Measurement of Young’s modulus of anisotropic materials using
microcompression testing
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Microcompression test was applied to determine the Young’s modulus for elastically anisotropic
materials for two different orientations of single crystalline Si. Although there is a clear difference
in the apparent Young’s moduli for the different orientations, a significant underestimation of
Young’s modulus was observed resulting from the substrate deformation as observed in both finite
element simulation and experiment. This effect decreases with increasing aspect ratio. To correct
the deviation of the apparent Young’s modulus from the theoretical values, a systematic framework

of microcompression test is suggested. The modified Sneddon correction using the indentation
modulus instead of Young’s modulus successfully yields Young’s moduli of single crystalline
silicon in the [100] and [111] directions to within 5.3% and 2.0% deviation, respectively.

I. INTRODUCTION

Nanoindentation has proven highly useful to extract
mechanical properties of thin films and small specimens in
respect to Young’s modulus and hardness' over the last few
decades. However, when studying anisotropic materials, the
indentation method exhibits a severe drawback; the indenta-
tion response of anisotropic materials is a response averaging
the properties of all crystal directions. As a result, the
indentation modulus for single crystalline anisotropic materi-
als does not represent in a straightforward manner the
uniaxial Young’s modulus for the same crystal orientation.>

In recent years, microcompression testing was intro-
duced as an alternative method to investigate the me-
chanical properties of materials at a small scale* and has
yielded interesting results on size effects on a variety of
materials.>® In general, a conventional nanoindenter
equipped with a flat-end tip is used to compress the pillars
while measuring load and displacement, thereby facilitating
the determination of the engineering stress—strain curves.
While most studies using microcompression testing focused
on the onset of plasticity, the elastic response of micropillars
has yet received less attention. A few experimental studies
comment on the elastic moduli,”® as it was used to check
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the general validity of the experiments. Microcompression
experiments typically exhibit deviations from macroscopic
tests, and caution needs to be exercised when analyzing the
experimental data.”'® From the point of view of the elastic
properties, the integral connection of the pillar to the base
material is one main source of error. As shown by Choi
et al.,'" a significant portion of the elastic deformation in
a microcompression experiment is caused by the displace-
ment of the substrate, whereas plasticity is mainly carried in
the pillar itself. In in situ experiments on single crystalline
Si pillars, the compliance of the pillar base was observed to
account for almost 20% of the total applied strain.'?

Typically in a microcompression experiment, the sub-
strate compliance is accounted for by using the Sneddon
equation'® as initially used by Greer et al.'* in their
analysis of gold pillars. This correction procedure treats
the pillar as a rigid flat punch elastically indenting an
isotropic half-space. However, it was shown that the direct
application of the Sneddon correction results in an over-
estimation of Young’s modulus'®'" and requires the knowl-
edge of the elastic material parameters for the samples.
Although additional corrections accounting for the actual
pillar geometry were suggested for elastically isotropic
materials,"' those methodologies require extensive para-
metric studies using finite elements (FEs) to obtain solutions
for anisotropic materials.

In this study, based on FE simulations and experiments,
we suggest a methodology to determine the Young’s
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modulus of elastically anisotropic materials using micro-
compression tests without having prior knowledge of the
material parameters. Silicon was chosen as model systems
to ensure a robust numerical and experimental verification.
The elastic properties of Si are well known, and Si is highly
suitable for focused ion beam (FIB) machining, which is the
method most commonly used for preparing the micro-
pillars. FE simulations were performed to identify critical
factors affecting the substrate compliance correction and
thereby causing errors in the observed elastic properties. A
theoretical framework to extract accurate values of elastic
moduli was then established and verified by microcom-
pression experiments on single crystalline Si of [111] and
[100] orientations.

Il. SIMULATION FRAMEWORK AND
EXPERIMENTAL DETAILS

A. FE simulations

Using the commercial FE software ABAQUS (Version
6.5), a perfectly cylindrical pillar and a pillar of 5° taper
angle between the sidewalls and the pillar axis were created.
These two geometries are typical of the sample preparation
using a FIB. The “ion lathe” method* produces cylindrical
pillars and minimizes the rounding of the pillar edges.
Almost cylindrical pillars can also be prepared by the top—
down preparation process introduced by Greer et al.'* down
to pillar diameters of 300 nm. The faster top—down two-
step process used by Volkert and Lilleodden’ creates
slightly tapered pillars.

