.

2.5. Characteristic roots

Chau and Wei (1999) concluded that all roots for kn and ln with
a real part less than 1 would lead to infinite stresses at the sphere
center and have to be discarded. Furthermore, the analysis also
indicated that the real parts of kn2, ln3 and ln4 are less than 1. Con-
sequently, Dm

n3; Dm
n4, and Cm

ni ði ¼ 5;6;7;8Þ should be set to zero. As
a result, Eq. (27) reduces to

Z ¼
X1
n¼0

Xn

m¼0

Dm
n1ekn1g cos muPm

n ðcos hÞ þ Dm
n2ekn1g sin muPm

n ðcos hÞ
� 


:

ð35Þ

On the other hand, there are two cases for U.

Case I: Two real roots
If P2

n � Q n > 0; nn > 0 and 1n > 0, ln1 and ln2 are two
real unequal roots. If ln1 P 1 and ln2 P 1, the resultant
solution is
Um
n ¼ ðC

m
n1eln1g þ Cm

n2eln2gÞ cos muPm
n ðcos hÞ

þ ðCm
n3eln1g þ Cm

n4eln2gÞ sin muPm
n ðcos hÞ: ð36Þ
If ln1 < 1 and ln2 < 1, there are no converging solutions.

Case II: Two complex conjugate roots

If P2
n � Q n < 0; ln1 and ln2 are two complex conjugates.

If the real part for both ln1 and ln2 is not less than 1, the
resultant solution is
Um
n ¼ ðE

m
n1elng þ Em

n1e�lngÞ cos muPm
n ðcos hÞ

þ ðEm
n2elng þ Em

n2e�lngÞ sin muPm
n ðcos hÞ; ð37Þ
where Em
na ¼ Rm

na þ iIm
naða ¼ 1;2Þ are complex constants

and ln = xn + iyn with
xn þ iyn ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Pn � i4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jP2

n � Qnj
qr

2
: ð38Þ
Em
na and �ln are complex conjugates of Em

na and ln, respectively.

Subsequently, the general solution for U is

U ¼
X1
n¼0

Xn

m¼0

Um
n ; ð39Þ

where Um
n is defined either in Eq. (36) or (37), which depends on the

type of ln.

2.6. The general solution

Substituting Eqs. (35) and (39) into Eqs. (20), (4) and (1) subse-
quently, the stress components read as

rhh¼�
1
R

X1
h¼0

X2

i¼1

Xh

m¼0

Dm
hiq

khi�1

� 2A66 csc hð�1Þim @Pm
h ðcoshÞ
@h

�cothPm
h ðcoshÞ

� �
si

� �

� 1
R

X
l

X4

j¼1

Xl
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where q = r/R is the normalized radial coordinate. The notations and
functions

s2 ¼ cs1 ¼ cs2 ¼ sc1 ¼ cos mu; ð44aÞ
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s1 ¼ cs3 ¼ cs4 ¼ sc2 ¼ sin mu; ð44bÞ

sgn1 ¼ sgn2 ¼ �sgn3 ¼ �sgn4 ¼ �1; ð44cÞ

ll3 ¼ ll1; ll4 ¼ ll2; ð44dÞ

Clj ¼ dllj þ 2ðaþ bÞ; ð44eÞ

Klj ¼ hlljðllj þ 1Þ � 2b� alðlþ 1Þ; ð44fÞ
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have been used.
The unknown coefficients in the above equations can be ob-

tained by evaluating the boundary conditions, i.e., Eqs. (8) and
(9). All stress components can be derived when these coefficients
are known. Note that the first summation for l is done for the case
of two real roots and the second summation for n is done for the
case of two complex roots. The relation

�m2

sin2 h
Pm

n ðcos hÞ þ @
2Pm

n ðcos hÞ
@h2 þ cot h

@Pm
n ðcos hÞ
@h

¼ �nðnþ 1ÞPm
n ðcos hÞ; ð45Þ

which is a variation of Eq. (23) has been used to derive these stres-
ses, namely Eqs. (40)–(43). Note that there is a special case for n = 0.
For an isotropic material, it holds ln1 = (�1 + j2n � 1j)/2 and
ln2 = n + 1. Although ln1 = 0 < 1 when n = 0, it does NOT lead to infi-
nite stresses at the sphere center because qln1�1 in Eq. (40) is mul-
tiplied by a zero value. Therefore, the first term for n = 0 in the
series should be treated separately. Moreover, for isotropic materi-
als n = 0 is the only exception of the root requirement concluded by
Chau and Wei (1999). Series terms for n = 0 of all stress components
are independent of positions in a sphere. The terms of rhh, ruu and
rrr for n = 0 are A0

0 (see Eq. (47) below) while the terms for rru,rrh

and rhu are always 0.
The expression for rrr can be obtained by replacing A12, (2A66)

and A13, with A13, 0 and A33 in Eq. (40), respectively. Replacing
A12 and (2A66) in Eq. (40) by (2A66 + A12) and (�2A66), respectively,
yields the expression for ruu.

