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The structure of mono-sized sphere packings (diameter d) in cylindrical containers (diameter D and height
H) both with and without inner cylinders (diameter Di) has been investigated in detail by means of advanced
X-ray computed tomography. The geometrical parameters were varied in a wide range; in all experiments 1d
vertical vibration was applied. Five experiments were selected with characteristically differing local packing
structures. The influence of container geometry, filling and vibration procedures on the formation of regular
packings is discussed and a simple correlation is presented to assess whether structured packings occupy a sig-
nificant fraction of the total packed volume.
For a packing withmoderate densification, the regular structures are restricted to small wall zones and a random
packing exists in the largest part of the packing volume. By selecting appropriate vibration parameters, the zones
with regular structures can increase considerably and can persist in the total packed volume. The increasing
crystallisation causes an increase of the container packing fraction. For cylinders with H/D ≫1 and moderate
D/d, regular structures develop preferentially in radial direction from a hexagonal layer at the concave wall.
For H/D b 1 and D/d ≫ 1, hexagonal dense structures grow preferentially above the flat bottom plate and can
occupy a great portion of the total volume. The role of granular convection on these crystallisation processes
has been addressed. Previous statements that the thickness of wall zones is ≈(4–5)d are not generally valid
for mono-sized sphere packings; the development of a comprehensive correlation is the task of a future work.
Structural details of the packings close to concave, plane and convexwalls are analysed via void fraction distribu-
tions, sphere centre positions, contact angle distributions, coordination numbers, radial distribution function
and Voronoi tessellation. The combination of these methods provides a comprehensive understanding of struc-
tural details. Only a few characteristic results are presented; special topics will be the subject of forthcoming
publications.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The knowledge of the packing structure of granular beds is of impor-
tance for a range of technical applications [1–4] where heat and mass
transfer processes depend on the non-homogeneous porosity in the
packed beds. Historically, first detailed investigations with spherical
particles aimed to determine the main global structural property,
i.e. the packing fraction γt in the container defined as the ratio of the
volume occupied by the particles to the total packing volume (the
corresponding void fraction εt is then εt = 1 − γt). Systems with one
nominal sphere diameter d (single-sized spheres) were investigated
as well as mixtures of spheres with two or more diameters (binary,
ternary systems) [5–18].

Besides technical applications, the packing of mono-sized spheres
received significant interest for the simulation of crystallisation pro-
cesses [19–27]. In this work, the term crystallisation is used for the
ann).
generation of regular packings. Various measures were devised to
quantify packing arrangements mostly analysing structures far away
from walls. In the present investigation, some of these measures are
used for the first time in detail to quantify packing structures induced
by walls.

An extensive host of literature exists about packing topics, thus
the present work is not aimed to provide a comprehensive overview
and only a few pertinent papers are actually revisited and critically
discussed in the light of our findings.

In technical applications, large amounts of spheres are often re-
quired and produced economically by processes which generally result
in sphere diameters with appreciable variations in respect to the nomi-
nal diameter d, sphericity, roughness etc. Information on diameter
toleranceswas sometimes given by listing the usedmesh [8] sizes with-
out information on diameter distributions. Furthermore, non-spherical
pebbles can exist within a mesh class, which may have been sorted
out or not [8,11]. The reason of these comments is that packing struc-
tures depend sensitively on the above-mentioned quantities and some
results from previous investigations might have been masked by
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inaccurate specifications. In the following, we use the term “mono-
sized” for spheres with negligible tolerances regarding diameter
and sphericity. The present experiments have been performed using
spheres with deviations from nominal diameter and sphericity of 1%
or less. Systematic tomography investigations on the influence of larger
deviations on packing structures are currently performed.

It has been known for a long time that within a packed bed the
packing structure is not homogeneous: in the bulk, a random particle
packing can exist, whereas a structured packing occurs in zones near
the walls, as demonstrated first by measured void fraction fluctuations
[13–17].

The influence of these regular structures on γt could not be investi-
gated in detail for many years and experiments focussed on the
measurement of γt as a function of the container dimensions (for cylin-
drical containers: diameter D, heightH). The resultswere presented as a
function of d/D, see Fig. 1, and d/H, see e.g. [6,8,11,18]. Characteristically,
γt decreases with increasing d/D and d/H due to the increase of the
volume fraction of the wall layers, where, in the part adjacent to the
wall, the local packing fraction is the smallest, as outlined in Section 4.3.