In our simulations, we chose a taper angle of 5°, which is
higher than what can be achieved by optimizing the milling
parameters but was supposed to give a clear picture of the
influence exerted by the taper. In the work of Volkert and
Lilleodden,” a taper angle of 2° was reported for Au pillars.

The pillar diameter d and the height L, were varied to
investigate the effect of aspect ratios Ly/d between 1 and 8.
The model boundaries are sufficiently far away from
the pillar to guarantee that the boundary conditions have
no significant effect on the properties investigated. Axi-
symmetric meshes with four-node tetrahedral elements
were constructed as shown in Fig. 1. Elastic anisotropic
homogeneous material behavior was assumed with the
following elastic constants of Si as input parameters:

(a)
FIG. 1. Geometrical model showing the undeformed meshes of (a) the
cylindrical and (b) the tapered pillar.
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Cy, = 166 GPa, C;, = 64 GPa, C44 = 80 GPa,'” and its

Zener anisotropy ratio A = 2C44/(Cy; — Cy2) is 1.56. The

results obtained from the FE simulation of Si were supported

by another set of simulations using the elastic constants of

Fe, C; = 233 GPa, Cy, = 124 GPa, Cy4 = 117 GPa, having

a higher anisotropy ratio of 2.14 as compared to that of Si.
In general, the Young’s modulus E is calculated as

FLy
=TAL (1)
where F is the applied load, A the cross-sectional area of
the pillar, Ly the initial pillar height, and AL the change of
the pillar height. In principle, in the microcompression
experiment, the change of the pillar height AL is measured
as the top surface displacement from instrumented in-
dentation Ay,p,. In this measurement itself, the substrate
deformation AL, which results from the deflection of the
material underneath the micropillars as schematically
illustrated in Fig. 2, is not accounted for. Thus, the ap-
parent modulus E, is calculated as

F L

E,=——
Ay

(2)

The effect of the taper on the base compliance was
examined for a 5° taper angle and an aspect ratio of 2 as
shown in Fig. 1(b). In the case of the tapered pillar, the cross
section at half the height was used as the representative area
A in Egs. (1) and (2), where the nominal elastic response
is expected to be the average of the top and bottom. The half-
height cross section later leads to accurate modulus mea-
surement in simulation for the tapered pillar with the aspect
ratio of 2.

Furthermore, the modulus for different aspect ratios
was determined with the substrate deformation accounted
for. First, the displacement of the bottom corner node AL

T —
I~
S

FIG. 2. Schematic of the pillars with relevant parameter: F' is applied
load, Ly pillar height, d pillar diameter, ALgx top surface displacement,
hiop flat punch indenter displacement, and Lg substrate deformation.
Changes of volume are not shown.
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of the pillar mesh was extracted and subtracted from A,
to arrive at an accurate change in value of the pillar height
AL, resulting in

FL,

E=—""2
A (htop - ALS)

3)

Second, the substrate deformation was accounted for
by using the Sneddon equation. 3 The displacement of the
substrate is given as

1 -2 ) F
ALs = Algyoggoy = L~ Vo) F 4
S Sneddo: Esub 2a ) ( )

where Eg, and vy, are the Young’s modulus and
Poisson’s ratio of the substrate, respectively, and a is the
contact radius of the indenter, which is d/2 for the
cylindrical indenter.

A previous simulation study'® showed that the influence
of the fillet at the pillar base is not critical in the elastic
regime and that the deviation is less than 8% even for
2r./d = 1, where r, is the fillet radius. The misalignment
between the tip and the pillar affects the elastic loading
curve,'" and can be assessed experimentally by monitoring
stable stiffness behavior.'* However, the effect on the
unloading portion of the curve, typically used to determine
the elastic modulus, is negligible, as is the influence of
the friction coefficient.'® Thus, the effects of the fillet radius
between pillar and base material, on contact friction be-
tween the tip and the pillar, and slso the effects of mis-
alignment, were not investigated in this study