2.7. Determination of unknown coefficients

The union of all loads p(h,u) = [pi(/) on a sphere surface can be
expanded with the associated Legendre function (see Appendix B).

pðh;uÞ ¼
X1
n¼0

Xm¼n
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n cos muþ Bm

n sin mu

 �

Pm
n ðcos hÞ; ð46Þ
where Am
n and Bm

n are two coefficients determined by
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where

dm ¼
2 m ¼ 0;
1 m – 0:

�
ð48Þ

Consequently, the boundary condition of Eq. (8) becomes

rrr jr¼R ¼ pðh;uÞ

¼
X1
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Xm¼n
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n cos muþ Bm

n sin mu

 �

Pm
n ðcos hÞ: ð49Þ

The domain of the integrals in Eq. (47) is shown in Appendix C.
Moreover, in Appendix D the angle / as a function of (h,u) is de-
rived. In Appendix E the relation between coefficients using the
boundary condition of Eq. (9) is obtained. These relations yield
the explicit forms of all coefficients in the stress expressions as
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and
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where
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2.8. Final solution

Substitution of Eqs. (50) and (51) into (40)–(43) gives the final
expressions for stress components as
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Fig. 5. Normalized principal stress along the loading axis (h = 0�) calculated from
the solution derived by Chau and Wei (1999). In addition, the proposed Hertz
pressure distribution, namely Eq. (11), has been implemented into the solution.
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The expression for rrr can be obtained by replacing A12, (2A66) and
A13, with A13, 0 and A33 in Eq. (53). Replacing A12 and (2A66) in Eq.
(53) by (2A66 + A12) and (�2A66), respectively, yields the expression
for ruu. Note that for both cases, rrr and ruu, Eqs. (52) remain
unchanged.

3. Numerical evaluation and discussion

In view of the application to pebbles, we will report mainly the
numerical evaluation for isotropic materials. Nevertheless, we will
also present some cases with spherical isotropy. As stated in Sec-
tion 2.6, it holds that ln1 = (�1 + j2n � 1j)/2 and ln2 = n + 1 for an
isotropic material. The roots are two unequal real numbers which
are not less than 1 for n P 2. Thus, there are only l = 0,2,3, . . . ,1
terms for the case of two real roots in the analytical solution ob-
tained in this work, namely Eqs. (53)–(56). The term for l = 1 is dis-
carded because of the root requirement (see Section 2.5). The
analytical solution is evaluated numerically by summing a finite
number of terms. Nt is defined as the number of summing terms
which are not equal to zero. Hiramatsu and Oka (1966) derived
the analytical solution for an isotropic sphere subjected to a pair
of diametral loads (for the case of Ra1 = Ra2 in Fig. 4). As for that
solution, Wijk (1978) indicated that no good convergence can be
achieved if the number of summing terms Nt is less than 20. The
convergence rate of our solution will be discussed in the next sec-
tion. Chau and Wei (1999) derived the corresponding solution for a
spherically isotropic sphere. Uniform pressure was used in both
analyses. However, the well-known Hertz pressure distribution
should be applied if the loads are induced by elastic contacts. It
is expected that different pressure distributions should have influ-
ence only on regions not far from the load area, and have little
influence on the sphere center. In the crush tests with elastic
plates, the radius of the load area Ra can be measured or calculated
for different plates. The input parameter /i in Eq. (11) corresponds
to this radius. The relation between these quantities is Ra = Rsin/i.
Hence, our solution for Hertz pressure should represent the exper-
imental situation when the two radii of the opposite load areas are
the same.
3.1. Validation of the solution for diametral loads: Nc = 2

Analytical solutions for stresses in a sphere subjected to diam-
etral loads, namely Nc = 2, have been derived by Hiramatsu and
Oka (1966) and Chau and Wei (1999) for isotropic and spherically
isotropic materials, respectively. Let the principal stresses be de-
noted by r1 P r2 P r3, respectively. Applying Eq. (11) to the solu-
tion derived by Chau and Wei (1999) the influence of pressure
distributions is shown in Fig. 5. The principal stresses along the
loading axis are plotted for both pressure distributions, uniform
and Hertz pressure. The result for /i = 5� and m = 0.1 has been dem-
onstrated by Chau and Wei (1999) for the uniform pressure distri-
bution. A relatively small Poisson’s ratio m = 0.1 is used in Fig. 5, so
that the influence of pressure distributions can be distinctly illus-
trated. Note that tensile stresses are positive and compressive
stresses are negative. Besides, it holds r2 = r1 along the loading
axis for both pressure distributions. The maximum principal stress
at q � 0.85 for Hertz pressure becomes higher than for uniform
pressure. The minimum principal stress is hardly influenced by
the pressure distribution. Moreover, the pressure distribution has
little influence on stresses near the center of the sphere, as ex-
pected. The curves in Fig. 5 can be used to validate the solution de-
rived in this work.

Fig. 6 shows the numerical evaluation for our solution for the
same case as studied by Hiramatsu and Oka (1966) and Chau and
Wei (1999). The loads lie in (60�,36�) and (120�,216�) (coordinates
explained in Section 2.3), respectively. Both load areas correspond
to /i = 5�. Note that in our solution loads cannot lie near h = 0 and
h = p (see Appendix C). The numerical evaluations have been trun-
cated at Nt = 25. It should be noted that the terms with odd number
of n are zero because of load symmetry. The stresses along the
loading axis for m = 0.1 coincide with those in Fig. 5, which vali-
dates our solution. The stresses for m = 0.25 which is the Poisson’s
ratio of Li4SiO4 pebbles (Vollath et al., 1990) are plotted as well.



Fig. 6. Normalized principal stress along the loading axis (h = 60�,u = 36�) calcu-
lated from our solution for Nc = 2.
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The difference between the two pressure distributions becomes
smaller when m increases.

