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Abstract Optimization of composition and microstructure
is important to enhance performance of solid oxide fuel cells
(SOFC) and lithium-ion batteries (LIB). For this, the porous
electrode structures of both SOFC and LIB are modeled as
a binary mixture of electronic and ionic conducting particles
to estimate effective transport properties. Particle packings
of 10000 spherical, binary sized and randomly positioned
particles are created numerically and densified considering
the different manufacturing processes in SOFC and LIB: the
sintering of SOFC electrodes is approximated geometrically,
whereas the calendering process and volume change due to
intercalation in LIB are modeled physically by a discrete el-
ement approach. A combination of a tracking algorithm and
a resistor network approach is developed to predict the con-
nectivity and effective conductivity for the various densified
structures. For SOFC, a systematic study of the influence of
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morphology on connectivity and conductivity is performed
on a large number of assemblies with different compositions
and particle size ratios between 1 and 10. In comparison to
percolation theory, an enlarged percolation area is found, es-
pecially for large size ratios. It is shown that in contrast to
former studies the percolation threshold correlates to varying
coordination numbers. The effective conductivity shows not
only an increase with volume fraction as expected but also
with size ratio. For LIB, a general increase of conductivity
during the intercalation process was observed in correlation
with increasing contact forces. The positive influence of cal-
endering on the percolation threshold and the effective con-
ductivity of carbon black is shown. The anisotropy caused by
the calendering process does not influence the carbon black
phase.

Keywords Granular electrode structures - Effective conduc-
tivity - Percolation

Nomenclature
Co initial Li* concentration
Cy momentary Li* concentration

Cimax maximum Li* concentration
D diffusivity

fa normal force

fi tangential force

1 flux respectively current

K conductivity matrix

kouiey  conductivity of bulk material

Kefi1 effective conductivity of granular structure
L box length

n; normal unit vector

P, percolation probability

PF packing factor

R resistance between 2 particles

Rnax  resistance of a cylinder with r, and 6
7o initial particle radius

Te contact radius

Ty momentary particle radius
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T temperature

t time

t;  tangential unit vector

u displacement

4 voltage

x;  position of particle i

Zy  overall coordination number

Z;;  number of contacts of a [-particle to other /-particles

Greek symbols
o0  distance between two particles
€  porosity
&  strain
v Poisson’s ratio
o stress
¢,  volume fraction

¢  potential
©Q  partial molar volume

Subscripts

AM  active material
bulk  bulk property

CB carbon black

eff effective property

i particle label

l species

max maximum

SP small particles
X momentary state
0 initial state

1 Introduction

Solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB)
are attractive solutions for clean energy conversion and stor-
age. In order to make them competitive to conventional solu-
tions, efficiency and durability need to be improved further.

Composition and microstructure of electrodes in chem-
ical power sources in general play a critical role for high
electrode performance of the cells, as shown e.g. in Ref.[1]
for LIB or in Refs. [2, 3] for SOFC. The electrodes in con-
sideration are a mixture of ion conducting and electron con-
ducting particles forming a porous composition to sustain
the transport of electrons, ions and further reactants to and
from the active sites, where the energy releasing reaction
takes place. Since the electrochemical processes within the
cells are strongly coupled, a change in one morphological
parameter, e.g. particle size ratio or volume fraction, influ-
ences all transport properties and, as a consequence the over-
all cell performance. Hence, for optimization it is crucial
not only to understand how effective transport properties im-
prove cell performance but also which morphology provides
the required characteristics. In this work we focus on the
second part and present an approach to determine the influ-
ence of morphological parameters on the individual effective
transport properties.

We consider the granular, porous electrode structure
as a binary mixture of spherical particles. In SOFC an-

odes yttria-stabilized zirconia (YSZ) and nickel (Ni) are
the most common materials; LIB electrodes contain carbon
black (CB) to enhance electric conductivity and active mate-
rial (AM). Due to the similarities in the electrode structures
described, the same modeling approaches are applied here to
investigate microstructural influences on the effective con-
ductivity.

SOFC cells are nowadays mostly manufactured from
monomodal powders. As suggested in Ref.[3], larger size
ratios and volume fractions adjusted for the size ratio can
lead to an improvement in cell power if at the same time
connectivity of both phases is sustained. To find an opti-
mized cell design it is important to understand the influence
of variation in microstructure on percolation probability and
the overall transport properties.

Li,Mn;04 or Li,FePO, are promising electrode mate-
rials for LIB in terms of costs, high theoretical capacity and
stability; however, low electric conductivity limits the field
of application. To overcome this, CB is added to enhance the
conductivity [1]. Connectivity to the current collector and
active material is required to affect the effective electron con-
ductivity and must be maintained during loading and unload-
ing of the cell. As the intercalation processes of Li* in the
active material lead to volume changes and therefore internal
stresses, rearrangements in the granular electrode structure
are possible. This can lead to changes in connectivity and
conductivity. To our knowledge this has not been considered
in most approaches for modeling the effective conductivity
in LIB.

For the determination of effective conductivity keg in
porous composite materials exist numerous models. The
most simple methods are based on the solid volume fraction
¢; of the phase [ and porosity € only, such as the Bruggeman
approach, which can be reduced to kef; = kpuis[(1 — €)]'
if only the phase [ is conducting; or Maxwell theory, which
is valid for low amount of inclusions only [4]. These theo-
ries are mostly developed for specific applications and may
not be applicable for any arbitrary microstructure. And as
the probability of finding percolating paths through the mi-
crostructure is not considered in the Bruggeman equation or
similar approaches [5], they are not applicable to investigate
connectivity. Connectivity however, is required in SOFC for
both phases and in LIB for the CB phase.

Therefore, as an additional feature the Bruggeman
equation is enhanced by a term for the percolation probabil-
ity. This describes the probability of a connecting pathway
of one phase [ through a binary mixture. It is estimated based
on a critical volume fraction where the transition from non-
percolating to percolating takes place. Bouvard [6] found
the percolation threshold to correlate to a specific coordina-
tion number Z;; of 2 for arbitrary binary powder mixtures
even though the critical volume fraction varies for different
size ratios. Here, the coordination number Z;; describes the
number of contacts a particle of species [ has to particles
of the same species. It is determined analytically from the
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the size ratios and volume fractions of an arbitrary binary
mixture as shown in Ref. [2] considering an overall coordi-
nation number Z, of 6. Thus, the effective conductivity of
the species [ can be estimated with an adjusted Bruggeman
equation under consideration of the percolation probability
P; of the phase /

ket = kpuia[(1 =€) P>, (D

Based on percolation theory, investigations of the influence
of particle size and volume fraction on conductivity and
in general cell performance have been performed|[2,3, 7],
showing a clear dependency of percolation and conductivity
on size ratio and volume fraction. But as the basic correla-
tions where found for undensified, binary powders with size
ratios below 3, this theory may not hold true for larger size
ratios or densified structures. Porosity, coordination number
or percolation threshold used in percolation theory may dif-
fer from the values in the densified electrode structures and
therefore should be reexamined carefully. Furthermore, it is
not known if the correlations can be applied for changes in
microstructure caused by mechanical loading as happens in
LIB.