One of the key quantities is the extrapolated value for γt at d/D = 0
and d/H= 0, representative of random close packing (RCP) in infinitely
large containers. The value γRCP is also important for crystallisation pro-
cesses. Recent X-ray tomography experiments [25] confirmed the value
γRCP ≈ 0.64, already determined in the mid-20th century [8,10,13].

Fig. 1 shows also results for random loose packing [6]: the extrapo-
lated packing fraction for d/D = 0 is close to 0.59 [25].

However, there has been also evidence that structured packings
must not be restricted to small wall zones but can exist in the largest
part of the packed volume: Using cylinders with H/D b 1, D/d N 20 and
H/d ≈ 15, hexagonal close packed structures were observed [12,21]
which had built up on the bottom plate. Values for γt were not given,
however, owing to the dominance of hexagonal structures it is expected
that γt was significantly greater than γRCP. For long cylinders with D/d
≈ 10 [22] the ordered structures had built up on the cylinder wall and
γt N 0.65 was measured. More recently, detailed experiments with dif-
ferent modes of vibration and filling procedures were performed by
An et al. [28–30] using cylinders with moderate H/D values. For 2d
and 3d vibrations, very high packing fractions were obtained (Fig. 1)
and hexagonal structures at the packing surface were observed.

In the above cited investigations, the cavity was filled with all
spheres before starting to vibrate (one step filling, 1sf). By continuous
filling (small feeding rates during vibration) or batch-wise filling
(stepwise filling with subsequent vibration) [20,28–30], even higher
packing fractions were achieved, Fig. 1, because this procedure favours
the most the generation of dense structures.

To summarise, it can be stated that packing fractions γt above
the random close-packing curve in Fig. 1 result from the contribution
of regular packing zones. This implies that the curve for maximum
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Fig. 1. Correlations for container packing fractions γt of spheres of diameter d in cylinders
of diameter D and height H.
packing fractions in very large containers should reach γt ≈ 0.74,
the maximum value corresponding to hexagonal dense packings,
and must decrease with increasing d/D and d/H. Already MacRae [7]
stated “…there are only two explicitly definable states of a packed
bed: (a) where the porosity is a maximum, and any increase would
give rise to a cloud of separated particles…(b) where the bed is com-
pletely ordered and a close-packed arrangement exists. Any condition
intermediate between these two is not defined, in a sense that mechan-
ical energy imparted to the bed might change the voidage.”

As mentioned above, investigations of internal packing structures
began with the measurement of radial void distributions in cylindrical
containers [13–17,31–33], cf. also Fig. 2. Starting at the wall, fluctua-
tions were observed which damp out after distances of (4–5)d. The
measured minimum void fractions of the wall layers were N0.2 and
the bulk packing fraction was γb ≤ γRCP. Results for a flat wall [14]
did not differ significantly. These early results were the basis for
many empirical correlations, cf. the overview [34]. It should be noted
that these experiments were affected by rather limited spatial resolu-
tions and accuracies.

The use of X-ray computed tomography, CT, has expanded extraor-
dinarily the experimental potential for studying packing structures: be-
sidemeasuringmuchmore accurately radial and axial void distributions
(RVD and AVD, respectively), advanced CT facilities enable the determi-
nation of topological quantities such as contact numbers, contact angle
distributions, and even contact surfaces [24,25,35–48].

In parallel to this experimental progress, the mathematical descrip-
tion of the interaction and kinetics of large numbers of spheres (discrete
element modelling, DEM, techniques), originally developed by Cundall
[49], has also advanced significantly and has become a powerful tool
not only for packing experiments but also for mechanical particle-to-
particle interactions and granular flows, see e.g. [50–51].

Fig. 2 shows a comparison between CT results and DEM simulations
[52] for mono-sized spheres in a cylindrical container with γt = 0.616.
Regular structures are observed both at the cylinder wall and the bot-
tom and top plates; a bulk zonewith randompacking exists in between.
Fig. 2(a) and (c) shows the CT positions of the sphere centres in the
horizontal x′-y′ plane and in the plane defined with the radius r′ and
the vertical direction z′, respectively. Fig. 2(b) and (d) displays CT and
DEM void fraction distributions, respectively. The void distributions
are well matching, alongwith the characteristic sphere centre positions
close to walls, see the DEM results in [52].