To further validate our analytical solution, FEM simulations
have been performed. Table 1 lists the maximum tensile stress
and maximum shear stress along the loading axis derived from
our solution, FEM simulations and the Hüber–Hertz solution
(Hüber, 1904), respectively. Hüber (1904) derived stresses within
the Hertzian elastic contact field in a cylindrical coordinate system
based on Hertz theory (Hertz, 1881). For the values in this table
computed from our solution, the input variables, such as F and /,
are the same as those for the Hertz pressure distribution and
m = 0.25 in Fig. 6. The stresses are evaluated with more terms,
namely Nt = 300, in order to achieve high accuracy. The sphere ra-
dius is set to R = 0.25 mm corresponding to the mean size of peb-
bles. Crush tests for Li4SiO4 pebbles by BK7 glass plates carried
out at Fusion Material Lab (FML) at Karlsruhe Institute of Technol-
ogy (KIT) are simulated by the finite element method. Young’s
modulus and Poisson’s ratio of BK7 glass is 82 GPa and 0.206,
respectively. The spherical pebbles have a radius R = 0.25 mm,
and interface friction is not taken into account. A Young’s modulus
of 90 GPa for Li4SiO4 pebbles as used by Gan and Kamlah (2010),
/i = 5� corresponds to a load of F = 2.497 N according to the Hertz
theory. For the convenience of comparison, F = 2.497 N is used to
calculate the stresses in each method. It is relevant to mention that
the mesh size along the loading axis is 0.125 lm. A single contact
between a sphere and a plate is considered in the Hüber–Hertz
solution. Material parameters and the contact load are the same
as those used in the FEM simulation. The set of parameters for each
method corresponds to the same load case. Therefore, the results
are comparable for such a small load.

The maximum tensile stress from Hüber–Hertz solution lies a
little closer to the load area than the other methods. All rmax in
Table 1 appear nearly at the same location. The relative difference
between them is less than 3%. On the other hand, the maximum
shear stresses appear almost at the same position close to the
load area with a relative difference of less than 1.5%. This good
agreement validates our analytical solution and shows its applica-
bility even near the load area. Note that the stresses in the sphere
depend on the pair of loads in FEM simulations and our solution.
They only depend on a single contact load for the Hüber–Hertz
Table 1
Maximum tensile tress rmax and shear stress smax along the loading axis.

Position: rmax (MPa) Position: smax (MPa)

Our solution q = 0.811:23.2 q = 0.955:797
FEM simulation q = 0.812:23.8 q = 0.956:801
Hüber–Hertz solution q = 0.825:22.9 q = 0.957:808
solution. Accordingly, there could be a difference to some extent.
For example, rmax � 1.6 MPa at the sphere center according to the
Hüber–Hertz solution while rmax � 7.9 MPa according to the FEM
simulation and our solution. This difference indicates the invalid-
ity of applying Hüber–Hertz solution at points away from the
load area.

3.2. Evaluation by our solution for general load scenarios: Nc > 2

Our solution enables the stress analysis for a sphere subjected
to various loads, i.e., Nc > 2. Fig. 7 shows the principal stresses
along one loading axis for m = 0.25 subjected to 6 Hertz pressures,
i.e., Nc = 6. The stresses are evaluated with Nt = 25. The loads lie
in (60�,36�), (120�,216�), (90�,126�), (90�,306�), (150�,36�),
(30�,216�), respectively. In this way, they are arranged as three dia-
metrical pairs orthogonal to each other. Besides, the result for
Nc = 2, m = 0.25 and Hertz pressure from Fig. 6 is also plotted for
comparison. The same load F is applied on each load area with
the same size in both cases. In any case, the loads have to satisfy
Eq. (17). Compared to the case for Nc = 2 the maximum principal
stress for Nc = 6 change significantly when q approaches zero. Ten-
sile stresses become compressive at the sphere center. Note that
the relation r2 = r1 holds for both cases under consideration,
namely Nc = 2 and Nc = 6, and the peak value of r1 is also the max-
imum tensile stress inside the whole sphere (the tensile stress on
the surface is not taken into account). On the other hand, the stres-
ses stay approximately the same for both cases for q > 0.8.

The stresses along one loading axis for Nc = 4 are shown in
Fig. 8. The stresses in this case are also evaluated with Nt = 25.
The loads lie in (60�,36�), (120�,216�), (90�,126�), (90�,306�),
respectively. They are two diametrical pairs orthogonal to each
other. Compared to the case Nc = 2, the maximum principal stress
has increased significantly for a radius q < 0.85. Its peak value
which is the maximum tensile stress inside the sphere increases
nearly by 25%. It is thus essential to consider the influence of the
coordination number Nc if the tensile stress inside a sphere is of
big concern. Similar to Fig. 7, the stresses close to the load area,
that is, above a certain value of q, are not influenced by Nc. The crit-
ical value of q which is approximately 0.9 in this case depends on
the contact area and Poisson’s ratio. The stresses at points that are
close to the load area are still dominated by Hertz theory.

3.3. Evaluation for spherically isotropic spheres

The practical significance of our solution lies in the application
to the computation of stress fields in isotropic pebbles in pebble
beds. On the other hand, since our analytical solution also applies
to a spherically isotropic material, we consider this more general
Fig. 7. Normalized principal stress along the loading axis (h = 60�,u = 36�) calcu-
lated from our solution for Nc = 2 and Nc = 6 for Hertz pressure.



