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In this paper, we study the contact stiffness of a fractal rough surface compressed by a rigid flat plane. A numerical 

model based on the analysis of flat punch indentation is proposed for simulated hierarchical surfaces, which 

are generated using statistical and fractal descriptors collected by surface profilometry. The contact stiffness of 

surfaces under increasing normal load is determined on the basis of the total truncated area at varying heights. 

The results are compared with experimental data from nanoindentation on four types of treated rough surfaces, 

showing good agreement with experimental observations below a certain truncation depth. Furthermore, the 

limits of the model’s validity are discussed by focusing on surface geometries and deformation of contacting 

asperities. With this proposed truncation method, we present a parametric analysis to establish a correlation 

between contact stiffness and surface roughness descriptors. The contact stiffness shows a unified power-law 

scaling with respect to the applied load over a wide range for simulated surfaces with distinct sets of roughness 

descriptors. The exponent of the power-law relationship is found to correlate positively to the fractal dimension 

while its amplitude is inversely correlated to the surface roughness amplitude. This study provides an easily 

implemented and computationally efficient method to connect mechanical behaviour with multi-scale surface 

structure, which can be utilized in design and optimization of engineering applications involving rough contacts. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

The morphology of surfaces plays a determining role in interfacial

henomena including friction, adhesion, sealing, lubrication and ther-

al and electrical conductance [1,2] . When two solids with rough sur-

aces are squeezed together, the area of true contact consists of numer-

us contact patches of various sizes and generally comprises only a small

raction of the nominal contact area. Over the years, numerous diver-

ent approaches have been developed to explore load dependent con-

act behaviour at rough surfaces, yet the scientific community remains

ivided regarding the reliability of their predictions [1,3–6] . The vari-

us asperity-based approaches to contact models reported in the litera-

ure can be categorized as: (1) multi-asperity contact models (i.e., sta-

istical models), in which the heights and / or curvatures of asperities

ollow given statistical distributions [7–10] ; and (2) surface fractality

odels, including multi-scale models [11–17] , the boundary element

ethod (BEM) [6] and Persson’s theory [18, 19] . Further to this binary

lassification, the comparison between various reported models reveals

iscrepancies with noticeable differences between each other and with

xperimental results [17,19–21] . 

Within the above-mentioned approaches to surface structure simula-

ion, it is also necessary to consider the contact behaviour of an individ-
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al asperity ranging from elastic, through elasto-plastic, to fully plastic

eformation [8,22–29] . For purely elastic or plastic contact, the classic

ertzian model [30] and fully plastic model [31] can be applied, respec-

ively. However, for elastoplastic regimes, individual asperity models

ay yield different contact responses, dominated by different deforma-

ion mechanisms [32,33] . Particularly, a self-consistent analysis was put

orward by Storåkers, et al. [34] considering the general visco-elasto-

lastic material indented by a spherical object. Additionally, shoulder-

o-shoulder contact models for misaligned asperities were introduced to

nclude oblique contact between pair asperities [15,35,36] . 

The contact behaviour of individual asperities can be combined

o shed light on overall system behaviour by considering statistical

nd/or fractal approaches to describe surface morphologies. Pioneered

y Greenwood and Williamson [7] , multi-asperity contact models are

ased on the statistical height distribution (Gaussian or non-Gaussian),

hile assuming that the deformation of a given asperity is not influ-

nced by that of neighbouring asperities. Within this framework, various

mplementations, considering different asperity geometries, have been

eveloped over the past decades for the analysis of individual asperity

eformation. In practice, statistical parameters for characterizing sur-

ace topography, such as variance of heights, slope, curvature, etc., have

een used in this class of contact models. But these implementations as-

ume features at a given narrow range of scales and thus depend on the

http://dx.doi.org/10.1016/j.ijmecsci.2017.07.018
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esolution of the surface measuring apparatus and sample length [13] .

owever, most natural surfaces exhibit features across a wide range of

ength scales [37] , involving diverse morphologies, which bring about

omplexities in the modelling of interfacial properties [3,38] . In addi-

ion, these statistical models were constructed by assuming that micro-

ontact forces arise principally due to deformation of asperities and are

alculated considering only the base wavelength or a certain range of

avelengths, characterized by the roll-off and cut-off wavevectors of

he power spectra of rough surfaces [4,12,17,19,39] . This assumption

eglects the contribution of fine geometries at small length scales to the

ontact properties. In the fractal-theory related models, the finer sur-

ace features have been included in terms of overall contact area using

n integration process [11,12,28,40] . 

An early appreciation for the significance of the multi-scale nature of

urfaces was demonstrated by Archard [41] . In the contact theory using

cale-independent parameters, Majumdar and Bhushan [42] utilized the

ractal theory of Mandelbrot [43] to describe the distribution of contact

reas between two rough surfaces. Yan and Komvopoulos [12] extended

his theory to contact problems of three-dimensional rough surfaces, re-

ealing the variations of the contact force and real contact area during

uasi-static loading. Ciavarella, et al. [44] developed a two-dimensional

ractal-based model for sinusoidal elastoplastic surfaces, and expanded

he analysis to provide contact stiffness and interfacial resistance. Fur-

her relevant work was conducted by Jackson and Streator [13] using

hree-dimensional sinusoidal surfaces, considering the frequency spec-

rum of the surfaces. Pohrt and Popov [6] deduced an empirical con-

act stiffness model by means of the boundary element method (BEM).

he validity of the method of reduction of dimensionality, by which

hree-dimensional contact problems are mapped onto one-dimensional

lastic contacts, has been investigated for non-adhesive contact of any

xisymmetric bodies [45–47] . However, the fractal dimension has been

hown to change due to an applied load [38,48,49] and thus an as-

umption of invariant fractal dimension in fractal-theory related mod-

ls may only be reasonable within a certain range of loading. Moreover,

arious methods [20,50,51] can be applied to quantify the fractality of

 rough surface [19,20,52,53] possibly resulting in different values of

he obtained fractal dimension, thus the adaptation of these methods

erits further study to provide a consistent result in contact mechanics

odels. 