To overcome the shortcomings of the volume averag-
ing theories, cell performance was directly calculated on dis-
cretized microstructures, which are either determined by fo-
cus ion beam-scanning electron microscope (FIB-SEM) to-
mography [8] or numerically generated [9]. FIB-SEM to-
mography is the most accurate approach to describe the mi-
crostructure, however it is only applicable for yet existing
microstructures and moreover very costly. Therefore it does
not allow for a systematic investigation of the influence of
morphological parameters on the effective transport prop-
erties. Besides, it provides only a snapshot of the elec-
trode structure and consequently the approach is incapable
of tracking microstructural changes.

Although numerically generated microstructures are
only an approximation of reality, they enable the system-
atic investigation of certain parameters such as size ratio,
volume fraction etc. separately. A number of researchers
have simulated either cubic lattices with randomly assigned
species to each site (e.g.[10]) or randomly distributed par-
ticles (e.g.[9]). Different approaches have been used to de-
termine the effective conductivity of these structures. The
most straightforward way is to discretize the structure and
solve the differential transport equations on the mesh with
commercial FE solutions [11]. In comparison to other ap-
proaches this is quite expensive in terms of computational
power required. Another method working on discretized
structures is the lattice Monte—Carlo (LMC) approach, which
determines diffusivity from the mean displacement of a large
number of random walkers [12]. Hence, it is intrinsically a
computationally demanding method as well. A third method
is to convert the particulate structure directly into a resistor
network and solve Kirchhoff’s law. Most such approaches
aim for solving the electrochemical processes directly on the

@ Springer

microstructure. However, in Ref. [13] it has been discussed
that some of the ongoing electrochemical processes such as
gas-phase diffusion in SOFC are best treated on a contin-
uum basis instead of a network method. We propose to em-
ploy the resistor network method focused on the calculation
of the effective conductivities alone. This is done for each
phase in numerical generated microstructures to obtain more
valid input data for a more precise phenomenological con-
tinuum cell model. In this way, we also gain knowledge of
the influence of microstructural changes, either due to vary-
ing compositions or rearrangements during loading, to the
transport properties of a single phase of the system.

The objective of this work is to develop a tool which
allows for calculation of the effective conductivities of each
phase in binary, granular mixtures. This will be used to in-
vestigate the influence of changes in microstructure on ef-
fective conductivity. As a systematic study of a multitude
of microstructures will be performed, a fast and flexible
method is required. Therefore, we choose the resistor net-
work approach. With the results gained here, future calcu-
lations with, for example, Dual-Foil model in LIB [14] and
porous electrode theory in SOFC [2, 3] can be more accurate
in terms of morphology and allow for more reliable state-
ments regarding microstructural optimization.

The paper is organized as follows: Sect. 2 the numerical
generation of microstructures is explained, then the meth-
ods for calculating effective conductivity are introduced in
Sect. 3. For validation some exemplary calculations are con-
ducted and results are compared with averaging methods and
the well established lattice Monte—Carlo method in Sect. 4.
Concluding, results for various electrode compositions in
SOFC as well as for microstructural rearrangements during
intercalation processes in LIB will be shown and discussed.

2 Porous electrode structures

For the generation of random close packed microstructures
exist several algorithms, which can be divided in algorithms
using sequential addition of particles [15] and algorithms
starting from a random distribution of points [15-18]. In
contrast to the later, the first group of methods leads to rather
low densities and, in addition, do not allow for periodic
boundary conditions in all three directions. As only periodic
boundaries allow for modeling bulk material, the later meth-
ods are more suitable for this work. Among the later, the one
suggested by Jodrey and Tory [15] allows for controlling the
packing factor (PF’) by a single parameter and has therefore
been adjusted by Gan [19] for binary sized packings. This
adjusted algorithm is used in our work. Additionally to PF,
this method allows to define number of particles N, particle
size ratio, solid volume fractions ¢; in advance. The pack-
ing factor is controlled by a single parameter as described
in Ref. [15]. First, the center coordinates of the N spherical
particles are distributed randomly in into a box of a given
size L, X L, X L, (often a cube with L, = L, = L;). The
particles are associated with two radii: an outer radius Fou
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which is initially set to yield a nominal packing factor of
100% and an inner radius 7, defined by the worst overlap
of the assembly. For monosized assemblies all particle radii
correspond directly to the calculated values, whereas for bi-
nary packings the individual particle radii are scaled by a
factor f(I) in dependence of the size ratio. This results for
a particle 1 in rl, = f(DFoy and r{ = f(DFy. To gener-
ate a microstructure from this initial configuration two steps
are carried out iteratively. First, the worst overlap is reduced
by moving the two particles apart. This leads mostly to a
smaller overlap and therefore a larger inner radius. As a sec-
ond step the outer radii are reduced depending on the pre-
scribed contraction rate. The iteration process stops, when
the difference between outer and inner radius is smaller than
the tolerance. With the implementation of periodic bound-
ary conditions (PBCs), the assemblies represent bulk regions
inside the electrodes. An exemplary microstructure with a
particle size ratio of 10 and a solid volume fraction of 15%
of small particles is shown in Fig. 1. This procedure leads to
microstructures which in an ideal case just contain one con-
tact. Therefore, the structures need to be densified further to
generate a more realistic electrode structure.

Fig. 1 Numerically generated periodic porous electrode structure
with a particle size ratio of 10 and solid volume fraction of 15% of
small particles. All particles of one phase have the same size

For SOFC electrode structures, the randomly generated
microstructure is further densified by a procedure of numer-
ical sintering. Schneider et al. [9] use a diffusion based dis-
crete element model to determine the electrode structure.
As there are many unknown quantities in sintering and re-
duction during cell processing, the numerically generated
structure is densified purely geometrically by increasing the
radii to a certain amount while the particle centers are kept
fixed. According to Ref.[20] an electrode porosity PFey,
of around 74% is measured for monosized powders, whereas
the numerically generated structures with monosized spheres
have a packing factor PFyy, of 64%. The amount of den-
sifiction is determined from the ratio of these values as
PFex,/PFyum = 1.16. As described, SOFC electrodes are
considered in this work as a mixture of ionic and electronic

conducting phases. The most common materials for the an-
ode are YSZ as ion conducting phase and Ni as electron con-
ducting phase. Therefore in the further course of this work
the ion conducting particles of SOFC are referred to as YSZ
and the electron conducting phase as Ni, even so the results
are applicable for other choice of materials. For the system-
atic investigation of SOFC electrode structures a multitude
of assemblies is generated with size ratios YSZ to Ni from
1 to 10 and solid volume fractions Ni between 0 and 1. For
each composition 10 assemblies are made for statistical pur-
pose. All microstructures are densified by the same amount.
This leads to packing factors between 74% for monosized
and 86% solid fraction for large size ratios.