Fig. 8. Normalized principal stress along the loading axis (h = 60�,u = 36�) calcu-
lated from our solution for Nc = 2 and Nc = 4 for Hertz pressure.
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case in the following. Three parameters indicating the degree of
anisotropy are defined in agreement to Chau and Wei (1999):

b ¼ E
E0
; a ¼ m0

m
; n ¼ A44

A66
: ð58Þ

Fig. 9 shows the principal stresses along the loading axis for the
configuration used for Fig. 8 in the case of Nc = 4. There are four
cases included in this evaluation: (i) b = 0.95, a = 1.0, n = 1.0; (ii)
b = 1.05, a = 1.0, n = 1.0; (iii) b = 1.0, a = 0.95, n = 1.0 and (iv)
b = 1.0, a = 1.05, n = 1.0. Fig. 9 (1) shows the variation of the stress
distribution due to a small perturbation of b while Fig. 9 (2) demon-
strates the influence of a. The case of b > 1 means a sphere with a
higher stiffness in the spherical hypersurface of isotropy than along
the direction perpendicular to the plane, i.e., the radial direction. As
for the case b = 1.05 shown in Fig. 9 (1), all principal stresses stay
almost the same compared to those for isotropic material in Fig. 8
except that the magnitude of all stresses in the region near the
sphere center decreases slightly in contrast to the isotropic mate-
rial. On the other hand, when b < 1, e.g., b = 0.95, holds, the first
principal stress in the range of 0 < q < 0.85 increases significantly
compared to the isotropic material, and the second principal stress
also increases to some extent in this region. The minimum principal
stress increases as well but only around the sphere center, i.e., for
q < 0.4. As to the influence of a on principal stresses, a < 1, e.g.,
a = 0.95, hardly has any influence on the stresses inside the whole
sphere. On the other hand, a > 1, e.g., a = 1.05, has a similar influ-
ence on the stresses as b = 0.95 as stated before. It should be noted
that small changes for both a and b have no influence on the prin-
cipal stresses in the region close to the contact area, e.g., q > 0.85 in
both figures.
Fig. 9. Normalized principal stress along one loading axis for anisotropic materials:
configuration and /i, m are the same with Nc = 4 as in Fig. 8.
3.4. Discussion

Our solution has been validated in two ways. First, the three
cases studied in Figs. 7–9 have additionally been considered by
applying the method of superposition to the solution of Chau and
Wei (1999). For this purpose, the load distribution according to
Eq. (11) had to be implemented in this solution. Second, the two
cases according to Figs. 7 and 8 have been validated by FEM simu-
lation as well. It should be noted that our solution can solve prob-
lems for any multiple loads, irrespective of whether these loads
have symmetry properties or not. In particular, various sets of
equilibrium loads can be applied to a sphere and the stresses in
the sphere can subsequently be evaluated. It turns out that stresses
in a sphere depend not only on Nc but also load positions. Thus, the
conclusion which can be drawn from Figs. 7 and 8 is that Nc does
have an influence on the stress field in the sphere. As another fea-
ture, our solution accounts for the possibility that the load area can
be different even for the same resultant load. For instance,
Ra1 – Ra2 in Fig. 4 can represent the load case that a sphere is com-
pressed by two parallel plates with different stiffnesses.

As mentioned in Section 2.3, the relevance of our solution de-
pends on the consistency between the assumed pressure distribu-
tion and the real pressure distribution in the contact zone. The
adopted Hertz pressure distribution, namely Eq. (11), and the pres-
sure-load relation, namely Eq. (12), can represent the elastic con-
tact case well for isotropic material according to the results in
Table 1. Nevertheless, other pressure distributions correspond to
other contact cases. For example, if an elastic sphere is compressed
by soft metals, plasticity may occur in the metal. For such a case, if
the contact pressure distribution can be derived, such as from FEM
simulation, it is expected that the results from our solution with
the derived pressure distribution are close to the real case.

There are some technical tips for the numerical evaluation. First,
it can be proven that K01 � 0 for l = 0 in Eq. (44f) holds, indepen-
dent of material parameters. This causes an exception for l = 0 to
the root requirement, i.e., all roots l must be not smaller than 1
(see Section 2.5). In other words, even if l01 < 1 holds stresses at
the sphere center are not infinite because H0 in Eq. (57a) is a finite
value for q = 0 as a consequence of K01 � 0, provided that l02 P 1.
Thus, the stress term for l = 0 in Eq. (53) has to be added in the
summation of the stress series although the root l01 is often smal-
ler than 1 which does not satisfy the root requirement as stated be-
fore. Second, for the stress term for l = 1 in Eq. (53) Ll12 in Eq. (52b)
is often infinite because the denominator is zero as a result of
l11 = 0 (see Eq. (32) where P1 is sometimes negative which de-
pends on material parameters). Under this circumstance, both
C11 and C12 can be set to zero such that Eq. (E.9) in Appendix E
can be satisfied consequently. Finally, for pairs of diametral equal
loads with the same load area, Am

n ¼ Bm
n ¼ 0 holds for all odd n.
(1) b = 0.95 or 1.05, a = 1.0, n = 1.0; (2) b = 1.0, a = 0.95 or 1.05, n = 1.0. The load
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The solution of Hiramatsu and Oka (1966) can be regarded as a
special case of the solution of Chau and Wei (1999). Our solution
obtained in this work is an extension of the solution of Chau and
Wei (1999). Note that Wijk (1978) speculated on the invalidity of
applying the solution from Hiramatsu and Oka (1966) in the vicin-
ity of the load areas. The applicability of such solutions is therefore
discussed in the next section.
4. Some aspects about the application of the proposed solution