The true area of contact formed between two surfaces is of prime

nterest and is governed by morphology, material properties, and load-

ng conditions. The contact properties of rough surfaces subjected to an

pplied normal load can be, at some level, interpreted by considering

he true interfacial contact area along with surface descriptors [4,46] .

owever, determining the real contact area between contacting bod-

es through experimental or numerical analyses remains challenging.

actors that influence true contact area include the asperity height, cur-

ature, the Poisson’s ratio of the material, strength and hardness and

he existence of superimposed smaller asperities with similar or diver-

ent scale-dependent properties [54] . With time, the sliding induced

y expanding contacting spots [55] further affects contact morphology.

oreover, most natural surfaces exhibit features across a wide range of

ength scales the extent of which depends on simulation or measurement

esolution [56,57] . 

Despite the fact that the contact area tends to present scale-

ependent properties with contacting asperities in the status of incom-

lete contact (with non-contacting zones surrounded by the contact-

ng ones), the truncated areas at various depths for a given resolution

an be employed to represent the real contact area. This was first pro-

osed by Abbot and Firestone [31] to describe a wear process rather

han indentation or flattening. Along this line, proposed truncation mod-

ls [58,59] have assumed that the contact area of an asperity pressed

gainst a rigid flat can be approximately calculated by mathematically

runcating the asperity tip. This is a reasonable assumption for small to

edium interferences as within this range asperities tend to plastically

eform due to the small radius of curvature. The average pressure be-
306 
ween an asperity and a flat punch can simply be assumed to be equal

o hardness, or can be related to material yield strength [7,26] . How-

ver, Jackson and Green [22] showed that this simplification results in

n inverse hardening process in which the hardness actually decreases

ith increasing interference. 

In addition to contact area the present work focuses on interfa-

ial contact stiffness. An understanding of contact stiffness is impor-

ant in contact mechanics, which plays a central role in governing the

tress-dependent electrical and thermal transport between two contact-

ng solids [6,60,61] . In the past decade, the relationship between surface

tructure and interfacial stiffness has been intensively studied numeri-

ally and experimentally. Numerical analyses, using methods of molecu-

ar dynamics, finite element analysis, etc., generally confirm linear pro-

ortionality between normal force and contact stiffness [39,62,63] , as

upported by the Greenwood–Williamson model [7] and Persson’s the-

ry [19,64] . However, other studies have reported that, for small to

edium loads, the logarithm of stiffness exhibits close proportionality to

he logarithm of the applied normal force [6,45,52] . In other words, the

ontact stiffness, k , is a power function of the normal force, F N , as 𝑘 ∝ 𝐹 𝛼
𝑁 

with 𝛼< 1), which differs from the work mentioned above. Numerous

xperimental studies have been carried out on rough surfaces to ascer-

ain the relationship between surface structure and interfacial behaviour

nder load using diverse experimental approaches and materials. Jiang,

t al. [52] measured the normal contact stiffness of cast iron specimens

roduced using different machining methods. Wang, et al. [19] mea-

ured the contact stiffness of a rubber block squeezed against different

oncrete and asphalt road surfaces. Buczkowski, et al. [17] compared

he normal contact stiffness determined using ultrasonic measurements

ith the fractal model based on Weierstrass–Mandelbrot function. Zhai,

t al. [20] recently evaluated the contact stiffness at aluminium surfaces

y nanoindentation tests utilizing different sized flat tips to achieve a

ide range of applied stress levels. These experimental studies support

he power law relationship between the contact stiffness and the applied

oad for certain stress ranges. 

The main purpose of the paper is to propose a comprehensive contact

nalysis method for a three-dimensional rough surface compressed by a

igid flat. The proposed truncation method is applied to simulated fractal

urface structures characterized using various statistical and fractal de-

criptors, to interpret the variation of contact stiffness under increasing

ormal loading using experimental results for reference. Iteration proce-

ures employed in simulating fractal rough surfaces ensure a description

ith identical parameters which are critical in determining the normal

ontact stiffness. The applicability and repeatability of the presented

ethod is discussed based on geometrical features and analyses of the

tudied rough surfaces. This study provides an easily-incorporated and

ighly-effective numerical method for predicting contact stiffness un-

er conditions of small to medium loads. Following validation, a para-

etric analysis is conducted for simulated surfaces varying in surface

opologies, allowing the obtained contact stiffness to be related to sur-

ace roughness descriptors. Finally, correlations between normal contact

tiffness and roughness descriptors have been established and discussed

ith respect to fractal dimension values obtained using different meth-

ds. 

. Theoretical framework 

The deformation mechanics of contacting surface asperities remains

 topic of significant debate in the research community. Under most

pplied conditions the true contact area between rough surfaces involves

nly a small fraction of the nominal contact area, and for this reason the

otal real contact area can be considered to approximately equal to the

runcation area in the present method. We consider a simple extension of

he contact analysis for indentation by a flat punch [65] , which reveals

hat there is a relation between contact stiffness, contact area, and elastic
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odulus, given by 

 𝑟 

(
𝐸 𝑐 , 𝐸 𝑖 

)
= 𝛽

√
𝜋

2 
𝐾 √
𝐴 

, (1)

here K is the contact stiffness in units of N/m, A is the apparent con-

act area and 𝛽 is a geometrical constant, taken as unity for a flat punch.

 r denotes the reduced Young’s modulus including contributions from

he both the compressed rough surface and opposing flat surface, given

y 1∕ 𝐸 𝑟 = ( 1 − 𝑣 2 
𝑐 
)∕ 𝐸 𝑐 + ( 1 − 𝑣 2 

𝑖 
)∕ 𝐸 𝑖 , with the subscript i indicating the

pposing surface, the subscript c indicating the properties of the com-

ressed surface and 𝜐 being the Poisson’s ratio. The contact force can

e obtained through integration of the contact stiffness with respect to

he indentation increment. Eq. (1) is a fundamental equation for assess-

ng the elastic properties in indentation tests, and has been shown to be

qually applicable in cases of elastic-plastic contact. If the elastic mod-

lus is known, the relation between contact area and contact stiffness

an thus be obtained [66,67] . 