B. Microcompression experiment

Micropillars were prepared from two different crystal-
lographic orientations of Si, i.e., [100] and [111]. The
pillars were machined using a FIB (FEI Nova 200
NanoLab Dual Beam, FEI, Hillsboro, OR) following
the two-step procedure used by Volkert and Lilleodden.”
Pillars of 2 pm diameter and aspect ratios of approximately
1:1 and 2:1 were prepared (Fig. 3). The pillar diameter
at half the pillar height was approximately 2.6 pm,
and the average taper angle for an aspect ratio of 2
was 4.1°. The taper angle was calculated by arctan
(dpotom — diop/2 * Lo), where d, is the diameter of top
surface and dpoyom the bottom diameter of the pillar. The
dimensions of every column were determined before and
after the experiments. The pillars were compressed using
a Nanoindenter NanoXP (now: Agilent, Santa Clara, CA)
equipped with a flat punch diamond tip of 10 um diameter.
The loading and unloading rates were 250 uN/s and load—
displacement data were recorded during the experiment.
Six loading—unloading cycles with incremental ramping
were applied to ensure both good contact and reduced
misalignment between the tip and the top surface of the
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Aspect ratio = 1.22

Before

FIG. 3. Scanning electron microscopy images of Si pillars with aspect
ratios of 1.22 and 2.72 before and after compression. No plastic de-
formation can be observed as indicated by the dashed lines.

micropillar and to obtain more data from each column. The
machine compliance was taken into account, and the
displacement was corrected for thermal drift effects by
monitoring the displacement at 10% of the maximum load
after the final loading as provided in the standard test
methods for the nanoindenter. A total of eight experiments
per aspect ratio and crystal orientation were performed. The
apparent modulus E, was calculated following Eq. (2) with
the stiffness F/AL determined from a linear fit to the first
20% of the unloading data of the load—displacement curve.
The effective cross-sectional area of the tapered pillars was
set at half the pillar height just as in the FE simulation.

lll. SIMULATION RESULTS AND PROPOSED
METHODOLOGY

The apparent modulus E, of cylindrical pillars obtained
from the simulations is shown with respect to aspect ratio for
both [111] and [100] orientations in Fig. 4. The full and open
circles correspond to E, of the [111] and [100] orientations,
respectively. Clearly, the apparent modulus in the [111]
direction (Ea111 ) is larger than that in the [100] direction
(EBOO]) for all aspect ratios reflecting the expected aniso-
tropic response of the material. Although the modulus value
increases with increasing aspect ratio for both orientations,
the values are significantly smaller than the theoretical
values, which are denoted by the dotted and solid straight
lines in Fig. 4. Young’s moduli Et[tlloo] and Et[]iu] of 130.4 and
188.7 GPa, respectively, would be expected. The previous
simulation studies'*"' ! attributed the general underestima-
tion as well as the aspect ratio dependency of the elastic
modulus to the deformation of the substrate.
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FIG. 4. Results of the FE analysis: Modulus versus aspect ratio for single crystalline Si for two crystal orientations, namely [111] and [100].
Theoretical values for the uniaxial modulus are compared to the three different correction methods discussed in the text.

The different methods correcting for the deformation
of the substrate are compared in Fig. 4. As denoted by the
triangular symbols in Fig. 4, the modulus value corrected
by the displacement of the corner node is close to the
theoretical value clearly indicating that the deformation of
the substrate represents a major contribution to errors in
the determination of the elastic modulus. The corner-
corrected value is generally lower than the theoretical one
particularly for lower aspect ratios, which agrees with
the results obtained by other groups.''"'” The stress and the
strain fields inside the pillar are not uniform near the corner
edges of the pillar, which becomes relatively more domi-
nant as the pillar ratio decreases. Thus, the simple displace-
ment correction based on the corner node displacement is
not sufficient to take into account the complex effect of
substrate deformation and is experimentally almost impos-
sible to perform.

Applying the Sneddon correction with a uniaxial
Young’s modulus is simple and easy. However, this implies
that one knows the uniaxial moduli and Poisson’s ratios
beforehand. Moreover, the Sneddon correction with uniax-
ial Young’s moduli can lead to both overestimation and
underestimation of the elastic modulus depending on crystal
orientation and aspect ratio since the Sneddon’s equation
was derived assuming an isotropic elastic half-space. As
shown in Fig. 4, we observed max1mum overestimation for