In this section, we discuss the applicability of the solution ob-
tained in this work. However, the conclusions will also hold for
the solutions of Hiramatsu and Oka (1966) and Chau and Wei
(1999). The discussion includes two aspects. The first one is the
convergence rate of the solution. For convenience the stress r,
which can denote any stress component of Eqs. (53)–(56), can be
written for isotropic materials as

rn ¼
Xn

m¼0

rnm; r ¼ r0 þ
X1
n¼2

rn; ð59Þ

where rn is the nth term in the series. The numerical evaluation is
carried out by summing a finite number of terms. The number Nt is
of concern as to the accuracy of the results. A fast convergence rate
leads to less terms to achieve a certain accuracy. Fig. 10 shows val-
ues of nth term of the normalized stress rhh at various positions q
plotted versus the even number n at which the series has been trun-
cated. This corresponds to an elastic sphere subjected to a pair of
diametral loads with Hertz pressures where m = 0.25 and
Fig. 10. Truncated normalized stress rhh,n versus truncation number n plotted for
various positions q along the loading axis as calculated from our solution for Nc = 2
and Hertz pressure. m = 0.25 and /1 = /2 = 5�.

Fig. 11. Normalized maximum principal stress on the surface, q1 = Rsin//Ra for the Hübe
in Fig. 4. Values of R, E, m, F are the same as those stated in the last section.
/1 = /2 = 5�. The terms for odd n are equal to zero because of load
symmetry and not counted into Nt in this work. The maximum ten-
sile stress appearing around q = 0.81 requires about Nt = 20 to
achieve a relative error of less than 0.1%. However, more terms
are needed with q approaching 1. In other words, the convergence
rate at points near the surface becomes slow. For example, to
achieve the same relative error of 0.1%, the numerical evaluations
show that Nt � 140 at q = 0.95 while Nt � 320 at q = 0.99.

The second aspect is the applicability of our solution on the
sphere surface. Fig. 10 illustrates that the slowest convergence rate
is found on the surface (q = 1). If good convergence, such as a rel-
ative error less than 1%, can be achieved only when Nt is very large,
this might lead to numerical problems. Fig. 11 shows the stresses
on the surface derived from three methods with parameter sets
as used in the last section for Table 1. The stresses are plotted with
respect to the normalized distance away from the center of the
contact area. The Hüber–Hertz result is obtained by applying
z = 0 in the solution of Hüber (1904). The normalized maximum
tensile stress appearing around q1 = 1 is 66 corresponding to
420 MPa. The maximum tensile stress with Nt = 2000 terms for
our solution is 49.4. The relative change, compared to Nt = 8000,
is less than 2%. This value is still much smaller than 66. In the
FEM simulations, three mesh sizes, namely 0.125, 0.25 and
0.5 lm, on the surface are used, respectively. The derived maxi-
mum tensile stress becomes higher with smaller mesh size. Its po-
sition approaches to q1 = 1 with decreasing mesh size. The
maximum normalized tensile stress for the mesh size of
0.125 lm is only about 39.5. Except for the area around q1 = 1,
the stresses from FEM simulations and our solution are a little
higher than the Hüber–Hertz result. Even so, both FEM results
and our solution agree well with each other in most of the surface.
This proves the applicability of our solution even on the surface. In
comparing the curves in Fig. 11, it has to be kept in mind that the
stresses from the Hüber–Hertz solution are derived in a cylindrical
coordinate system referring to a deformed state of the sphere,
while the stresses from our solution and the FEM simulation are gi-
ven in a spherical coordinate system referring to an undeformed
state of the sphere.

As for the maximum principal or tensile stresses on the surface,
there are three different values derived from our solution, FEM
simulations and the Hüber–Hertz solution, respectively. It is prob-
able that the convergence rate near the point, q1 = 1, in our solu-
tion is too slow. Only summing nearly infinite terms could then
achieve a good accuracy. In this case, the maximum tensile stress
evaluated with a finite number would be underestimated. Besides,
the numerical integral in Eq. (47) for big n may be not accurate
anymore. As a result, there will be a numerical problem to evaluate
the maximum tensile stress around q1 = 1. As for the FEM simula-
tions, in view of the high stress gradient around q1 = 1, it is not
r–Hertz solution and q1 = R//Ra for FEM simulations and our solution and / is shown
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strange that the maximum tensile stresses depend on the mesh
size to some extent. This does not mean that there is a stress sin-
gularity. The stresses from FEM simulations will be always under-
estimated with a finite mesh size in principle. Thus, for the
calculation of stresses on the surface in the neighbourhood of
q1 = 1, the Hüber–Hertz solution is preferred. As for stress analysis,
all stress components in a sphere can be numerically evaluated.
The required information for our solution includes the load posi-
tions and /i or load areas. The spherical coordinate system can
be selected almost arbitrarily. The only requirement on the coordi-
nate system is that every load lies within /i < hi < p � /i (see
Appendix C). The load areas can be obtained from experiments or
Hertz theory. For the Hertz theory, it is assumed that the load area
is independent of the other loads. By now, all stresses in a sphere
can be estimated with our solution. For example, the stresses in
spherical pebbles in crush tests (Nc = 2, see Fig. 1) can be analyzed
by the following steps. First, the load positions have to be specified
like (h,u) and (p � h,u + p) where h and u can be arbitrary angles.
Secondly, the load areas measured from experiments are converted
to /1 and /2. Finally, the stresses under consideration can be solved
by our solution with h, u, /1 and /2. Note that the stresses along
h = 0 and h = p are not available in our solution because of the arti-
ficial singularity, e.g., rru in Eq. (54) and rhu in Eq. (56). This may
not be a problem as an appropriate coordinate system can be nor-
mally found. The Hüber–Hertz solution is preferred to calculate the
stresses at points around q1 = 1 for elastic contacts. For a sphere
compressed by various loads, i.e., Nc > 2, stress analysis can be per-
formed with a similar procedure as in the above example.
5. Some considerations on pebble failure