.1. Validation for single asperity under compression 

An asperity under compression can behave elastically or plasti-

ally. For describing purely elastic contact of rough surfaces, the classic

ertzian model can be applied as suggested by previous contact mod-

ls [7,26,33,42] . For a sphere under compression by a rigid plane, it

s assumed that the radius of a contacting asperity, R , is very close

o that of the undeformed case. In such cases, the relationship be-

ween R and the truncation microcontact radius, r ′ , can be obtained by

 

2 = ( R − d ) 2 + ( r ′ ) 2 , where d is compression depth. Since R is typically

rders of magnitude greater than the d , the relationship can be reduced

o ( r ′ ) 2 = 2 Rd [12,27] . In Hertzian contact, the radius of the real contact

rea is given by 𝑟 = 

√
𝑅𝑑 . Thus for a circular microcontact in the fully

lastic regime the relationship between the truncation area ( a ′ ) and the

eal elastic contact area ( a E ) can be expressed as: a ′ = 2 a E . 

For describing plastic deformation, Abbot and Firestone [31] devel-

ped the most widely used model for a fully plastic contact, known as the

urface microgeometry model. This model assumed that the deformation

f a rough surface against a rigid flat plane is equivalent to the trunca-

ion of the undeformed rough surface at its intersection with the plane.

s a result, the real area of the contact can be approximated simply as

he geometrical intersection of the flat with the original undeformed

urface profile, and the contact pressure is the plastic flow pressure. In

ddition, McFarlane and Tabor [68] showed that both the normal and

angential stresses contribute to the deformation of junctions formed at

he interface of contacting bodies under compression. For cases of elastic

ontact, the tangential stress constrains the expansion of the compressed

sperity through static friction. As the contacting region between an as-

erity and the rigid flat is already in the plastic state of stress under

urely normal loading, tangential loading, however small, may cause

urther yielding. Equilibrium can be maintained if the area of a contact-

ng spot grows [68] . Therefore, for a fully plastically microcontact, the

elation between the truncation area and the real plastic contact area

 a P ) is: a ′ ≤ a P . 

The above discussion supports that the truncation area, a ′ , of a single

ompressed asperity at any given interference lies in the range of a E < a ′

 a P , the upper and lower limits of which are determined by the contact

rea for fully elastic and plastic regimes, shown in Fig. 1 . For a single as-

erity of a fractal rough surface, exhibiting a hierarchical structure, we

lso assume that the contact area of an individual asperity for a given

urface interference will follow the relation: a E < a ′ ≤ a P . Furthermore,

he truncation method could provide contact properties between elastic

nd plastic behaviours. This assumption is further rationalized by com-

aring the dependence of contact area on contact force obtained from

he concise self-consistent model for contact of inelastic materials, based

n the indentation theory and von Mises isotropic flow theory [9] . 
307 
For a visco-elasto-plastic contact problem, the constitutive behaviour

an be simplified as 𝜎 = 𝜎0 𝜀 
𝑚 𝐵 �̇� 𝑛 𝐵 , where 𝜎0 is a material yield param-

ter and m B and n B are hardening and creep exponents, respectively.

or a time-independent perfectly plastic material, m B = n B = 0, while in

he linearly elastic case, where m B = 1 and n B = 0. A semi-analytical so-

ution for the contact problem can be obtained for spherical bodies [9,

4] . In this paper, only a quasi-static situation is studied without con-

idering creep, i.e., n B = 0. Here, we consider a spherical asperity under

ompression by a rigid plane using the proposed truncation method and

enchmark this special case to other solutions existing in the domain of

ontact mechanics, in Fig. 2 . The maximum interference is 100 times

he critical interference, 𝜔 c = ( 𝜋kH /2 E r ) 
2 R where k = 0.454 + 0.41 v is

he hardness coefficient of the asperity related to its Poisson’s ratio, v ,

nd, H is the hardness of the asperity relative to its yield strength. This

ritical interference value marks the inception of the elastoplastic defor-

ation [13,26,27] . The elasto-plastic solutions for materials exhibiting

ifferent hardening exponents ( m B = 0.0, 0.10, 0.20, 0.30, 0.40, 0.50

nd 1.0) are shown in Fig. 2 . The obtained numerical results from the

resented truncation method (1000 truncation depth increments) lie be-

ween fully plastic and elastic regimes. Thus, to a certain extent, these

esults demonstrate the applicability of the truncation method for the

nalysis of elasto-plastic contact. 

.2. The truncation method for rough surfaces 

In this work an approximate model is presented for estimating the

ontact stiffness of a rough surface compressed by a rigid plane with the

ollowing assumptions: 

(1) The studied fractal rough surface is flattened by the rigid plane,

and contact ‘islands ’ grow in terms of size and number through

successive truncations parallel to the mean surface plane; 

(2) The truncated surface features on the rough surfaces flow plasti-

cally into the valleys of non-contacting regions; 

(3) Contacting asperities do not interact with each other; 

(4) Deformation is confined within the interface region rather than

the bulk region. 