The benefits of combining CTwithDEMwere outlined in [53], where
the CT measurement errors can be overcome by introducing small dis-
placement perturbations to reach the equilibrium state using DEM.

2. Influence of container geometry, filling and densification
techniques on packing structures

In most technical applications, the aim is to generate dense particle
beds in containers, associated with the occurrence of regular packing
structures. The complex interaction of geometrical parameters, particle
material properties, filling as well as vibration modes on the formation
of regular structures makes it difficult to draw general conclusions.

2.1. Container geometry

Most packing fraction experiments were performed with vertical
cylinders as containers; relevant parameters are D/d, H/d and H/D. For
annular containers (inner diameter Di), additional parameters come
into play, namely Di/d and the dimensionless annular width (D− Di)/d.
For rectangular containers, corresponding ratios can be defined em-
bracing the lateral dimensions of their basis.

The particle packing in the containers can have a free upper particle
surface, the containers can have amovable piston on the top as well as a
lidwhich is tightened during vibration. Alternatively, the containers can
be closed, except for a small opening for filling purposes. The packing



Fig. 2. Sphere centre positions and void fraction distributions: comparison between CT measurements and DEM simulations [52].
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condition at the top of the packing influences the development of regu-
lar structures and by this γt. In previous works, details of the conditions
on the packing top were often not given.

Cylindrical containers with H/D ≫ 1 were used in order to mini-
mise top and bottom effects [6–11,18,19,22]. Circular containers with
H/D ≈ 1 are of interest, compare Fig. 2, if the system is subjected after-
wards to uniaxial compression tests, UCTs, used for the determination of
mechanical properties of particle beds [54]. In these cases, a movable
disk/piston at the top is generally used in order to generate a horizontal
packing interface. For some applications, values of H/D ≪ 1 are of
interest [54]. In this case, the curvature effect D/d disappears and the
geometry approaches that of a shallow bed. There are only a few exper-
imental investigations on packing structures in annular geometries.
For an annular width of 7d [14], the radial void fluctuations were inter-
connected, whereas for 14d [55] a bulk zone existed in between. Total
packing fractions were b0.62. In an experiment with an annulus width
of 11d and D/d = 120 [27] an almost perfect hexagonal dense wall
structure along with a very large packing fraction (γt ≈ 0.69) was
obtained. However, for D/d = 120, curvature effects are small and the
overall structure is close to that of a prismatic container without lateral
constraints.

Prismatic containers are characteristic for e.g. closed blanket compo-
nents in future thermonuclear fusion reactors [4]. In such containers,
the dimensionw′ is characteristically b10% of the two other dimensions
(shallow containers) and w′/d is in the range of 20. These components
must be filled through small pipes positioned at the highest point of
the system [56].

The regularity of packing structures close to planewalls can bemuch
more pronounced than close to curved walls, as shown in detail further
down. For shallow containers, regular wall structures at opposite walls
might easily become interconnected.
2.2. Filling procedure

As mentioned above, 1sf, followed by vibration is the standard tech-
nique. Continuous or batch-wise filling [20,28–30] requires a proper
control of the vibration processes, which might be difficult to achieve
in technical applications. According to [4], the prismatic containers
were connected to a continuous feeding line [56] and particles were
filled in as long as possible during vibration. In smaller experiments,
a step-wise procedure was used [57].

2.3. Vibration modes

In order to generate reproducible results, present vibration devices
operate in a sinusoidal mode, either 1d vertically, 2d horizontally,
or 3d. Vibration is characterised by i) the vibration intensity Γ =
a(2πf)2 ∕ g, where a, f and g are the amplitude of the pulsation, the
vibration frequency and the gravitational acceleration, respectively,
and ii) the normalised vibration amplitude a/d.

Vibration can be applied by using individual pulses, separated by in-
tervals where the system comes to rest [19,22] or by continuous vibra-
tion, which is the standard procedure. In most experiments, the total
container is vibrated. For the sake of comparisonwith DEM simulations,
the vibration was restricted to the bottom plate [21].

For a confined packing at the top using a piston with a constant load
on the top, the packing fraction decreaseswith increasing load [58]. This
method differs from that also used in the present experiments, where
the top lid can be tightened in such a way that individual particles can
still move but granular convection is suppressed.