In LIB the effective conductivity is not only influenced
by composition but also by mechanical effects due to the
volume change of active material (AM) during Li* interca-
lation. For example in Li,Mn,0,4 the volume increases up
to 6% [21], in silicon electrodes a volume increase of up to
300% was observed [22]. Carbon black has usually a size of
about 40nm. As for high rate applications the particle size
of active material is proposed to be in the range of several
100 nm [1], we choose a radius ratio of 10 for AM to CB. For
the determination of the percolation threshold of CB we look
at different compositions in the range of 10% to 15% solid
volume fraction of CB (Volume fraccg). Experiments show
that initial porosities of 30% to 40% solid volume fraction
lead to good cell performance [23]. Therefore, the structures
are generated with either low (L) or high (H) packing factor
of 67.3% or 69.4% solid volume fraction, respectively. For
purposes of statistical evaluation, we generated three assem-
blies per data point. The average values are listed in Table 1.

Table 1 Composition of the samples

No Volume fraccg/%  PFyy low (L)/%  PFiy,; high (H)/%

10 67.33 + 0.08 69.43 + 0.05
2 12.5 67.29 + 0.07 69.43 + 0.08
15 67.31 £ 0.09 69.47 + 0.08

To investigate the impact of microstructural changes
due to intercalation on effective conductivity, discrete ele-
ment modeling (DEM) is used to densify the microstructure.
In DEM each particle is treated as a discrete object, interact-
ing mechanically with its neighbors through its contacts. As
the particles are assumed to be elastic, a Hertz—Mindlin type
contact law is applied to calculate the contact forces acting
on each particle. Newton’s law is applied to calculate accel-
eration, velocity and new position of the particles iteratively
until mechanical equilibrium is reached. Details about the
DEM simulations can be found in Ref. [24] . The material
parameters used in the DEM calculations are given in Ta-
ble 2.

The intercalation process is modeled by gradually in-
creasing the radius r, of the AM linearly with the Li* con-
centration. This is calculated in analogy to thermal expan-
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sion as

Iy — T Q
L = (cx—cp) @
o 3

with ry as initial particle radius, (¢, — ¢o) as change in Li*
concentration and £ as partial molar volume, which was cal-
culated in accordance to Zhang et al. [25]. The 6% volume
increase of Li,Mn,0y is equivalent to a radius increase of
2%.

Table 2 Material parameters for the DEM simulation

Parameter Value
Young’s modulus Exp/GPa 25 [26]
Young’s modulus Ec/GPa 6 [26]
Poission’s ratio v 0.3 [25]
Volume increase 6% [21]
Partial molar volume ©/(mol-m~3) 2.62x107°

Maximum

2.29x 10* [2
Li* concentration cgy/(mol-m™) 9x107[23]

Uni-axial strain &,, 0.02

Additionally, the assemblies with high packing factor
are also densified with a combined process of calendering
and intercalation to investigate the influence of calendering
on the effective conductivity of the electrode structure. In
this work the calendering of the assemblies is modeled as
uni-axial compression. A strain g;; of 2% in total is applied
gradually by moving each particle i at the beginning of each
loading step by

Axj = Agijx; 3)

with x; as the position of the particle center. Then, the com-
pressed microstructure is further densified by the previously
described intercalation process.

3 Modeling effective conductivity in granular materials

Several steps have to be performed to determine the effective
conductivity of the generated microstructures.

3.1 Percolation probability

Within a binary mixture of two components with bulk con-
ductivities differing by several orders of magnitude, the ef-
fective conductivity is closely related to percolation: if the
amount of one component is too low to constitute a connect-
ing cluster through a certain volume, this component does
not contribute to the assembly’s conductivity. Percolation
probability describes the likelihood that particles form such
a connecting cluster through the electrode. Isotropic perco-
lation means that all boundaries are connected by one clus-
ter. Directional percolation is given if there is a connect-
ing cluster from one side of the box to the opposite side in
each direction (x,y, z) separately. For investigation of pos-
sible anisotropic characteristics, we look for percolation in
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each direction separately.

To determine the connectivity the Hoshen—Kopelman
algorithm (HK) introduced by Refs. [27, 28] has been imple-
mented in C++ and extended to account for PBC. The al-
gorithm was originally developed for lattice structures [29].
Its single and sequential pass through the lattice (Fig.2) lin-
earizes the time and memory space requirement as a function
of the lattice size: it passes through the structure only once
and assigns each occupied site (blue in Fig.2) to a cluster.
If two yet existing clusters are found to be connected, this
information is stored separately in a vector of much smaller
size and the clusters are relabeled after the run through the
lattice is completed.

Fig. 2 a Lattice with randomly assigned occupation (dark) to each
site; b Cluster found with Hoshen—Kopelman algorithm consider-
ing the sites as connected if they share an edge

For illustration purpose only, the extension of the lattice
through periodic boundaries is explained in the following on
a lattice structure even though it was only implemented for
non-lattice structures. The periodic boundary conditions can
lead to additional connectivity as shown in Fig.3 for clus-
ter 1. First, periodic boundaries are generated by copying
the already labeled original lattice structure in all directions
(Fig.3a). This leads to a state where lattice sites belong-
ing originally to cluster 1 are in direct contact with cluster
5 or 6 and vice versa. Clearly these particles also belong
to the clusters they are directly connected to. This leads to
a combined cluster 1 containing the former cluster 5 and 6
(Fig.3b). Cluster 1 now connects the opposite edges hori-
zontally. Based on this, we define unidirectional percolation
as a state in which a cluster contains original sites on one
side of the lattice and the periodic copies of these sites on
the opposite side of the lattice as shown in Fig.3c. This is
done for all three directions separately. For adapting this
to a non-lattice approach the binary mixtures are separated
into the two phases. They are transformed in random graphs
containing information on particle location (nodes) and con-
tact information (links). The nodes are randomly numbered
consecutively and the algorithm runs through this array of
numbers sequentially, assigning each node to a certain clus-
ter. After each particle within the assembly and within the
periodic boundaries is assigned to a certain cluster, the clus-
ters connected through PBCs are merged, as explained previ-
ously. The percolation probability is calculated from the ra-
tio of percolated particles of one species to the overall num-
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ber of this species within the assembly [6].
When a phase of a structure is found to be percolating,
conductivity can be calculated considering just those parti-

cles belonging to the percolated clusters. To transform this
cluster into an electrical network, the resistance between two
contacting particles has to be calculated.