In this method, a rough surface is levelled through a mountain-top re-

oval approach in order to obtain truncation areas. For a single asperity

nder compression, it is a reasonable assumption to use the total trun-

ation area, 𝐴 ′ ( 𝐴 𝐸 < 𝐴 ′ = 

∑𝑖 = 𝑛 
𝑖 =1 𝑎 

′
𝑖 
= 𝐴 𝑐 < 𝐴 𝐹 , where A c is the true con-

act area), at a given height to approximate the real contact area for the

orresponding surface interference, 𝜔 . The contact stiffness is extracted

ased on the analysis of indentation tests by a flat punch [65] . Under

ncreasing compression, smaller microcontacts expand, merging to form

arger ones. Consequently, the value of contact stiffness, E c depends pri-

arily on the true contact area and approaches the elastic modulus of

he bulk material, E . The contact stiffness ( k , with the unit of N/m) can

e estimated by the following expression using the true contact area

 A c ), based on Eq. (1) : 

 = 𝛽′
2 √
𝜋
𝐸 ′
𝑟 

√
𝐴 𝑐 ′ (2) 

here 𝐸 ′
𝑟 

is the (constant) reduced elastic modulus calculated for the

ulk elastic properties of the tested material (Young’s modulus, E and

oisson’s ratio, v ) and indenter: 𝐸 ′
𝑟 
= [ ( 1 − 𝜐2 )∕ 𝐸 + ( 1 − 𝜐2 

𝑖 
)∕ 𝐸 𝑖 ] −1 , and

′ is a geometric factor of the order of unity, equalling to 1. By writing

q. (2) , we assume that the effect of surface roughness on the measured

ncremental stiffness can be described by considering the true contact

rea A c (rather than the projected contact area A ) and bulk material

roperties in Eq. (1) . By comparing Eqs. (1) and ( 2 ), and considering

hat E i ≫ E > E c , we obtain the following scaling relation: 

 𝑐 ∕ 𝐸 ∗ ∝ 𝛽′
√
𝐴 𝑐 ∕ 𝐴 . (3) 

Considering d F = k ( 𝜔 )d 𝜔 , we can then obtain the loading force F

hrough integration of contact stiffness, k ( 𝜔 ), during the compression
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Fig. 1. Schematic of a deformed asperity under compression by a rigid plane. The areas of a E and a P , show the real contact areas for fully elastic and plastic regime, respectively, while 

a ′ represents the truncation area for a given surface interference of 𝜔 . 

Fig. 2. Comparison of obtained contact responses of a single spherical asperity under 

compression of a rigid flat between the truncation model and the inelastic flattening model 

[34] : The normalised contact area versus normalised load is shown with A equalling 𝜋R 2 , 

E being the Young’s modulus of the material. 
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ith penetration increments d 𝜔 . Note that we are here focusing on the

ierarchical structure of the surfaces by applying normalization proce-

ures. 

. Surface characterization and simulation 

To gain insights into the validity of the presently developed trun-

ation method for rough surfaces, we experimentally and numerically

valuated the contact stiffness for round disk samples made of alu-

inium alloy with surface treatments applied in order to produce dis-

inct surface structures. 

.1. Surface fabrication and profilometry 

To produce different rough surfaces, three surface treatment meth-

ds were applied: (1) polishing, (2) surface mechanical attrition treat-
308 
ent (SMAT), and (3) abrasive blasting using various sized glass beads.

ore details of the surface treatment and topographical characterisation

an be found in [20] . Fig. 3 shows typical scanning electron microscope

SEM) images, 3D surface topography and corresponding simulated sur-

aces. Over 10 digitized scans, the treated sample surfaces were char-

cterised through descriptors of the peak-valley height R t , root mean

quare roughness R rms , roll-off wavelength W r , and fractal dimension

 characterized through different methods, as shown in Table 1 . These

oughness descriptors will be used later to generate simulated rough

urfaces that have similar features for evaluating the proposed trunca-

ion method. Using the fractal dimension we are able to estimate sur-

ace structures at scales below the equipment resolution, assuming self-

imilar scaling in terms of geometrical features [37] . This estimation

pproach further improves the efficiency of the present method as utilis-

ng surface scans at sub-micron scale resolutions, such as those obtained

hrough AFM, would be computationally intensive and would provide

imited information from higher scale features. 

.2. Simulated rough surfaces 

The scale-invariant parameter, i.e., fractal dimension, provides a

eans of describing realistic multiscale roughness. Previous studies

12,52,55] have shown that a fractal rough surface can be determin-

stically simulated by the Weierstrass–Mandelbrot fractal function [43] ,

hich can be written as 

 ( 𝑥, 𝑦 ) = 𝑊 𝑟 

( 

𝐺 

𝑊 𝑟 

) ( 𝐷 𝑖𝑛 −3 ) ( 

ln 𝛾
𝑀 

) 1∕2 𝑀 ∑
𝑚 =1 

𝑛 max ∑
𝑛 =0 

(
𝛾( 𝐷 𝑖𝑛 −3 ) 𝑛 

)

×

{ 

cos 𝛼𝑚,𝑛 − cos 

[ 
2π𝛾𝑛 

(
𝑥 2 + 𝑦 2 

)1∕2 
𝑊 𝑟 

cos 
(
tan − 𝑡 

(
𝑦 

𝑥 

)
− 

π𝑚 
𝑀 

)
+ 𝛼𝑚,𝑛 

] }

(4)

The parameter 𝛾 determines the density of frequencies used to con-

truct the surface and, in similarity to previous work [33] , is set as 1.5

ased on considerations of the surface flatness and frequency distribu-

ion density. G is a height scaling parameter independent of frequency,

ermed topothesy [48] . The parameter W r is the roll-off wavelength,

hich can be obtained from the power spectrum, determining the ba-

ic wavelength of highest scale features. In this paper, values of roll-off

avelength, W , of the treated surfaces are obtained by estimating the
r 



C. Zhai et al. International Journal of Mechanical Sciences 131–132 (2017) 305–316 

Fig. 3. SEM images, typical digitized profilometry scans (1024 × 1024 pixels over an area of 1 × 1 mm 

2 ) of aluminium samples subjected to different surface treatments and their 

corresponding simulated surfaces (10, 240 × 10, 240 pixels) presented in row 1, 2 and 3, respectively: (a) polished; (b) SMAT with 2 mm-sized steel balls; (c) blasted with 300 μm-sized 

glass beads; (c) blasted with 50 μm-sized glass beads. 

Table 1 

Surface characterisation for digitized scans and simulated surfaces (indicated with a suffix ‘s ’ at the end of corresponding sample names). 