For a given experimental set-up the packing fraction first increases
with Γ, keeping a/d constant, until a maximum value is reached, desig-
nated as Γc (irreversible compaction branch according to [22]), and then



Fig. 3. Schematics of (a) container, (b) tomography experimental set-up [64].
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decreases. The same tendency is also observed for the variation of a/d at
constant Γ. However, a further significant densificationwas obtained by
decreasing Γ (reversible process) when Γc was reached [22].

Even if only vertical 1d vibration with a free particle bed surface is
considered, the optimum vibration parameters depend in a very com-
plexway on the packing parameters. One reason for this is the influence
of granular convection on crystallisation. Characteristically, axisymmet-
ric convection rolls can occur in cylindrical containers with an upward
flow in the centre and a downward flow at the cylinder wall [59]. In
rather unconfined systems (large ratios of lateral dimension to d), gran-
ular convection was observed for Γ not significantly larger than unity
[60]. However, with decreasing D/d this value increases significantly;
e.g. no convection occurred at D/d ≈ 10, H/d ≈ 500 and Γ ≈ 3 [22]
where a radially dominated crystallised structure was observed. For
D/d ≈ 35, H/d ≈ 16 and Γ ≈ 6, an initial convection roll came to
rest, apparently promoting the crystallisation which started at the bot-
tom [21]. The decrease of convection activity with time was also mea-
sured by [61] who reported the presence of four flow regimes when
increasing Γ: a) slowly stabilising crystallisation, b) convection, c) fast
stabilising crystallisation, d) unstable crystallisation. Surprisingly, the
existence of the convection regime between two crystallisation regimes
was detected.

At present, there is no known relationship between vibration pa-
rameters promoting crystallisation and packing parameters. For corre-
lating the strength of axisymmetric convection rolls, the parameter
(DH)0,5/d was introduced [62]. However, the authors stated that their
correlation is not suitable for defining a limit where convection boosts
crystallisation.

The subject of the present work is the inception of crystallisation
induced by walls. It should be noted that the presence of walls is not
mandatory for crystallisation of packings, as demonstrated both exper-
imentally [30] and by DEM simulations [59,63].

3. Experiments

3.1. Experimental parameters

Continuing previous CT experiments on the morphology and
topology of mono-sized sphere packings in cylindrical containers
[36,37,39,41,43,45,47], a measurement campaign started in 2013 with
the aim of broadening the existing parameter range D/d, H/d, and, by
using internal cylinders of diameter Di, the parameters Di/d and the
dimensionless annular gap width (D − Di)/2/d, see Fig. 3(a). All con-
tainer parts consisted of Plexiglas.

Mono-sized aluminium spheres with d = 2.34, 3.2, 4.0 and 5.0 mm
were used. Optical micrographs of the spheres (2D projections)
were examined with the Leica QWin Suite (version 3.1.0) in order to
measure sphere size distributions as well as the sphere roundnesses.
Diameter tolerances were at maximum 1%, as well as deviations from
the roundness index Rindex = 1.The diameters of the cylindrical con-
tainers were D = 30, 50, 80 mm and the internal cylinder diameters
were Di = 0.6, 2.0, 3.0, 5.0, 10.0, 20.0, and 30.0 mm. The packing height
was 25 b H b 90 mm. Using these dimensions, D/d varies between 6
and 34 and H/d is at maximum ≈38 for 2.3 mm spheres and ≈18 for
5 mm spheres.

At present, more than thirty CT experiments have been performed
and the maximum number of particles in a single experiment was
N100,000. First results were presented in [47].

The containers were filled by gently pouring down the spheres to
form the initial packing. A 10 mm thick Plexiglas disk was placed at
the top and the initial packing fraction was determined by height mea-
surements at different positions. The weight of this disk corresponds to
the weight of less than one particle layer of 2.3 mm spheres and, there-
fore, does not result in a significant particle bed compaction. The con-
tainers were fixed on the table of the vibrating apparatus (Renfert
Vibrax REF 1830000) and were vibrated 1d vertically with f = 50 Hz
or 100 Hz. For each frequency, four power steps could be selected.
Vibration parameters were measured by an accelerometer (Bruel &
Kjaer Type 425), fixed at the container top. The measured ranges were
0.5 b Γ b 6 and 0.04 mm b a b 0.3 mm.With this, the vibration parame-
ters are similar to those in [21,28].