i [l

Fig. 3 Connectivity through periodic boundary conditions. a Implementation of the periodic boundary conditions (PBC); b Connectivity
through the boundaries for cluster 1; ¢ Definition of percolation criterion for PBC

3.2 Resistance

A numerical approach similar to Argento and Bouvard [30]
was choosen to calculate the one-dimensional resistance of
a linear, uniform row of monosized contacting particles of
the same material. The ohmic resistance between two con-
tacting spheres can be determined in analogy to its thermal
resistance, which is defined as

T, -T,

R= — 4

with 7| and T, as temperatures at the extremities of the vol-
ume and [ the resulting flux. The steady state calculations of
the thermal resistance were performed with Ansys CFX.

Because of periodicity the FE-calculations need only to
be performed for two half-spheres. Different geometries are
created by increasing the particle radii while the distance §
between the two particle centers is kept constant. The con-
tact radius can be obtained considering the respective den-
sification approach. As the densification process in SOFC
materials is geometric sintering, the contact radius r5°FC is
calculated geometrically from the overlapping spheres. This
leads to

2

rSOFC = 2 - %, (5)
where r, is the momentary particle radius (Fig. 4).

\/

Fig. 4 Sketch of two overlapping particles with . as contact radius
and r, as particle radius

In LIB the densification process is due to mechanical
loading which is calculated in DEM assuming purely elastic
behavior described by Hertz theory as described in Sect. 2.
According to that, the deformation of two spheres pressed
together lead to a contact radius r-'8 of

A= Jrfr-3) ©)

Calculating the flux for different particle sizes shows that the
resistance R normalized to the resistance of a cylinder Ry of
radius r, and length ¢ increases linearly with respect to r,/r.
as shown in Fig. 5 for the geometrical contact considered in
SOFC and for the Hertzian contact of LIB.

5
e Data SOFC
41 _ Fitsorc
. 4 Data LIB
31—~ FitLIB
=
2
1
0 -
0 1 2 3 4 5

Reardre

Fig. 5 Fit function determined for different contact situations in
SOFC and LIB

The following fit can be used to calculate the resistance
between two particles in the SOFC microstructures

R=09522R,,. (7)
re

The fit function found for Hertz contact as considered in LIB
is slightly different due to the different contact situation

R =0.133 + 0.8872Ryy;. (8)
re
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With these equations the resistance of all contacting parti-
cles in the microstructures can be determined in dependency
of particle size, contact radius and distance between particle
centers. Thereby the microstructure can be transformed to
an equivalent circuit.

A contact resistance either due to surface roughness or
a film resistance can easily be considered by adding up an
additional term in series to the resistance. However, for the
methodical study performed here the contact between two
particles is chosen to be ideal.

3.3 Network and node potential method

For this equivalent circuit a system of linear equations is set
up using Kirchhoft’s current law and Ohm’s law considering
the particles centers as nodes [31]. Thus, for node i we get

I = Zli,j = Z V]k:j‘/i» )
J

J

where [; is the sum of currents between particle i and it is
contacting particles j, V; and V; are the voltages at site i and
J» respectively and R;; is the resistance between nodes i and
J (Fig. 6). The sum of currents is zero for all internal nodes.

Py
Py

Py

Fig. 6 Example of equivalent circuit of a particle P, with coordi-
nation number 3

We use the node potential method to transform the lin-
ear equation system in the matrix form KV = I where K
is a symmetric matrix containing the conductivities between
percolated particles in contact, vector V the unknown parti-
cle potentials and the vector I the sum of currents for each
particle or respectively the source terms. The matrix K is
saved in sparse form to reduce memory space.

To solve the system, potentials ¢; and ¢, are imposed
on the opposing sides in the considered direction as bound-
ary conditions. Thus, K and I are known, which allows V
to be calculated. This is done with an iterative stabilized bi-
conjugated gradient method (BICGSTAB) of EIGEN [32].
The potential distribution for one phase of an exemplary mi-
crostructure is shown in Fig. 7. The currents within the net-
work can be found from back substituting particle potentials
and solving Ohm’s law for each contact. The total current /
entering or leaving the network is then calculated by adding
all currents of the boundaries.

@ Springer

Fig. 7 Potential distribution of one phase with an applied potential
difference in x-direction, particles colored according to their poten-
tial

Finally, the effective conductivity k.g; of a microstruc-
ture can be calculated normalized to its bulk conductivity
Kbulk, as

key 1 L,
kouki @1 —¢@2 Ly X L.’

(10)

where L, X L, is the area of a cross-section of the box and L,
the box length in the considered direction. In the following
figures the conductivity is always given as the ratio of the ef-
fective conductivity keg,; of a phase [ to the bulk conductivity
kpuik; of that phase [.

4 Results and discussion

As described in Ref. [30], the notion of touching particles is
no longer valid at densities approaching a packing factor of
100% due to interaction of the multiple contacts. Such struc-
ture rather should be modeled as a dense matrix with dis-
tributed pores. The resistor network approach (RN) therefore
overestimates the effective conductivity. It is assumed that
for densities below 90% the contacts do not yet interact with
each other [30]. To verify this, the effective conductivity of
a monosized, single-phased cubic assembly is calculated for
different packing factors. Therefore a structure of 5 x5 X5
particles is densified by the sintering process as described in
Sect. 2. The effective conductivity of the assembly normal-
ized to the bulk conductivity is shown in Fig. 8.

Carson et al. [33] show that porous materials can be
divided in granular and continuous materials by comparing
their effective conductivity to the effective conductivity de-
termined with effective media theory (EMT). EMT consid-
ers the two components to be distributed randomly in such a
way that neither phase being necessarily continuous or dis-
persed. Therefore, the region bounded above by EMT in-
dicates a system with continuous pore space, whereas the
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region bounded below by EMT indicates a system of a con-
tinuous matrix with pore inclusions. In EMT, the calcula-
tion of the effective properties is based on the solution of the
boundary value problem of a single spherical inclusion in a
matrix. The surrounding matrix is of effective conductivity
keg, which has to be determined in such a way that the per-
turbation of the inclusion vanishes on average for each com-
ponent. For a pore space conductivity of zero the implicit
relation of EMT can be simplified to
ke

T~ 0.53¢ - 1). (11)
Kouik

It is shown in Fig. 8 that for densities of 85% the re-
sults found with RN exceed the values determined by EMT.
This indicates that already for this amount of densification

the notion of touching particles is no longer valid.