£ % of 21% compared to E[ O Whereas the maximum
underestimation for Es1 by —3% for the aspect ratio
(Lo/d) = 1. The overestimation of the elastic modulus was
also observed in computational studies of isotropic materi-
als.'"!'” However, the underestimation of the modulus in
case of the [111] direction clearly indicates that the Sneddon
correction works differently for different orientations. The
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observation of this opposite trend can be corrected as
follows. It is known that the Young’s modulus obtained
from indentation, Ej,4, for an anisotropic material is not
the same as the uniaxial Young’s modulus since the
indentation response of anisotropic materials is a response
averaging over all crystal directions. Vlassak et al.>?
theoretically derived a solution for the indentation mod-
ulus M for different crystal orientations, which is extracted
directly from the indentation by (m'/2/2B)/(S/A'/?),
where S is the indentation stiffness of the sample, [ is
a geometrical constant, and A is the maximum contact
area of the indenter. Based on Vlassak’s solution, the ind-
entation modulus of single crystalhne Sl for [100] and
[1111 orientations are calculated as M = 165.3 GPa,
Myl } = 1759 GPa. According to the indentation theory,
M is equivalent to the plane stress modulus K, which has
arelation with Young’s modulus through K = E/(1 —1?).
The plane stress moduli from the theoretical uniaxial
values can then be calculated as K [100] 141.5 GPa,
Kt[}ill] = 195.0 GPa (the Poisson’s ratlo is also anisotropic
for the cubic structure.”'®!° For s1ng[le crystalline Si, vy,
is 0.18 and vygg is 0.28). Since K is smaller than
M([;IOO], the substrate response is apparently more compliant
if K is used instead of M in Eq. (4). In other words, the
correction ALgp.q40n Decomes bigger, which leads to a larger
correction of the modulus and causes the overestimation of
Young’s modulus in Eq. (3). On the other hand, K [ s
bigger than M£ , which results in an underestlmatlon of
Young’s modulus. Thus, as shown in Eq. (5), we suggest
using the indentation modulus M as effective modulus
shown in the Sneddon’s equation instead of the uniaxial
modulus E to correct for the substrate compliance of
elastically anisotropic materials.
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1 F

ALs = ALgneddon = Vd (5)
By inserting Eq. (5) into Eq. (3), we can rearrange the
equation of the adjusted Young’s modulus as follows

T ©)

Using Eq. (6), value of the modulus can successfully be
extracted from microcompression tests as denoted by the
rectangular symbols in Fig. 4. The correction for E'%"]
is markedly improved since the difference between Kt[}ioo]
and Mc[100 is significant. Compared to the theoretical
values, the maximum deviation decreases from 21% to
7.4% for the aspect ratio of 1. For E[m], our correction
method results in a maximum overestimation of 6%,
whereas the Sneddon correction with the uniaxial elastic
constants results in an underestimation of 3%. However,
the overestimation at low aspect ratio should be expected
if our correction method is physically more relevant than
that with uniaxial modulus because the overestimation was
unavoidable even for isotropic materials.'"'” It should
also be noted that the maximum point was observed in the
Sneddon correction for ES1 "at aspect ratio of 2. Since E,
[in Eq. (6)] is also a function of the aspect ratio, the
maximum value can occur depending on the materials
parameters M or K.

The validity of this theoretical approach was also
checked with the simulation of Fe micropillar testing as
shown in Fig. 5. The same trend of overestimation and

underestimation of Sneddon’s correction with Young’s
modulus of the [100] and [111] orientations, respectively,
can be seen, whereas the Sneddon correction using the
indentation modulus Moy = 223.0 GPa, M, = 245.3 GPa
also results in overestimation but with smaller deviation
from the theoretical Young’s modulus values.

Based on the simulation, we propose the methodology
depicted in Fig. 6 for determining the elastic modulus. The
deformation of the pillars should be in the elastic regime.
Furthermore, an aspect ratio of the pillars larger than 2 is
recommended to determine a more accurate value of the
Young’s modulus. It is noteworthy that the method does
not require prior knowledge or assumption of any elastic
constant of the material including Poisson’s ratio. Before
the method was verified experimentally as explained
Sec. 1V, the taper effect had also been investigated by
simulation. The apparent elastic modulus E, for an aspect
ratio of 2 with a 5° taper angle is 104.65 GPa for the [100]
orientation and 140.08 GPa for the [111] orientation. Since
the apparent modulus of the straight pillar with aspect ratio
of 2 is 103.84 GPa for the [100] orientation and 138.25 GPa
for the [111] orientation, the effect of the taper angle is
negligible for both orientations. Therefore, the substrate
correction derived based on the pillars without taper can be
applied to the case of the tapered Si pillars investigated in
this study.