It is often regarded that a brittle particle will fail when the max-
imum tensile stress inside the particle reaches its critical strength,
e.g., Jaeger (1967), Kschinka et al. (1986), and Chau et al. (2000). In
view of this failure criterion, it is of significance that our results
show that Nc may affect stresses inside spheres to some extent.
On the other hand, failure of brittle spheres was found to be dom-
inated by the maximum shear stress (Russell et al., 2009). Table 1
shows that maximum shear stresses appear close to the load area.
As shown in Figs. 7 and 8, stresses close to the surface are not influ-
enced by Nc. This means failure of brittle particles will only depend
on the maximum contact force, e.g., Marketos and Bolton (2007). In
this case, Nc has no impact on failure. Similar, if it is assumed that
the maximum tensile stress on the sphere surface as shown in
Fig. 11 dominates pebble failure, Nc will have no influence on fail-
ure, either. It is thus very important to apply a suitable failure cri-
terion for a particular brittle particle under consideration. As for
pebbles, we will publish related work in a later article.

There are few experiments to study the influence of Nc on the
failure of spherical particles. For instance, Couroyer et al. (2000) re-
ported the crush load distribution of alumina beads between a flat
plate and an assembly of fixed steel beads. In this case, the maxi-
mum tensile stress in these beads can be calculated using our solu-
tion, as long as pressure distribution is adjusted to the contact
conditions (e.g., elastic or plastic). Failure criteria can be developed
or validated using such experimental results and our analytical
solution.
6. Conclusions

In this paper, an analytical solution for the stresses in an elastic
sphere subjected to arbitrary surface loads is derived. The stresses
in the sphere have been obtained by summing a finite number of
terms in the solution. Two kinds of pressure distribution, uniform
and Hertz pressure, are applied in the load areas. The stresses
derived with Hertz pressure agree well with the results from
FEM simulations where a sphere is compressed by two parallel
elastic plates. Other pressure distributions in real contact, may
they be obtained by experiment, theory or simulation, can be ap-
plied to our analytical solution as well. The numerical evaluation
of our solution clearly shows the influence of the coordination
number Nc of load on stresses inside the sphere. Nc has to be taken
into account when the stresses inside a sphere are of big concern.

Our solution can be applied at any points in a sphere in princi-
ple. However, a large number of terms needs to be added up to
achieve a good accuracy at surface points around the boundary
of the load area. The Hüber–Hertz solution is then preferred to cal-
culate the stresses at these points.
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Appendix A. Displacement potential functions

The procedure to derive the displacement potential functions Z
and U as done by Chau and Wei (1999) is described below.

Hu (1954) proposed that the displacement potential under con-
sideration can be resolved into two parts

ur ¼ uI
r þ uII

r ¼ 0þw; ðA:1Þ

uh ¼ uI
h þ uII

h ¼ �
1

r sin h
@W
@u
� 1

r
@G
@h

; ðA:2Þ

uu ¼ uI
u þ uII

u ¼
1
r
@W
@h
� 1

r sin h
@G
@u

; ðA:3Þ

where W and G are two displacement functions. Substitution of the
above equations into Eqs. (4) and (6) subsequently yields

2ðaþ bÞ
r3 r2

1G� d
r2r

2
1
@G
@r
þ 2g

r2 wþ c
r2

@

@r
r2 @w
@r

� �
þ h

r2r
2
1w ¼ 0;

ðA:4Þ

1
r
@B
@h
þ 1

r sin h
@A
@u
¼ 0;

1
r
@A
@h
� 1

r sin h
@B
@u
¼ 0; ðA:5Þ

where

A ¼ � a
r2r

2
1Gþ 2b

r2 G� h
@2G
@r2 þ

2ðaþ bÞ
r

wþ d
@w
@r

;

B ¼ ðh� bÞ 1
r2r

2
1Wþ

2W
r2

� �
þ h

@2W
@r2 �

2W
r2

 !
;

ðA:6Þ

a ¼ A12 þ 2A66; b ¼ A44 � A66; c ¼ A33

d ¼ A13 þ A44; h ¼ A44; g ¼ dþ h� 2ðaþ bÞ:
ðA:7Þ

It has been proved that both A and B can be set to zero:

A ¼ 0; B ¼ 0: ðA:8Þ

The following change of variables is introduced

r ¼ Reg; W ¼ RZeg; G ¼ RFeg; w ¼ �r
@H
@r
¼ � @H

@g
; ðA:9Þ

where Z, F and H are displacement functions with respect to the
dimensionless radial variable g.
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Substitution of the above variables into Eqs. (A.4), (A.6) and
(A.8) yields Eq. (18)

A44
@2Z
@g2 þ

@Z
@g

 !
þ A66r2

1Z � 2ðA44 � A66ÞZ ¼ 0

and

h
@2

@g2 þ
@

@g

 !
þ ar2

1 � 2b

" #
F þ d

@2

@g2 þ 2ðaþ bÞ @
@g

" #
H ¼ 0;