1.0
0.8
0.6

keﬂ"{khulk

0.4
027

0.5 0.6 0.7 0.8 0.9 1.0
Solid volume fraction
Fig. 8 Comparison of effective conductivity from different ap-
proaches, RN: resistor network Eq. (10), LMC: lattice Monte-Carlo
Eq. (13), EMT: effective medium theory Eq. (11)

For validation of the approach, the results are compared
to values determined with a LMC approach. LMC is a well
established approach for the determination of heat transport
problems on a discretizised structure of a random assem-
bly[12]. Due to the discretization of the structure the ap-
proach is valid for all states of densification. With the help of
random walk simulations the effective diffusivity of a porous
medium can be determined: for a large number of tracer par-
ticles performing random walk movements in the relevant
phase [, the mean square displacement is monitored over
time. The Einstein equation describes the self-diffusivity D
of randomly walking particles in relation to the mean square
displacement (u?) of the particles by

()
6r °
where ¢ is the average travel time. Based on the effective

diffusivity, the effective conductivity can be determined ac-
cording to Tobochnik et al. [34] for a phase [ as

Degi) = (12)

Degry
kefrs = [¢u(1 = €)P], (13)
Dokt
where € is the porosity of the assembly and P, the percolation
probability.

The comparison of the results (Fig. 8) lead to the same
conclusion: below densities of 85% the difference of the re-

sults between LMC and RN is marginal, rendering the RN
approach suitable. For densities exceeding 85%, RN overes-
timates conductivity with respect to LMC. This leads to the
assumption that RN is a feasible approach for relative densi-
ties below 85%. As both LIB and SOFC require connected
pore space to sustain electrolyte or gas transport, it is justi-
fied to investigate their structures by RN as they will have
relative densities below 85%.

4.1 Applications in SOFC

As described in Sect. 2, SOFC electrodes are considered in

this work as a mixture of ionic (YSZ) and electronic (Ni)

conducting phases. In the results shown here, Ni is always
assumed to be the small particle, even though this could be
reversed.

The average percolation probability obtained with the
Hoshen—Kopelman algorithm is shown in Fig. 9a for several
volume fractions and size ratios from 1 to 10. Exchanging
YSZ and Ni in the results would lead to a size ratio from 1
to 0.1. Depending on average particle size, either the first
or the second range is more relevant to improve cell perfor-
mance [3]. However, for a methodological comparison, as
done in this work, it is sufficient to focus on one range.

For comparison the percolation probability calculated
with percolation theory in accordance to Ref. [6] is shown in
Fig.9b. Our method described in Sect. 3.1 leads to a larger
range in which both Ni and YSZ phase are percolated than
the percolation theory. Especially for large size ratios the
deviation is significant. There are three possible reasons for
this:

(1) The correlation between percolation probability and co-
ordination number Z;; was derived by investigating mi-
crostructures which were numerically generated in a way
that ensures the average coordination number Zj to be
6 [6]. Therein Z; is the average overall number of con-
tacts of a particle. In Fig. 10 the coordination numbers
of all densified microstructures considered in this work
are shown. The average coordination number is equal
to 6 only for a small range of compositions, for most
structures it is found to exceed 7. A variation in aver-
age coordination number for different volume fractions
in binary mixtures was already reported by Bertei and
Nicolella [35]. In contrast to our results the coordination
numbers found in their work are below 6 as they consider
undensified structures.

(2) The percolation threshold is assumed to correlate to a
certain coordination number Z;;, which was first esti-
mated to be 2 [6] for size ratios below 3. Kuo and
Gupta[36] found a coordination number of 1.764 to be in
better agreement with numerical simulations for a range
of size ratios from 0.154 to 6.464. To examine this,
the percolation probabilities found with the Hoshen—
Kopelman algorithm are plotted versus the coordination
number Zy; n; and Zysz ysz in Fig. 11 for several size ra-
tios. The percolation threshold takes place for coordina-
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Fig.9 Percolation probability [36] calculated with a Hoshen—Kopelman algorithm as described in Sect. 3.1 and b percolation theory for
size ratios from 1 to 10 and solid volume fractions of Ni from O to 1 in accordance to Bouvard [6]

10

]
|

=
=

(3%
=2

0 0.2 0.4 0.6 0.8

Volume fraction Ni

Fig.10 Average coordination numbers of the densified assemblies.
The packing algorithm used in this work does not guarantee that all
particles are in contact with other particles. Those without contact
are not considered in the calculation of coordination numbers

tion numbers Zy; ni between 2 and 3 for the small Ni par-
ticles, whereby the critical coordination number clearly
increases with increasing particle size ratio. The critical
coordination number Zysz ysz scatters diffusely around 2
for the large YSZ particles. The scattering for the large
particles might be due to the fact, that the assemblies con-
tain too little large particles for high size ratios. The clear
distribution of percolation threshold for small particles
indicates that it is not feasible to correlate the percola-
tion threshold to a single value of coordination number
Z;; as it is done so far. Rather it might depend on fur-
ther parameters such as size ratio, method for generation
of the microstructure or densification. As the number of
small particles within the investigated representative vol-
ume increases with increasing size ratio, there might be a
dependence on the number of particles in the investigated
representative volume size.

(3) The generated assemblies contain 10000 particles,
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which leads to a rather low amount of large particles for
high size ratios, especially for high volume fractions of
Ni. For example at a radius ratio of 8 the assemblies
with the critical solid volume fraction 0.1 for percola-
tion of Ni contain 156 large particles, whereas at the crit-
ical volume fraction 0.55 for percolation of YSZ they
contain only 16 particles. In Fig. 12 the standard devi-
ation in percolation probability for all 10 assemblies of
the same composition is shown for all volume fractions
for radius ratio 1 (R1) and radius ratio 8 (R8). The perco-
lation threshold takes place at a critical volume fraction
below which no connectivity is found (percolation prob-
ability =0) and above which the percolation probability
quickly approaches 1. At the critical volume fraction it-
self it is very likely to find a large deviation within the
percolation probability. A single peak in the standard de-
viation of percolation probability, as found for the small
particles in R8 (Fig. 12a) indicates a high accuracy of the
determined percolation threshold. For the other cases in
the example the values scatter about a median, especially
for the large particles in R8 (Fig. 12b) the dispersion with
respect to the volume fraction is wide. Although this dis-
persion could be reduced with either more or larger as-
semblies, 10 assemblies off 10 000 particles were consid-
ered to be sufficient as a trade of between accuracy and
computational costs.