The packings were vibrated with constant vibration parameters
either with the Plexiglas disk at the top or with a free particle bed sur-
face. The comparison of results with/without disks showed that the
disk has a negligible influence on the densification process. The con-
tainers were vibrated until no further densification changes occurred,
controlled by packing fraction measurements at different time steps.
Vibration periods were up to 1 h. At the end of this vibration period,
the top lid was screwed downwards in steps using larger vibration pa-
rameters in order to achieve a plane horizontal packing boundary
which improved to a certain degree the sphere coverage at the top.
During this procedure, the dilatancy of the vibrated packing was con-
trolled in such a way that particles could still change their positions
but granular convection was suppressed. This procedure influences γt

only remarkably when granular convection existed, see Section 4.2. In
this case, besides improving the top wall coverage, the top packing
structure becomes similar to that of the bottom zone. When the first vi-
bration period resulted in a rather stiff packing, the subsequent vibra-
tion procedure had an immaterial influence on packing structures.

Beside the preparation of the tomography experiments, many pack-
ing fraction experiments were performed, not discussed in this article.
The sphere structures at all Plexiglas walls were documented by photo-
graphs and videos at different steps during the vibration period.

3.2. Microtomography and data analyses

The CT data of the specimens were acquired at the ESRF, Fig. 3(b)
[64]. Two experimental campaigns were performed, one on the ID17
beamline and concerns samples A, B and C; the samples D and E were
imaged at the ID19 beamline.

The X-ray beam energy for the ID17 measurements was 140 keV
(monochromatised by a double silicon (1 1 1) Laue crystal system).
The sample-to-detector distance was approximately 11 m. The imaging
detectorwas a Fast Readout LowNoise (FReLoN) 2k CCD camera and the
related optical equipment features a 90mm× 90mm field of viewwith
an effective pixel size of 48 μm × 48 μm. Due to the aspect ratio of the
beam (5 mm height vs. 9 cm width) the samples were vertically
moved after each scan. Each sub-volume was scanned with 2000 angu-
lar positions for the total range of 360°.



Table 1
Characteristic CT values.

Exp. No of spheres Voxel size (mm) d (voxel size)

A 39,895 0.048 49
B 40,826 0.048 49
C 4854 0.048 49
D 7402 0.013 182
E 16,348 0.013 182
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On ID19, in order to reach a sufficient photon flux density as well
as a homogeneous wave front for high quality imaging, the beamline
was operated in pink beam mode. The resulting broad spectrum
is polychromatic but narrow enough for microtomographic applica-
tions. The effective spectrum was trimmed via the gap of the wiggler
insertion device and suitable filters were inserted (e.g. a mean photon
energy of 70 keV was used [65] for Exps. D and E, see Section 4.1.
The sample-to-detector distance was approximately 1 m. The imaging
detector consisted of radiation resistant optics (two Hasselblad lenses
(focal distance = 100 mm) in tandem-arrangement), a single-
crystal scintillator (Ce-doped Lu3Al5O12 (LuAG:Ce) by Crytur, Czech
Republic) and the ESRF in-house-developed CCD camera FReLoN cam-
era (type: 2K, 2048 × 2048 pixels, 14 μm pixel size) [66,67]. The effec-
tive pixel size is 13 μm and the max. field of view is 26 mm × 26 mm,
limited by the beam height of around 13 mm. In order to encompass
the complete specimen, the detector's field being substantially smaller
than the sample lateral size, 360 degree scans were carried out with
the axis of rotation shifted to the edge of the field of view. This allows
stitching projections and hence, creates 180 degree scans with in-
creased lateral field of view. Several tomographic scans were merged
vertically.

We adopted two methods to quantify the pebbles contacts: the first
one is a volume segmentation algorithm based on the watershed
thresholding and run over the Euclidean distance map [68], and the
second is that developed by Aste [25,26].