ðA:10Þ

ðh� gÞr2
1 � dr2

1
@

@g

� �
F � c

@3

@g3 þ
@2

@g2

 !
þ hr2

1
@

@g
þ 2g

@

@g

" #
H ¼ 0:

ðA:11Þ
Another displacement function / is introduced to uncouple F and H
in Eqs. (A.10) and (A.11):

F ¼ d
@2

@g2 þ 2ðaþ bÞ @
@g

" #
/; ðA:12Þ

H ¼ � h
@2

@g2 þ
@

@g

 !
þ ar2

1 � 2b

" #
/: ðA:13Þ

It can be seen that such / does satisfy Eq. (A.10). Substitution of Eqs.
(A.12) and (A.13) into Eq. (A.11) leads to Eq. (19), i.e.,

@2

@g2 þ @
@g

� �2
þ 2D @2

@g2 þ @
@g

� �
þMr2

1
@2

@g2 þ @
@g

� �
�4Lþ 2ðN � LÞr2

1 þ Nr2
1r2

1

2
4

3
5U ¼ 0;

where

D ¼ hg � bc
ch

; L ¼ bg
ch
; M ¼ ac þ h2 � d2

ch
; N ¼ a

c
ðA:14Þ

and U is defined as

U ¼ � @/
@g

: ðA:15Þ

Subsequently, the displacement functions can be expressed by Z
and U, i.e., Eq. (20).

Appendix B. Fourier associated Legendre series

For the asymmetric and piecewise boundary condition at the
complete surface of the sphere the pressure function p(h,u)
(0 6 h 6 p, 0 6 u 6 2p), can be expanded with the orthogonal
functionsn

Pm
n ðcos hÞ cos mu ðn P 0;n P m P 0Þ;

Pl
kðcos hÞ sin lu ðk > 0; k P l > 0Þ

o
; ðB:1Þ

where Pm
n and Pl

k are the associated Legendre functions, and n, m, k, l
are integers. The orthogonality relations for any two functions in
the above system areZ p

0

Z 2p

0
Pm

n ðcos hÞ cos muPl
kðcos hÞ sin lu sin hdudh ¼ 0; ðB:2Þ

Z p

0

Z 2p

0
Pm

n ðcos hÞ cos mu

 �2 sin hdudh

¼ 2pdmðnþmÞ!
ð2nþ 1Þðn�mÞ! ; ðB:3Þ

Z p

0

Z 2p

0
Pl

kðcos hÞ sin lu
� �2

sin hdudh ¼ 2pðkþ lÞ!
ð2kþ 1Þðk� lÞ! ; ðB:4Þ
where sinh is a weight function and

dm ¼
2 m ¼ 0;
1 m – 0:

�
ðB:5Þ

So the function p can be expanded as

pðh;uÞ ¼
X1
n¼0

Xm¼n

m¼0

Am
n cos muþ Bm

n sin mu

 �

Pm
n ðcos hÞ; ðB:6Þ

where

Am
n ¼
ð2nþ 1Þðn�mÞ!

2pdmðnþmÞ!

Z p

0

Z 2p

0
pðh;uÞPm

n ðcos hÞ cos mu sin hdudh;

Bm
n ¼
ð2nþ 1Þðn�mÞ!

2pðnþmÞ!

Z p

0

Z 2p

0
pðh;uÞPm

n ðcos hÞ sin mu sin hdudh:

ðB:7Þ
Appendix C. The domain of integration

The load circle Si, is represented by an ellipse in the left sketch
of Fig. C.1. Oi is the center of the load circle corresponding to (Rco-
s/i,hi,ui) in the spherical coordinate system, where R is the sphere
radius. The spherical load circle subtends an angle of 2/i. O is the
center of the sphere and P is a point in the z-axis. O0i is the projec-
tion of Oi in the x–y plane. The line across the points Oi and P lies in
the plane containing the load circle. The plane across the points O,
P and Oi is perpendicular to the load circle. The points Q1 and Q2

corresponding to the same h locate at the edge of Si. The line across
the points Q1 and Q2 is parallel to the x–y plane. Q 01 and Q 02 in the
right sketch are the projections of Q1 and Q2 in the x–y plane. It is
aimed to find the function u0(h).

Care should be taken that the spherical coordinate system must
be appropriately chosen so that every load lies in /i < hi < p � /i.
Otherwise, if the z-axis goes through the inner of load circle, the
following construction will not work. Nevertheless, an appropriate
coordinate system can be normally found in case of a limited coor-
dination number and a small load area. The coordination number is
limited for spheres with a similar size. For example, the maximum
coordination number in a three dimensional space is 12 for mono-
sized spheres. Besides, for ceramic spherical pebbles compressed
by plates, the /i which is related to the ith load area is relatively
small before failure occurs. Therefore, it will not be a big issue to
identify an appropriate coordinate system. The geometrical rela-
tions read as

b ¼ R sin /i; h ¼ R cos /i; c ¼ hj tan hij; f ¼ hj sec hij;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ f 2 � 2Rf j cos hj

q
; p ¼ bþ c þ d

2
;

e ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� cÞðp� bÞðp� dÞ

p
c

;

m ¼ R sin h; u0ðhÞ ¼ arcsin
e
m
:

ðC:1Þ

There is a special case for the load area with hi = p/2. In this case,

u0ðhÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ðR cos hÞ2

q
m

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /i � cos2 h

q
sin h

: ðC:2Þ

As a result, the integral domain is [hi � h0,hi + h0] and [ui � u0(h),
ui � u0(h)].