Based on the information on connectivity within the clus-
ters, the effective conductivity is calculated for all assem-
blies by our RN method. As an example, the conductivi-
ties of the two phases for structures with particle size ratio
YSZ to Ni of 5 are shown in Fig. 13. Here again ten assem-
blies of each composition are analyzed for statistical pur-
pose and the mean values of the conductivity of the large
and small particles (YSZ and Ni, respectively) are calcu-
lated. Let us first compare in Fig. 13 the mean conductivities
found with RN and LMC to estimate the systematic devia-
tion due to methodical differences. The predicted tendency
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of increasing conductivity with increasing volume fraction
is similar. The absolute error |k RN — kef.LMc| 1S less than
0.02 for the YSZ particles corresponding to a relative devi-
ation |keff!RN - keffyLMCVkeff!LMC of 5% to 9% and it is less
than 0.014 for the Ni particles equaling a relative error of
5% to 7%. The small deviation between the mean values
of the two approaches confirms that the results found with
the faster RN approach are in reasonable agreement with the
values from LMC. Thus, RN is suitable for the determina-
tion of the effective conductivities of separate phases in den-
sified structures. Next, these results are compared to values
obtained with EMT (Eq.(11)) and the adjusted Bruggeman
equation [6] (Eq. (1)). The effective conductivities of all vol-
ume fractions are bound above by EMT, indicating the loose
granularity of this phase. For the large YSZ particles the dif-
ference between RN and the percolation approach is quite
large. As mentioned before there is a deviation between
the percolation probabilities found with percolation theory
and with the Hoshen—Kopelman algorithm. As percolation
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£ 06| - e '
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probability is considered in the adjusted Bruggeman equa-
tion, this can explain the deviation partly. The overall co-
ordination number found in the generated microstructures is
unequal to the assumed value in percolation theory; the per-
colation threshold found with HK varies in contrast to the
constant value in percolation theory for larger size ratios and
the small amount of large particles combined with the peri-
odicity of the assembly reduces the randomness of the con-
sidered structures. This leads to a large deviation in the onset
of conductivity as the percolation threshold found with per-
colation theory according to [6] is 0.3 volume fraction and
around 0.6 with HK. Additionally to percolation probability,
in solutions found with the adjusted Bruggeman equation a
constant porosity of 0.4 is assumed whereas in the gener-
ated microstructures porosity varies between 0.15 and 0.25.
For the small Ni particles percolation theory predicts only
slightly larger values for the effective conductivity, whereby
the deviation is larger for smaller volume fractions of Ni.
EMT estimates a rather different behavior for the effective
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Fig. 11 Percolation probability versus coordination number a Zy; n; and b Zysz ysz for several size ratios from R1: rysz/mi = 1 to
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Fig. 12 Standard deviation in percolation probability versus volume fraction for a Ni and b YSZ for two size ratios R1: rysz/mi = 1
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conductivity compared to RN and LMC. As the percolation
threshold differs for the two phases of the system, the struc-
tures can not be considered as symmetric and therefore EMT
is not applicable to predict the percolation threshold cor-
rectly for both phases [4]. The large deviation between the
results of averaging approaches (EMT and Bruggeman) and
found based on existing structures (RN and LMC) shows the
importance of the later methods for the understanding of the
influence of microstructure on effective transport properties.

In Fig. 14 the standard deviations of the results are
given for the 10 assemblies of each composition. The devia-
tion within the LMC method is slightly shifted to the left for
better visibility. The deviation in the conductivities of the
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3

-

£ 0.01

E
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E

< -0.01
E
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-0.02
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Solid volume fraction Ni

same composition is due to the variation in microstructure
of the randomly generated distributions. The standard de-
viation for LMC is in most cases insignificantly larger than
the values of the RN approach. This difference might be
caused by the averaging over a certain number of time steps
in LMC and is assumed to vanish with increasing time. For
the large YSZ particles the standard deviation is below 2%
for all compositions and for the small Ni particles it is an or-
der of magnitude smaller. The difference between the stan-
dard deviations of YSZ and Ni is due to the fact the amount
of small particles is larger than the number of large particles
within the structure. As the standard deviation is reasonable
small for both species, the assembly size can be considered
to be sufficient.

-
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Fig. 14 Standard deviation within the effective conductivities calculated with resistor network approach (RN) and LMC approach for the

10 microstructures of each composition for a YSZ and b Ni
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Fig. 15 Effective conductivity of a Ni and b YSZ

Finally, the effective conductivities of the various as-
semblies for size ratios from 1 to 10 are shown in Fig. 15a
for the Ni phase (small particles) and in Fig. 15b for the YSZ
phase (large particles). In accordance with averaging meth-
ods, effective conductivity increases with the volume frac-
tion for both species. Furthermore, there is also a slight in-
crease with size ratio, which is not considered in averaging
methods in general.

The results shown here can be used to increase the ac-
curacy of studies on the optimization of microstructure with
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regards to cell power density such as Refs. [2, 3].
4.2 Applications in lithium ion batteries

As shown previously, the proposed method is suitable for the
determination of effective conductivity in densified, granular
materials. Therefore, it was also applied for the investigation
of the impact of microstructural changes on effective conduc-
tivity in LIB.

As mentioned before, carbon black (CB) is added
to enhance electronic conductivity of the electrode struc-
ture. Therefore it is important to understand how and in
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which amount it contributes to this, especially when the
active material (AM) under consideration is a bad elec-
tron conductor such as LiMn,O4 or Li,FePO, [1]. It
was shown by Dominko et al. [36] that with a decreasing
amount of CB there is an abrupt decrease in the electronic
conductivity directly correlated to cell capacity: without
percolation less and less active particles are supplied with
electrons and therefore cannot participate in the intercala-
tion/deintercalation process. On the other hand it is desir-
able to minimize the content of CB as much as possible with
regard to energy density [38]. In different studies the con-
tent of added CB, w(CB), varies from 5% to 30%. Tarascon
and Guyomard [39] found that the optimized amount of CB,
w(CB), should between 5% and 10%, corresponding to solid
volume fractions between 3.15% and 6.3% for an active par-
ticle size around 2 um and a corresponding size ratio of 50.
Hellweg [40] on the other hand found that the percolation
threshold for CB in Lithium Ion Batteries is between 10%
and 13% solid volume fraction for electrodes with a particle
size ratio of 2. Due to the lack of further data, we assume
that the percolation threshold for electrode structures with a
size ratio of 10 is between those values.