In both methods one first has to determine the pebble centres. The
identification is based on the maximal balls inscribed in the respective
pebbles (solid phase) [69]. Two maps are generated by this operation,
the first one assigns to each voxel the radius of the largest inscribed
ball as the granulometry operator generates it. The second map is
the set of identifiers of the centres of the maximal inscribed balls. To
compute the inscribed spheres radius, we used the exact Euclidean
distance map and a priority queue [70]. All the voxels of the solid
phase are pushed into the priority queue according to their shortest
distance to the pore space. The voxels v with the highest priority
(highest distance) are firstly removed from the queue and their dis-
tance rv (expressed as an integer number) to the nearest pore is attrib-
uted to every voxel of the ball centred on v and having radius rv. The
identifiers map is generated at the same time using a unique identifier
generated from the coordinates of v. A ball is said to be maximal
if the number of voxels with the same ball identifier corresponds
approximately to the theoretical volume of the known ball radius.
In the present study only one maximal ball could be accommodated
in each pebble. Partial balls may be detected due to either the
discretisation or if pebbles are not perfectly spherical. The maximal
ball centres are then used as markers for the watershed-based seg-
mentation and for the contact analysis carried out through the method
developed in [33].

From the pebble segmentation, generating the pebbles adjacency
graph is straightforward: one simply scans the segmented pebble
map and connects pebbles that have at least one neighbouring voxel
(in 6-connexity). Whilst the maximal ball extraction is not very sensi-
tive to the threshold used to separate solid and pore phases (at least
for small deviations from the threshold's confidence value), the contact
estimation via any segmentation method is highly dependent on the
voxel size and on the chosen threshold. The threshold variations near
the threshold confidence value only affect voxels on the first voxel
layer of the pebble surface. Thus, a lower threshold could artificially
disconnect two pebbles touching each other and, conversely, a higher
threshold could generate a false connection between two disjointed
pebbles. In the present case, the threshold was chosen to fit the experi-
mental porosity value (confidence value). Table 1 summarises some
characteristics of the scanned samples. An important quantity with re-
gard to CT accuracy is the sphere diameter expressed in voxel sizes.
The values listed in Table 1 are significantly larger than those in [26]
where the value was 32 voxels.
4. Results

4.1. Selected experiments

The selected five examples (Exp. A, Exp. B, Exp. C, Exp. D, Exp. E) do
not claim to be representative for maximum packing fractions but ex-
hibit very characteristically differing packing structures, see Table 2.

In all experiments, except Exp. D, the Plexiglas containers were filled
gently in one step with all spheres before the onset of densification.

In Exp. A, the container was moderately densified for about 10 s
by tapping, knocking gently against the container walls and turning
the closed container upside down, similar to the procedure used by
[6,18,25,26]. The aim of this experiment was to avoid the build-up of
large regularwall zones and to generate a RCP in the remainder volume.

For Exp. B, as predecessor Exp. Awasused and vibrationwas applied.
Granular convectionwas suppressed by vibrationwith restricted ampli-
tudes, see Section 4.2.

In Exp. D, about half of the spheres were filled in and vibrated with a
free particle surface. After adding the second half of the spheres (2 step
filling), the system was vibrated further with a free particle surface.
(In later experiments, similar packing structures and packing fractions
were also obtained by 1 step filling.)

For Exps. C, D, and E, stiff packing structures built up at the end of the
first vibration cycle.

Before discussing in detail the results shown in Fig. 4, some aspects
of granular convection are addressed.

4.2. Role of granular convection in respect to crystallisation

In general, packed beds become increasingly fluidic, i.e. favouring
granular convection, by increasing the vibration parameters, and D/d
or H/d. In our experiments, for D/d b 20 no granular flowwas observed
for H/d b 20. For H/d N 20, an initial granular convection could occur
which came to rest after some time. The rangeD/db 20, H/d N 20 is char-
acteristic for radially dominated crystallisation, cf. also [22], see Exps. C
and E in Fig. 4.

For D/d≈ 34, the experiment from [21] with H/d≈ 16 is well suited
for comparison because both the vibration and packing geometry pa-
rameters are in the same range. For Γ ≈ 3 and a/d ≈ 0.13, a hexagonal
packing area occurred on the top after ≈5 min which increased with
time in size, resulting finally in γt = 0.658. In contrast to [21], an initial
convection roll was not observed. For smaller Γ and a/d values, however,
convection rolls, axisymmetric or with inclined axis, occurred frequent-
ly if the container was not centred correctly which corresponds to the
findings from [61].