Appendix D. Hertz pressure distribution

The Hertz pressure in Eq. (11) is expressed as a function of /
while the coefficients, Am

n and Bm
n in Eq. (47) are derived with the

pressure in terms of (h,u). Therefore, it is essential to obtain the



Fig. C.1. The domain of the load area.

Fig. D.1. The acute angle between the lines (r,h,u) and (r,hi,ui).
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angle between (r,hi,ui) and (r,h,u). Note that for any point (R,h,u)
in the load area, ju � uij is much smaller than p/2 because the load
normally is very small. Accordingly, 0 < /� p/2 (see Fig. D.1).

m1 ¼ R sin h; l1 ¼ Rj cos hj; m2 ¼ R sin hi; l2 ¼ Rj cos hij;
ðD:1Þ

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 � 2m1m2 cosðju�uijÞ

q
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ sin2 hi � 2 sin h sin hi cosðju�uijÞ

q
; ðD:2Þ

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 � l2Þ2 þ e2

1

q
¼ R

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j cos h cos hij � sin h sin hi cosðju�uijÞ
q

: ðD:3Þ

The angle between the line (r,h,u) and the line (r,hi,ui) is

/ðh;u; hi;uiÞ ¼ 2 arcsin
b1

2R

� �
: ðD:4Þ
Appendix E. The relations between coefficients in the general
solution and the boundary condition

The shear stress is 0 at any point on sphere surface. It is thus
independent of h and u. For rrujr=R = rrujq=1 = 0, the independence
of h yields

Dm
h1ðkh1 � 1Þ cos muþ Dm

h2ðkh2 � 1Þ sin mu ¼ 0; ðE:1Þ

�ðCm
l1Tl1 þ Cm

l2Tl2Þ sin muþ ðCm
l3Tl1 þ Cm

l4Tl2Þ cos mu ¼ 0; ðE:2Þ
�PðRm
n1; I

m
n1Þ sin muþPðRm

n2; I
m
n2Þ cos mu ¼ 0 ðE:3Þ

and for rrhjr=R = rrhjq=1 = 0, the independence of h yields

�Dm
h1ðkh1 � 1Þ sin muþ Dm

h2ðkh2 � 1Þ cos mu ¼ 0; ðE:4Þ

ðCm
l1Tl1 þ Cm

l2Tl2Þ cos muþ ðCm
l3Tl1 þ Cm

l4Tl2Þ sin mu ¼ 0; ðE:5Þ

PðRm
n1; I

m
n1Þ cos muþPðRm

n2; I
m
n2Þ sin mu ¼ 0; ðE:6Þ

where Tli = (1 � lli)Cli + Kli (i = 1,2). For Eqs. (E.1) and (E.4), the
independence of u yields

Dm
h1ðkh1 � 1Þ ¼ 0; Dm

h2ðkh2 � 1Þ ¼ 0; ðE:7Þ

however, kh depends on h. As a result

Dm
h1 ¼ 0; Dm

h2 ¼ 0: ðE:8Þ

For Eqs. (E.2) and (E.5), the independence of u yields

Cm
l1Tl1 þ Cm

l2Tl2 ¼ 0;

Cm
l3Tl1 þ Cm

l4Tl2 ¼ 0;

(
ðE:9Þ

which implies
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Tl1
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l2 ¼ Ll12Cm
l2; Cm

l3 ¼ �
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Tl1
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l2 ¼ Ll12Cm
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For Eqs. (E.3) and (E.6), the independence of u yields

PðRm
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m
n1Þ ¼ 0; PðRm

n2; I
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n2Þ ¼ 0; ðE:11Þ

which implies
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Pð0;�1Þ ¼ Kn12Rm

n1; Im
n2 ¼

Pð1;0Þ
Pð0;�1Þ ¼ Kn12Rm

n2: ðE:12Þ

rrr can be obtained by replacing A12, (2A66) and A13 in Eq. (40) by
A13, 0 and A33. For q = 1, rrr read as

rrr ¼ �
1
R

X
l

Xl

m¼0

Cm
l1Jl1 þ Cm

l2Jl2


 �
cos mu

þ Cm
l3Jl1 þ Cm

l4Jl2


 �
sin mu

" #
Pm

l ðcos hÞ

þ 1
R

X
n

Xn

m¼0

X1ðRm
n1; I

m
n1Þ cos mu

�
þX1ðRm

n2; I
m
n2Þ sin mu



Pm

n ðcos hÞ; ðE:13Þ

where Eq. (E.8) has been used. Applying the boundary condition,
rrrjr=R = rrrjq=1 = p(h,u), yields

Cm
l1Jl1 þ Cm

l2Jl2 ¼ �Am
l R;

Cm
l3Jl1 þ Cm

l4Jl2 ¼ �Bm
l R

(
ðE:14Þ

and

X1ðRm
n1; I

m
n1Þ ¼ Am

n R;

X1ðRm
n2; I

m
n2Þ ¼ Bm

n R:

(
ðE:15Þ
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The coefficients, Cm
li ði ¼ 1;2;3;4Þ, can be derived from the set of

equations of (E.9) and (E.14). The coefficients, ðRm
nk; I

m
n2Þ ðk ¼ 1;2Þ,

can be derived from the set of equations of (E.11) and (E.15).
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