As described in Sect.2 different configurations have
been generated (Table 1) and further densified by DEM mod-
eling. The used material parameters for the DEM simula-
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o
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tions are given in Table 2. The average stress o;; developed
in the microstructure can be calculated by summing up all
existing contact pairs

1 1.J ol 1,0 ¢1,J
i TRIRE (Zé’ P+ 5, n,-tj). (14)
Y << 1<J

Here, nt’J and f,”are the normal and tangential forces ap-
plied from particle J on particle I, 6"/ denotes the distance
between the centers of the particles and the unit vectors n;
and ¢; are the normal and tangential unit vectors of the con-
tact, respectively [24].

First, the influence of initial PF' and composition is in-
vestigated for the intercalation process. As the system is
quasi-isotropic, only mean values are compared for the dif-
ferent microstructures. The mean hydrostatic stress devel-
oping as a consequence of the volume increase is shown in
Fig. 16 for the different compositions. As can be expected,
higher volume fractions of AM lead to higher stresses within
the samples both for low (Fig. 16a) and high (Fig. 16b) pack-
ing factors. The influence of the initial PF on the hydrostatic
stress developed during intercalation is quite low: for the
high PF the maximal stress is between 2.5 and 3 MPa higher
than the stress for the equivalent composition with low value
of PF.

b
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Fig. 16 Development of hydrostatic stress during intercalation process for a low initial packing factor 67.3% (L) and b high initial packing
factor 69.4 (H) for compositions with solid volume fractions of carbon black (CB) between 10% and 15%

The change in conductivities normalized by its bulk
conductivities during intercalation process is calculated for
the changing microstructures as shown for AM in Fig. 17 and
CB in Fig. 18 separately. Obviously, the ion transport mainly
takes place in the electrolyte. AM is always percolated as the
considered volume fractions are above the expected percola-
tion threshold. The increase in effective conductivity dur-
ing the intercalation process is due to the increasing con-
tact forces between the particles. The contact area increases
with the normal force f, in accordance to Hertz’ law with
Fe & fnl/ 3. As expected, a higher volume fraction of AM
leads in general to a higher effective conductivity in that
phase. The absolute deviation in the maximal values for low
and high PF is around 0.02 correlating to a relative deviation
of 12%.

CB only percolates for volume fractions of 15% for the

densification process considered here. The PF influences the
concentration level for which percolating clusters are found
only rarely: for a low initial PF the onset of conductivity
in the CB phase is around 60% of the maximal possible Li*
concentration ¢y, (Fig. 18a) and for high PF's it is around
50% cmax (Fig. 18b). The maximal normalized effective con-
ductivity in CB is 0.007 for the high value of PF and 0.006
for a low PF, this corresponds to a relative deviation of 14%.

As mentioned in Sect. 1 the effective conductivity used
in the Dual-Foil model is usually determined by a Brugge-
man approach. As this approach does not consider percola-
tion behavior, we use the Bruggemann approach weighted
with percolation probability (Eq.(1)) for comparison. In
Fig. 19 the values obtained for the maximal Li* concentra-
tion cmax for the compositions with high initial packing fac-
tor (LIB) are compared to the weighted Bruggeman approach
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(Perc) and additionally to results gained for sintered struc-
tures with size ratio 10 in Sect. 4.1 (SOFC). The percolation
threshold determined with percolation theory [6] is predicted
to be less than 5% for a radius ratio of 10, while with our
method described in Sect. 4.1 we obtain a percolation thresh-
old around 10% volume fraction of small particles for sin-
tered structures with size ratio 10. Not only the percolation
threshold differs substantially for the different methods, but
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also the conductivities obtained for the structures densified
with DEM are significantly lower than the values obtained
with other approaches. This is due to the fact that the con-
tact area described with Hertz’ law is in general smaller than
the contact area in sintered structures. The large difference
between the results for LIB and SOFC shows the importance
of considering the densification process.
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Fig. 17 Development of effective conductivity of the active material AM normalized by its bulk conductivity during intercalation for a low

initial packing factor (67.3%) and b high initial packing factor (69.4%)
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Fig. 18 Development of effective conductivity of carbon black normalized by its bulk conductivity during intercalation for a low initial

packing factor (67.3%) and b high initial packing factor (69.4%)
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Fig. 19 Effective conductivity for microstructures densified with
DEM (LIB), numerical sintering (SOFC) and from percolation the-
ory (Perc) for a size ratio of 10

Furthermore, the percolation threshold for CB found
numerically is above the experimentally determined val-
ues [41] even though we expected it to be lower as the size ra-
tio in the numerical structures is higher. One possible reason
for the deviation could be that we have not considered until
now that the manufactured electrode structures in Ref. [41]
have been compressed prior to measuring the conductivity.
Since in general the electrode structures are calendered dur-
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ing manufacturing, this pre-loading will be considered in the
following analysis. To investigate the impact of the calen-
dering step, we load the microstructures with a combined
process of compression and intercalation. As an example the
development of stresses in x-, y- and z-direction of the mi-
crostructures with 10% solid volume fraction CB and a high
initial PF of 69.4% is shown in Fig. 20 for the combined cal-
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= 40+ b |
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Loading step #/100
Fig. 20 Stress developing with incremental time step for the com-
bined calendering and intercalation process in microstructures with

10% volume fraction carbon black and high initial packing factor
69.4%
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endering and intercalation process. Uni-axial load is applied
during the first 10 loading steps in x-direction and interca-
lation induced volume increase for the last 10 loading steps,
as indicated in the picture. The uni-axial compression leads
to a strongly anisotropic behavior with higher stress o, in
loading direction, whereas in perpendicular directions the
stresses 0y, and o, are similar. The anisotropy induced
during calendering is not reduced during the intercalation
process. Due to the non-linear mechanical behavior of the
system, the stress increases more in the pre-calendered case
during the intercalation process with Aoy, = 45.8 MPa and
0.5(Acyy+Ac ;) = 35.5 MPa than in the non-calendered case
with o, = 31.7 MPa in all directions.