Surface Amplitude 

roughness R t or 

R t ′ /μm 

Root mean square 

roughness 

R rms /μm 

Roll-off

wavelength 

W r /μm 

Fractal dimension 

D tri 

Fractal dimension 

D box 

Fractal dimension 

D vs 

Fractal dimension 

D sp 

Polished 3.253 ± 1.939 0.057 ± 0.005 ≫ 1024 2.093 ± 0.0618 2.024 ± 0.0410 2.103 ± 0.0628 2.317 ± 0.0788 

Ps 0.263 ± 0.032 0.053 ± 0.004 ≫ 1024 2.091 ± 0.0344 2.025 ± 0.0313 2.103 ± 0.0562 2.315 ± 0.1196 

SMAT 22.184 ± 5.201 2.730 ± 0.255 ∼120 2.228 ± 0.0199 2.156 ± 0.0131 2.422 ± 0.0436 2.412 ± 0.0964 

SMATs 16.210 ± 1.569 2.762 ± 0.053 120 2.225 ± 0.0232 2.161 ± 0.0297 2.417 ± 0.0487 2.421 ± 0.1222 

GB300 42.376 ± 9.238 4.179 ± 0.194 ∼60 2.551 ± 0.0217 2.424 ± 0.0257 2.811 ± 0.0769 2.284 ± 0.0931 

GB300s 36.865 ± 1.731 4.102 ± 0.034 60 2.555 ± 0.0425 2.417 ± 0.0316 2.813 ± 0.0521 2.282 ± 0.0876 

GB50 32.239 ± 7.843 2.970 ± 0.276 ∼25 2.626 ± 0.0174 2.351 ± 0.0363 2.824 ± 0.0767 2.279 ± 0.1054 

GB50s 26.239 ± 1.157 2.935 ± 0.031 25 2.625 ± 0.0328 2.351 ± 0.0395 2.825 ± 0.0876 2.284 ± 0.0933 
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verage distances between asperities, based on surface structures mea-

ured experimentally. The frequency index n max assumes finite values

orresponding to the cut-off wavelength, W c , representing the small-

st distance between two adjacent pixels [12,55] . The parameter M de-

otes the number of superposed ridges used to construct the surface.

 random number generator is used to uniformly distribute the val-

es of random phase 𝛼m,n . Here, isotropic fractal surfaces, consisting

f 10,240 ×10,240 pixels, with M = 10, were generated to simulate real

urfaces based on the surface descriptors obtained from digitized scans

ith the projective area being 1 mm ×1 mm, shown in Fig. 3 . 

In the fractal analysis of surface asperities, the fractal dimension and

he topothesy as are commonly considered as two invariants. However,

hese two roughness parameters have been shown to vary with load

48] . In this paper, a scaling procedure based on amplitude roughness,

 t , was employed to govern the vertical properties of simulated surfaces

nstead of topothesy, G (set as 1). The values of all pixels, representing

he height, were scaled according to the height-width ratio ( R t / L , where

 is the side length of the surface) of the simulated surface, in order

o yield the target peak-valley height. The fractal dimension of rough

urfaces (for both digitized scans and simulated surfaces) was then es-

imated using methods of (1) triangulation [20,69] , (2) box-counting
309 
70,71] , (3) vertical sections [51] , and (4) power spectrum analysis

Mitchell and Bonnell, 1990; Williams and Beebe Jr, 1993; Van Put et

l., 1994; Mannelquist et al., 1998), with the obtained fractal dimension

arked with D tri , D box , D vs , and D sp , respectively. The four methods em-

loyed are widely used in the calculation of fractal dimension [61,72–

4] , though the resulting fractal dimension may be not identical. As is

hown schematically in Fig. 4 , the procedure for obtaining the input

ractal dimension D in for simulated surfaces involves assuming an ini-

ial value of D in (e.g., the value obtained from the real surface scan). A

urface (1024 ×1024 pixels over an area of 1 ×1 mm 

2 ) is generated with

nputting other required parameters, i.e., the roll-off wavelength W r and

mplitude roughness R t . Subsequently, the calculated value of fractal

imension, D out , of the generated surface is compared with the value

btained from the real surface scan and D in , is adjusted accordingly.

his procedure is repeated until the calculated fractal dimension, D out ,

pproaches that determined from the profilimetry of real surfaces using

ne chosen method (e.g., error < 5%). Even though the triangulation,

ox-counting method, vertical sections approaches and power spectrum

nalysis result in different values of fractal dimension, a larger input

ractal dimension consistently leads to a larger evaluated D out , with all

our approaches. 
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Fig. 4. Flow chart of iterative procedures for surface simulation. 
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As amplitude roughness R t from digitized scans is sensitive to mea-

urement resolution and noise, R rms is employed to yield vertical fea-

ures approximating real surfaces. Similar to the fractal dimension, an

teration procedure is employed to obtain a proper R t ′ value with which

 simulated surface can replicate the vertical geometrical features of

he digitized scans. Subsequently, the obtained D in ′ and R t ′ from the it-

ration procedures, along with the basic wavelength, W r , are used to

enerate rough surfaces at higher resolutions. The sequence of the two

teration procedures, for D in ′ and R t ′ should not be reversed, as the vari-

tion of input fractal dimension can influence the roughness amplitude,

ut not vice versa. The simulation of surfaces using the proposed itera-

ion procedures are presented in Fig. 4 . 

The amplitude roughness, R t , and the RMS roughness, R rms , have

een shown to be scale-dependent, which can be determined by the

oll-off and cut-off wavelength [11] . The values of the two parameters

sed in the iteration procedure, shown in Fig. 4 and Table 1 , are those

alculated at the scanning resolution. 

.3. Influences of resolution 

As the true contact area between real surfaces is difficult to defini-

ively determine, it is important to investigate the influences of the sur-

ace resolution, as well as step sizes of truncating increments. The to-

al contact area can be determined by summarising the contribution of

ontacting asperities. For a given truncation, the total truncated area, is

ecreasing as the resolution increases [12,43] . 