IV. EXPERIMENTAL VERIFICATION

First, the fracture stress of the Si micropillars was
determined; a pillar having an aspect ratio of 2 was
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FIG. 5. Results of the FE analysis: Modulus versus aspect ratio for single crystalline Fe for two crystal orientations, namely [111] and [100].
Theoretical values for the uniaxial modulus are compared to the three different correction methods discussed in the text.
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compressed until failure. Failure occurred at a load of
37 mN. For all other tests, the maximum load was then
set to 25 mN lying well within the elastic regime. In the
case of materials that deform plastically, the maximum
load corresponds to the onset of plastic yield. A typical
multiple loading curve of the Si pillars is shown in Fig. 7.
It can be seen that the curve is initially bent upwards,
which is typically assigned to a slight misalignment of the
flat punch and the pillar surface."'

As shown in Fig. 8, the apparent modulus value
determined from the experimental data is smaller in the
first loading cycle (displacement of 140 nm) and reaches

Unknown Sample

Fabricating micro-pillars
with tapered angle < 5 °©

Determining failure stress o;

Measuring indentation modulus
M by nano-indentation

Applying incremental loading

less than o;

Calculating "Apparent modulus”
£, from unloading slope Adjusting substrate deformation
by Sneddon'’s correction

so that
Checking saturation of £,

Averaging £, Extracting Young’s modulus

FIG. 6. Experimental procedure to extract Young’s modulus, requiring
microcompression testing and conventional nanoindentation, e.g., with
a Berkovich tip. Note that the knowledge of any material parameters
prior to the testing is not necessary.
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FIG. 7. Representative multiple loading curves of a microcompression
test on a Si [111] pillar. The loading portions of the curves are initially
bent upwards, indicating a slight misalignment between the flat punch

and the pillar surface. For the measurement of Young’s modulus, the
slope of the unloading curves is determined.
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a stable value for larger displacements. This indicates that
for the larger displacements, the influence of misalignment
is reduced, and it no longer affects the stiffness value
determined from the unloading response. The final mod-
ulus value for each test is calculated by averaging the
modulus values of the cycles from three to six. A similar
approach has been applied by Greer et al.'* The stiffness
response of a pillar was monitored during loading with
respect to the displacement of the pillar top. Initially, the
stiffness was less than its theoretical value and increased in
a nonlinear manner due to misalignment. As the displace-
ment increased further, the misalignment adjusted and the
stiffness showed a linear increase expected for plastic
deformation. As shown in Fig. 3, there is no change in the
pillar heights following microcompression tests confirm-
ing purely elastic deformation.

Young’s moduli from the experimental microcompres-
sion tests are plotted together with the simulation results in
Fig. 9. For both orientations, the open stars correspond
to the experimentally determined apparent modulus,
and the full star symbols denote the modulus corrected by
the suggested method. In addition, the circles represent
the apparent modulus from the simulations, whereas the
solid lines denote the theoretical Young’s modulus. As
summarized in Table I, for Si with [100] orientation, the
apparent Young’s modulus is 79.4 GPa and 100.8 GPa
for the average aspect ratios of 1.19 and 2.39, respectively.
For the [111] direction, the experiment yields 97.9 GPa and
145.1 GPa for the average aspect ratios of 1.07 and 2.36,
respectively. Although the apparent modulus of experimen-
tal values are smaller than that of simulations, the experi-
mental values are in reasonably good agreement with the
simulation results underestimating Young’s modulus and
increasing with increasing aspect ratio as shown in Fig. 9.
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Unloading cycles

FIG. 8. Apparent modulus as obtained from the multiple load—
displacement curves of a representative pillar sample in Fig. 7.
The unloading portions of the different loading cycles were analyzed.
The stiffness was determined from a linear fit to the first 20% of the
unloading curve.
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FIG. 9. Experimental results of Young’s modulus of Si determined by microcompression tests of (a) [100] pillars and (b) [111] pillars. For correction,

the procedure outlined in Fig. 6 was applied.

TABLE 1. Experimental measurement of Young’s modulus of single crystalline Si by microcompression test. The average value together with one

standard deviation is given.