As the same trends in the development of stress and
connectivity are found for the here considered structures
both with low and high PFs and the deviation resulting
from the different PF's is insignificant, we only consider the

compositions with high initial packing factor (H) in the fol-
lowing simulations. Again the results are average values
of three microstructures for each composition. In Fig.21
the increase of stress during the intercalation process in x-,
y- and z-direction is shown separately for each composi-
tion. The initial stress due to calendering is between 11 MPa
and 13MPa for all assemblies in x- direction and around
between 3 MPa and 4 MPa in the perpendicular directions.
The anisotropy due to calendering is not reduced for any of
the microstructures during the intercalation process. Even
though the tendency of increasing stress with increasing vol-
ume fractions of active material is the same for calendered
and non-calendered assemblies during intercalation, the in-
crease in stress is higher for all pre-calendered assemblies
in comparison with the non-calendered counterparts, in load
direction up to 20MPa, in perpendicular directions around
10 MPa.
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Fig. 21 Stress developing with normalized concentration for microstructures with high packing factor (69.4%) and a 10% volume fraction

carbon black (CB); b 12.5% volume fraction CB and ¢ 15% volume fraction CB

Since the RN method we use already obtains infor-
mation on the directional dependency of the conductiv-
ity, the method is applicable for anisotropic microstructures
without any further adaptation. The impact of calendering
on the effective conductivity can be estimated by compar-
ing the results for the intercalation process for the calen-
dered and non-calendered structures. For the AM phase,
the anisotropic stress leads to anisotropic conductivity in
all cases (Figs.22a-22c). The retaining of anisotropy dur-
ing the intercalation process indicates that little rearrange-
ment within this phase takes place. Compared to the non-
calendered cases, which are shown in Figs. 22d to 22f, two
positive effects induced by the calendering can be seen. First,
the initial conductivity is greater than zero due to the pre-
loading. Second, the conductivity in general reaches higher
values for the calendered cases. The amount of increase in
conductivity during the intercalation process is with 10% of
the bulk conductivity lower compared to the non-compressed
cases with a maximal effective conductivity between 14%
and 17% of the bulk conductivity. Conversely the increase in
stress during intercalation is higher for the calendered cases.

Further, the conductivities of the CB phase are given
for the calendered configurations in Figs.23a-23c and for
the non-calendered structures in Figs. 23d-23f. Comparing
the calendered compositions to the non-calendered, there are

2 advantages. First, percolation paths are already formed be-
fore the intercalation process starts due to the pre-load. This
shows the importance of the calendering process for proper
cell performance. Furthermore, percolation is already found
for 12.5% volume fraction CB (Fig.23b), which is closer to
the expected values. Remaining deviations of the numerical
results from the experiments might be caused by the approx-
imations made in the mechanical modeling: to reduce com-
putational costs the particle shape is idealized to be spherical
and additionally the influence of binder on the homogeneous
particle distribution is not considered. In future work the in-
fluence of this aspects can be considered to obtain a more
accurate mechanical behavior.

In contrast to the AM, no clear preferential direction
is found for the calendered CB phase. For 15% solid vol-
ume fraction CB the effective conductivities in y-direction
are similar and even higher than the conductivities found in
x-direction. For 12.5% solid volume fraction CB the aver-
aged conductivities are largest in loading direction in loading
direction (Fig.23b). However, among the the three differ-
ent microstructures of that composition the preferential di-
rections of conductivity vary substantially as shown in Table
3 exemplary for the maximal Li* concentration cyax at the
end intercalation.
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Fig. 23 Change in conductivity for carbon black (CB) during intercalation process for the pre-calendered cases in a to ¢ and the non-
calendered cases in d to f for different volume fractions of CB. a 10% volume fraction (CB); b 12.5% volume fraction CB; ¢ 15% volume
fraction CB; d 10% volume fraction (CB); e 12.5% volume fraction CB; f 15% volume fraction CB

Table 3 Relative effective conductivity of carbon black for the 3 This observation can be explained as follows: as de-
different assemblies (1,2, 3) with 12.5% volume fraction of carbon scribed in Ref.[41] the large particles (AM) form a force
black at the end of the intercalation process carrying backbone within the assembly, whereas the small

particles (CB) fill the interstitial space between the larger

! 2 3 particles. The formation of a force carrying structure is fa-

g Yored as AM s r.igid compared to CB. Therefore, the .CB par-

Fa——— ’yy o 0.594 1.421 0.985 thl?S are more llkely to rearrange aqd redl}ce the anisotropy

' ’ ’ during the intercalation process. To investigate that, we cal-

3ketryy 2 644 0.100 0256 culated the stress and movement for large and small particles

Kefrxx + Keftyy + Keft 2z separately for one exemplary structure. The average move-

s, ment of large and small particles is quasi-isotropic during the

P — oy 1.099 0.614 1.287 intercalation process. Small particles have an average move-
eff xx eff,yy eff,zz

ment of 0.01% of the box length, which is twice as much as
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large particles have. The stresses for AM and CB shown sep-
arately in Fig. 24a and Fig. 24b confirm the assumption that
the large particle are force carrying: the stress in the AM
cluster is in the same order of magnitude as the overall stress

40
301

20|

o/MPa

0 0.2 0.4 0.6 0.8 1.0

Li" concentration (c,—¢y)/€pmax

with a maximal stress in loading direction of the compres-
sion. In contrast, the stress in the CB cluster is several orders
of magnitude lower and does not develop a maximum stress
in the loading direction.

=

o,/kPa

0 0.2 0.4 0.6 0.8 1.0

Li" concentration (¢,—co)/Cpax

Fig. 24 Development of stress during intercalation process for a large active material particles and b small Carbon Black particles

separately

5 Conclusion

In this work, a fast and flexible resistor-network method
(RN) for the calculation of effective conductivities in granu-
lar electrode structures has been introduced. As the conduc-
tivity can be calculated for different directions, the method
is applicable for densified structures with and without pref-
erential direction. The method was validated by comparison
to results obtained by the established lattice Monte Carlo ap-
proach. The findings for both methods are in good agreement
for isotropic assemblies and the RN approach is less time
consuming. Contrary to the RN method, the lattice Monte
Carlo approach is not applicable for assemblies with a pref-
erential direction without further adaption.

We have studied systematically the influence of mor-
phology on connectivity and conductivity with regard to
SOFC. An enlarged percolation area was found, especially
for large size ratios. In contrast to former findings the per-
colation threshold does not correlate independently of par-
ticle size ratio to a fixed value of the coordination number,
but rather varies with size ratio. The effective conductivity
shows an increase with volume fraction as expected and ad-
ditionally, an increase with size ratio. As the consideration of
more realistic microstructures in our study lead to different
results compared to those with percolation theory, they can
be used as to increase the accuracy in studies with porous
electrode theory.

Furthermore, we investigated the influence of interca-
lation induced stress and calendering on the effective con-
ductivity in LIB electrodes, in particular with regard to the
electron conducting CB phase. In general, an increase of
conductivity during the intercalation process was observed in
analogy to increasing contact forces. The positive influence
of calendering on the percolation threshold and the effective
conductivity was shown. The calculated properties can be
used to improve cell level modeling.
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