The contact stiffness obtained using the proposed method was stud-

ed using simulated surfaces of varied resolution. Results obtained from

cans with resolution ranging from 1024 ×1024 to 32,760 ×32,760 pix-
310 
ls over an area of 1 ×1 mm 

2 are compared in Fig. 5 (a). The effects of

runcation increment size are shown in Fig. 5 (b). For both scenarios, the

aximum truncation depths are up to half of the roughness amplitude,

hich is roughly the mean plane of the rough surface. The shaded error

ars are obtained from ten simulations for each resolution and trunca-

ion step size. For relatively low-resolution surfaces, a clear resolution-

ependence can be observed, while this trend tends to diminish as res-

lution increases. Similarly, simulations using 200 or more increments,

p to 5000, appear to have small differences. Therefore, a resolution

igher than 8192 × 8192 with more than 200 increment steps appears

ufficient for the truncation method to provide results yielding negligi-

le resolution sensitivity and numerical convergence. 

With an increasing resolution, the contact area, and therefore, the

ontact stiffness approaches the asymptotic limit. This is consistent

ith the other fractal-based models [3,4,13,14,18] , in which scale-

ndependent contact area and contact stiffness can be achieved. Even

hough a converging trend has been observed based on the proposed

ramework, the question remains on quantitatively estimating the con-

act area, interfacial void, contact resistance, and any other quantity

hich depends on extremely fine details. The ongoing fractality shown

y the hierarchical surface structures may effectively become less impor-

ant for interfacial properties on a critical length scale marking the de-

ned mechanical interaction, electron transport, heat transfer, etc. This

an be generally supported by experimental research with observed val-

es of interfacial parameters, such as contact stiffness, electrical contact

esistance, and friction etc. [3,20,52,61,62,75–77] . This convergence

rend will be discussed in details in our following work. In this paper, the

orizontal resolution of the generated surface is set as around 100 nm,

.e., 10,240 ×10,240 pixels over an area of 1 ×1 mm 

2 , and 200 incre-
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Fig. 5. Sensitivity studies on spatial resolution and increment steps on the calculated contact stiffness using the truncation method: (a) pixel level; (b) number of increment steps. The 

inputs of the compressed surfaces are as follows: D in = 2.5, R t = 10,000 nm and W r = 100 μm. 
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ent steps are considered in the integration process for estimating the

ontact force. 

. Applications and discussion 

.1. Nanoindentation on roughened surfaces 

The normal contact stiffness of three types of treated surfaces was

ssessed using nanoindentation (Agilent G200) with three flat inden-

er tips of different diameters of 54.1 μm, 108.7 μm and 502.6 μm (FLT-

050, FLT-D100, and FLT-D500, respectively, SYNTON-MDP). In order

o evaluate only the elastic responses, partial unloading tests were suc-

essively performed at ten intervals by decreasing the applied load by

0% each time. The loading level of each successive unloading stage

s twice that of the preceding one, with a maximum load of 500 mN

eached during the final unloading step [20,61] . The obtained contact

tiffness, in units of N/m was further transformed to surface stiffness in

nits of Pa through 𝐸 𝐶 = ( 
√
𝜋𝐾 )∕( 2 

√
𝐴 ) where A is the projected area

f the flat indentation tip. The experimental results show that the re-

ation between the contact modulus and applied loading force can be

escribed as E c / E = 𝛽[ F /( EA )] 𝛼 . Correlations between the surface pa-

ameters and, 𝛼 and 𝛽 the evaluated are detailed in [20] . From the

resent experiments, the exponent 𝛼 of the obtained power law relation

hows strong dependence on surface fractality, while the roughness am-

litude is found to govern the magnitude of parameter 𝛽. The maximal

ndentation depth reached is around 5 μm, which is comparable with the

oughness amplitude. The experimentally observed low-level compres-

ion depths suggest that the contact stiffness over a wide stress range

s strongly affected by finer surface details, which are superimposed on

he basic waves. These finer features may not be included in the study of

ontact mechanics governed by the surface structure [3–5,12] . Specif-

cally, the considered finest feature of the roughness can be different

n various engineering applications. The electrical contact resistance

61,76] and adhesion [78] have found to be sensitive to fine surface

tructures at smaller length scales. However, the influences of surface

tructures on interfacial thermal conduction can be well described using

MS surface roughness, which depends primarily on basic wavelength

79] . 
311 
.2. Comparison with experimentally measured contact stiffness 

Contact analyses using the proposed truncation method are pre-

ented in Fig. 6 . For SMAT and GB surfaces, the numerical results

btained from simulated surfaces are in good agreement with exper-

mental results, particularly for low applied pressures, correspond-

ng to small truncation depths, in the range 0 to 10.0 ∼ 15.0% R t ′ ,

0.0 ∼ 35.0% R t ′ , 32.5 ∼ 37.5% R t ′ , and 25.0 ∼ 30.0% R t ′ for simulated

urfaces, Ps, SMATs, GB300s, and GB50s, respectively. 

It can be found in Fig. 6 that the predicted results for polished sam-

les show the most significant divergence between numerical and exper-

mental results in particular for interferences greater than 15% R t ′ . This

s likely the result of several factors, notably the misalignment of the in-

enter with tested surfaces and roughness features that may be present

n the flat diamond tip (measured to have an RMS roughness of around

.05 μm) as well as adhesion, boundary effects and surface hydration,

ll of which yield a more pronounced effect for polished surfaces. Even

hough differences between the numerical analyses and experimental re-

ults can be noticed, by comparing the numerical results obtained from

he mentioned models with the experimental results, we can systemati-

ally deduce the following conclusions: (1) power-law relation between

he contact stiffness of a fractal rough surface and the normal load is

ound; (2) the roughness amplitude represented by R t and R rms plays

 considerable role in determining the amplitude of the function; (3)

he slope of the obtained power functions of the contact stiffness on

pplied normal force are in the range [1/3, 1), depending mainly on

he fractal property of the surface. Comparative analyses of the exper-

mental results with existing models can be found in [16,17,20,52,61] .

t worth noting that linear relationship can be obtained within a certain

ange of normal compression, as shown in [17,19,64,80] . More impor-

antly, in this paper, power-law relationships over a wide range of nor-

al compression load have been experimentally observed and numeri-

ally demonstrated using our proposed method, covering the small-to-

edium load. 