Orientation E 100 E 111
Ly/d: Average aspect ratio 1.19 = 0.18 2.39 £ 0.16 1.07 = 0.02 2.36 £ 0.02
E,: Apparent Young’s modulus (GPa) 794 =34 100.8 = 2.8 979 =24 145 £ 6.5
E: Adjusted Young’s modulus (GPa) 106.5 = 3.7 1232 =29 1425 =39 1924 = 11.7
Ey,: Theoretical Young’s modulus 130.38 188.66

Following the procedure outlined in Fig. 6, we performed
nanoindentation on both Si (100) and Si (111) wafers to
obtain the indentation moduli Moy = 173.1 = 2 GPa and
M, = 187.4 = 3 GPa, which were used as input in Eq. (6).
The values of experimentally obtained indentation moduli
are higher than the theoretically calculated ones by approx-
imately 8%. This may be caused by the geometry difference
between a Berkovich indenter and a flat punch indenter in
the nonideal experimental situation, which will certainly
change the stress field. Additionally, Si undergoes phase
transformation during indentation, which affects the modu-
lus measurement as well.>* 22 In general, caution needs to be
exercised while determining elastic moduli from nano-
indentation experiments. The Oliver—Pharr analysis, which
is typically used to determine hardness and modulus, is
based on an elastic analysis and may not predict the contact
areas correctly for materials in which pileup occurs.”> The
indents themselves need to be inspected to ensure an adequate
identification of the contact areas and thus the modulus,
which may be overestimated by as much as 20-30% in
materials with limited work hardening.

The apparent elastic modulus determined from the
microcompression of Si pillars was then corrected using
Sneddon’s correction with the indentation modulus
Eq. (6). The modification of Eq. (6) is necessary to apply
to the tapered pillars since the bottom diameter in Eq. (5)

27 HBNUTNE  IOURNALS
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is not the same as the half-height effective diameter. The
bottom diameter can be written as dpoom = B * der, Where
B=1+(Lo/dey)+*tan®. Here, deg is the half-height
effective diameter and O a taper angle. The average
B values for the tested pillars are 1.17. The corrected
modulus results are summarized in Table I as well. For Si
with [100] orientation, Young’s modulus was determined
as 106.5 and 123.2 GPa for the average aspect ratios of
1.19 and 2.39, respectively. These values show the de-
viation from the theoretical values of —18.1% and —5.3%.
For the [111] direction, the experiments yield 142.5.2 and
192.4 GPa for the average aspect ratios of 1.07 and 2.36,
respectively. Here, the deviation from the theoretical value
is —24.5% and 2.0%. From these results, it is confirmed
that the aspect ratio of the pillars should be greater than 2.
Interestingly, the experimentally corrected modulus for
aspect ratio of 1 is quite small, smaller than those of
simulations. This is probably related to the quite inhomo-
geneous stress and strain state at the bottom of the pillar for
smaller aspect ratio caused by the boundary conditions.
This cannot be fully accounted for by our approach. For
the case of plastic deformation, an aspect ratio of at least
3:1 has been recommended due to the top and bottom
constraints affecting the deformation in the bottom and top
thirds of the pillars.*'* For elastic deformation and aspect
ratios greater than 2.4, however, the correction method
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suggested in this paper works well to determine the
anisotropic Young’s modulus of single crystalline silicon
without having prior knowledge of the elastic constants.

V. SUMMARY

It was shown that microcompression can be applied to
determine Young’s modulus for elastically anisotropic
materials, as exemplified for two different orientations of
single crystalline Si. While there is a clear difference in the
apparent Young’s moduli for the different orientations,
a significant underestimation of Young’s modulus was
observed resulting from the substrate deformation as ob-
served in both FE simulation and experiment. This effect
decreases with increasing values of aspect ratio. The apparent
modulus values from the simulation are in good agreement
with those from the experiments. We suggested the exper-
imental procedure to measure Young’s modulus of aniso-
tropic materials from microcompression test. The procedure
based on the Sneddon correction with indentation modulus
requires no prior knowledge of elastic properties to correct
for the effect of substrate compliance. Young’s moduli of
single crystalline silicon in the [100] and [111] directions
were determined within —5.3% and 2.0% deviation from the
literature values, respectively, for the aspect ratio of 2.4.
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