.3. Applicable truncation depth 

As shown in the previous section, the proposed truncation method is

apable of efficiently extracting contact stiffness on the basis of surface
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Fig. 6. Comparison of the experimental results and the contact stiffness obtained using the truncation method using D vs . Normalised stiffness, E C / E , and normalised applied load, F /( EA ), 

are used, with E being the Young’s modulus of the tested material, and A the apparent contact area. The numerical results based on the present method are shown using dashed lines 

with shaded error bars. Solid lines (representing the fitted power functions with the exponent values provided) with error bars are for experimental results. 

Fig. 7. Truncation sections for a typical scanned GB surface at varying heights. The truncation starts from the top of the surface with depths of 10% R t , 20% R t , 30% R t , 40% R t , and 

50% R t , and the estimated contact areas are coloured with red. 
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escriptors for small to medium loads. This method provides an easily

mplemented numerical framework to relate contact behaviour to the

eometrical description of studied surfaces, with tunable resolution and

alculation accuracy, meeting the requirements for various engineering

pplications. However, as the load and the truncation depth increase,

he applicability of the presented method merits further discussion, due

o the complex deformation of the compressed asperities, interaction

etween neighbouring asperities, adhesion, and friction. The applicable

nterference range is discussed below by concentrating on the surface

eometries and asperity interactions. 

In this model, for a given surface interference, the total contact area

nder compression is simply determined from numerical integration of

he truncated areas of the rough surfaces, at the corresponding trunca-

ion height. As shown in Fig. 6 , the proposed numerical procedure is

apable of predicting the contact stiffness until the truncation depth

eaches a certain value. A series of truncation sections for a typical

B300s surface are shown in Fig. 7 . As the surface interference in-

reases, small contacting spots expand, giving rise to increased inter-

ctions between asperity contact regions. A uniform rise in the height

f the non-contacting regions has been experimentally observed [81] ,

howing interactions also at asperity bases. Increasing compression can

lso bring about a variation in asperity shape. As the surfaces approach,

ontacting spots continue to grow and merge with each other, with me-

hanical behaviour transitioning gradually to that of a bulk material.

hese phenomena at large surface interferences result in limitations to

he present truncation method beyond a certain level of deformation. 

In order to quantitatively define the applicable range of the trunca-

ion method, we firstly consider the variation of island numbers with

espect to depth, which can be employed to indicate the interaction be-
 t  

312 
ween asperities. The numbers of contacting asperities at various trun-

ation depths for the four types of studied surfaces over a projected

rea of 3 ×3 mm 

2 with 30,720 ×30,720 pixels are shown in Fig. 8 (a).

his size is chosen to give a meaningful statistical representation of the

slands. As the interference depth increases, the number of contacting

pots reaches a maximum at depths larger than those maximum trun-

ation depths. The range of truncation depths in which the growth rate

f island numbers increases monotonically coincides with the applica-

le range of the present method, as shown in Table 2 . Furthermore, we

onsidered the evaluation of perimeters and areas of all levelled islands

t varying truncating heights using the approach proposed by Mandel-

rot (1984). The correlation law between perimeter, L T , and Area, A ,

or sections of truncated asperities, like islands surrounding by water, is

iven by: 

 𝑇 ∝ 𝐴 𝑇 ( 𝐷 𝑣𝑠 −1 ) ∕2 . (5)

ithin a certain range, the correlation between perimeter and area fol-

ow a power law type behaviour for all the four types of studied surfaces.

owever, as the truncation depth further increases, the exponent expe-

iences a downward trend as is shown in Fig. 8 (b), departing from the

ower law behaviour shown in Eq. (5) . This suggests a critical trunca-

ion depth range, in which a truncated surface can be described by an

nvariant fractal dimension. In this paper, at any given truncation depth,

he curve fitting between L T and A are conducted, with all obtained data

or L T and A to extract the exponent value, and the critical depth is ob-

ained as an obvious decrease for the exponents is observed, as listed in

able 2 . The exponents of the obtained power law relations are all larger

han 0.5, which is the typical value of the exponent obtained in verti-
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Fig. 8. Surface geometry analyses: (a) normalised numbers of contacting spots at various truncation depths for the studied surfaces, where the critical truncation depths, corresponding 

to maximal growth rates of island numbers, are marked with dashed lines; (b) typical log-log plots based on slit island analysis for the four types of studied surfaces (four simulations 

have been carried out for each type of surfaces) with the solid lines having a respective the exponent value, shown in Eq. (5) . 

Fig. 9. Dependence of the normal contact stiffness on the normal pressure: (a) for constant fractal dimension, D in = 2.5 and different relative roughness 𝛿; (b) constant relative roughness 

𝛿 = 0.01 and different fractal dimension D in ;. 

Table 2 

Indicators for the applicable range of the proposed truncation method. 

Surface Maximum applicable depth for truncation 

method (% R t ) 

Depth for the maximum increasing rate of 

island number (% R t ) 

Maximum depth for surface exhbiting 

fractality (% R t ) 

Ps 10.0–15.0 33.0–33.5 25.0–30.0 

SMATs 30.0 –35.0 36.0–36.5 32.5–37.5 

GB300s 32.5–37.5 31.0–31.5 30.0–35.0 

GB50s 25.0–30.0 34.0–34.5 27.5–32.5 
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al section analysis for an asperity in regular shape, such as a sphere or

one. 

Despite the fact that the two indicators we choose here are based only

n surface topology, these geometrical features are closely related to the

echanical responses under normal compression. Within the range of

runcation depths suggested by the two indicators, contacting asperities

end to be sufficiently isolated and thus respond to the external load-

ng individually. Moreover, in this range, an invariant fractal dimension

an be applicable to describe the multi-scale nature of the surface. At

 truncation depth beyond this range, interactions between neighbour-

ng asperities will have a significant influence on the contact, causing a
313 
hange of asperity shape, non-ignorable adhesion, sliding at interfaces

tc. Even though the applicable range may also be affected by the me-

hanical properties of the material, including hardening, Poisson’s ra-

io, and scale-dependent yielding strength, the purpose of this paper is

o present a numerical framework to consider the structure dependent

ontact behaviour. 

.4. Parametric study using the truncation method 

In order to relate the surface structure, represented by descriptors

ncluding fractal dimension, roughness amplitude and wavelength, to
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Fig. 10. (a–e) Correlation between the stiffness variation exponent 𝛼 and values of fractal dimension characterized using different methods; (f) Correlation between the stiffness magnitude 

𝛽 and values of roughness amplitude, 𝛿. Horizontal and vertical error bars show the corresponding standard deviations from the surface measurement and curve fitting. 

c  

f  

f  

t  

w  

1  

t  

l  

o  

0  

s  

a  

2  

m  

p  

n  

c

a

i  

n  

s  
ontact stiffness, contact analyses are conducted for fractal rough sur-

aces with various surface topographies. The contact analyses were per-

ormed under conditions of small surface interferences as discussed in

he previous section, in a regime where the truncation method performs

ell. Two groups of surfaces (10,240 ×10,240 pixels over an area of

 ×1 mm 

2 ) were generated and analysed by the present model, with

he maximum surface interference being 0.1 R t . One group of simu-

ated surfaces was generated with a constant fractal dimension value

f D in = 2.50 and a varied roughness amplitude 𝛿 (0.000625, 0.00125,

.0025, 0.005, 0.01, 0.02, 0.04, 0.08, and 0.16). For the second group,

urfaces were set with the same relative roughness amplitude, described
314 
s 𝛿 = R t / W r = 0.01 and exhibited varying fractality D in (2.10, 2.30, 2.50,

.70, and 2.90). In order to further test the repeatability of the present

odel, we analysed five simulated surfaces for each individual set of in-

ut roughness parameters. Fig. 9 shows that the predicted contact stiff-

ess exhibits a power-law relation with the applied normal load, which

an be described as E c / E = 𝛽[ F /( EA )] 𝛼 . The parameters of exponent 𝛼

nd magnitude 𝛽 are related only to surface structure. The exponent 𝛼

ncreases with values of fractal dimension, D in , while the relative rough-

ess amplitude, 𝛿, indicating primarily the vertical scale of the rough

urface, dominates 𝛽. The correlations for the stiffness parameters, i.e.,
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Table 3 

Fitting functions for the stiffness parameters, 𝛼 and 𝛽, using D in and 𝛿. 

Fractal dimension 𝜶 Coefficient of correlation (for 𝜶) 𝜷 Coefficient of correlation (for 𝜷) 

D in 𝛼 = 0.209 D in + 0.090 0.940 \ 

D tri 𝛼 = 0.313 D tri − 0.186 0.948 \ 

D box 𝛼 = 0.394 D box − 0.347 0.966 \ 

D vs 𝛼 = 0.328 D vs − 0.258 0.980 \ 

D sp 𝛼 = 0.229 D sp + 0.071 0.741 \ 

𝜹 \ 𝛽 = 0.0386 𝛿 − 1.122 0.992 
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and 𝛽, using 𝛿 and D were obtained and shown in Fig. 10 . The corre-

ponding fitted functions are presented in Table 3 . 

The plots shown in Fig. 10 examine the effects of using different

ethods for the evaluation of the fractal dimension of rough surfaces

n contact [3,6,11–13,20,61] , namely the triangulation method ( D tri ),

ox-counting method ( D box ), vertical sections method ( D vs ), and power

pectrum analysis ( D sp ). The obtained fractal dimensions are expected

o differ somewhat due to the use of different calculation methods. As

hown in Fig. 10 and Table 3 , using fractal dimension obtained from dif-

erent methods will produce different fitting functions in terms of 𝛼( D ).

hus it is necessary to clarify how the fractal dimension is extracted and

he applicable interference and/or load range of the chosen approach of

ontact mechanics. However, the regression factors for fitting functions,

( D ), are greater than 0.94 in most cases, except the one using the power

pectrum analysis, demonstrating a strong correlation with fractality. 

. Conclusion 

In this paper, we propose an efficient numerical approach for calcu-

ating the contact stiffness of fractal rough surfaces under compression

y considering a series of truncation sections and discuss the applica-

le range of this method. Numerical predictions of contact stiffness are

enchmarked with experimental data over a wide range of applied nor-

al loads, showing a quantitative agreement with measurements for a

ange of different rough surfaces. Parametric analyses were carried out

or simulated surfaces with varying surface topologies, to establish cor-

elations between the obtained contact stiffness and surface roughness

escriptors, including the fractal dimension and roughness amplitude.

ased on the results and discussion presented, the following conclusions

an be drawn: 

(1) Fractal rough surfaces can be well described using three key pa-

rameters including roll-off wavelength, amplitude roughness and

fractal dimension. For diverse surface structures flattened by a

rigid flat, a unified power law function between the contact stiff-

ness and the contact load can be found both experimentally and

numerically. The exponent of the obtained power law relation

increases with values of fractal dimension, while the magnitude

decreasing exponentially with the relative roughness amplitude. 

(2) The numerical solutions of the proposed method for contact stiff-

ness versus contact load are in good agreement with experimental

results over a wide range of normal compression. The surface in-

terference range over which the proposed truncation method is

applicable, can be determined by monitoring the variation of the

number of contact islands in truncated sections, and the evolu-

tion of the total perimeter and area of these islands, as trunca-

tion deepens. These geometrical features are closely related to

the mechanical responses under normal compression indicating

the interactions between asperities. Within the applicable range,

an invariant fractal dimension can be employed to present the

hierarchical properties of the surface structure. 

(3) The parametric analyses presented in this study suggest that dif-

ferent methods for characterizing the fractal dimension of a rough

surface may lead to different predicted contact stiffness within

the applicable interference for approaches based on fractal the-

ory. This implies that the characterization method applied to de-
315 
termine this surface descriptor can affect somewhat the predicted

contact mechanics. 
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