For large D/d, the instability toward convection increases signifi-
cantly with increasing H/d. For D/d ≈ 34, H/d ≈ 28, Γ ≈ 2.3, and a/d
≈ 0.05, an initially present axisymmetric convection roll came to rest
after some minutes for an optimum container position. Then, with in-
creasing time, an almost perfect hexagonal packing developed at the
cylinder wall, connected with sphere arrangements in form of rings
at the packing surface, most expressed close to the cylinder wall.
Shortly later, hexagonal islands appeared at the surface close to the
cylinder axis, and, characteristically, significant granular convection
emerged in the outward annular zone, destroying the regular radial
structure at the cylinder wall. This effect was always observed when



Table 2
Experimental parameters and packing fraction results; d = 2.34 mm.

Exp. D (mm) Di (mm) H (mm) D/d Di/d H/d /D a/d Γ γt- nom γt-CT γt-CT/γt-CTnoncorr γt-nom/γt-CT

Aa 78.5 3.0 87.1 33.5 1.30 37.2 1.10 0.624 0.618 0.982 1.009
Bb 78.5 3.0 87.1 33.5 1.30 37.2 1.10 b0.23 b3 0.638 0.642 0.994 0.994
C 30.2 – 70.2 12.9 – 30.5 2.30 0.08 2.0 0.635 0.628 0.995 1.011
Dc 50.4 – 39.1 21.5 – 16.7 0.78 0.12 2.8 0.666 0.668 0.986 0.997
Ed 49.1 – 87.0 21.0 – 37.2 1.77 0.12 2.8 0.656 0.658 1.004 0.997

a Tapping.
b Amplitude-limited vibration.
c 2step filling.
d Vibration with free surface.
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the crystallisation, starting on the bottom plate, finally extended over
the largest fraction of the packed volume, cf. Exp. D in Fig. 4. If in this
situation Γ was reduced, γt increased, as measured also by [22]. The
probable reason for this was that the arrangement close to the cylinder
wall became more ordered again without influencing remarkably the
axial crystallisation zone.

The larger H/d at D/d = 34, the more difficult it became to reach a
steady state condition where initial convection came to rest. For the
maximum H/d (H/d ≈ 38), a steady-state situation was no longer
reached. Because granular convection hinders primarily the effective
crystallisation at the cylinder wall, the resulting packing fractions
were b0.64. An increase of γt was only achieved by suppressing granu-
lar convection by successively tightening the top lid. In this way,
large vibration energies could be applied in combination with limited
amplitudes.

It is found that inner cylinders stabilise the packings; for D/Di =
80/20, no convection was observed for all H/d values.

4.3. Void fraction distributions

The accurate CTmeasurement of the void fraction at the wall, ε=1,
is difficult to achieve owing to the large void fraction gradient, the finite
pixel size, the tolerances affecting the cylinder diameter, and the eccen-
tricities between cylinder axis and axis of revolving table, see also [44].
Therefore, the data referring to regions close to thewalls were corrected
using the void fraction relation for spheres at plane walls [17], deduced
from geometrical considerations, given by

ε ¼ 1− 1−ε1minð Þ=0:907 2π=30:5
� �

x−x2
� �

; ð1Þ

where x iswall distance normalised to d and ε1min is themeasured value
of the void fraction minimum at x = 0.5. The term (1 − ε1min) is also
designated as wall coverage. For hexagonal dense packing, this value
is 1 − 0.093 = 0.907; in general, this value is significantly smaller.
The corrected CT results, γt-CT, are considered to be more accurate
than the non-corrected values, γt-CTnoncorr, and will be used in the
following. The packing fraction differences between nominal values
and corrected CT values are at maximum 1%, see Table 2.

Following the procedure introduced previously [43,47], the total
packing volume is divided in different subzones:

A) d/2 wall layer zone and inner zone: The void fraction of the total
packing volume εt is composed of the volume void fractions
εd/2 n in the different d/2 layers, along with corresponding vol-
umes Vd/2 n and the volume void fraction in the remaining
inner volume εi:

εt ¼ Σεd=2 nVd=2 n þ εiVi
� �

=Vt: ð2Þ

The above relationship is useful to determine εi with the gener-
ally known value εt. In the present experiments, the εd/2 contri-
butions of all individual walls were directly measured. For εi b
εRCP ≈ 0.36, respectively, γi N 0.64, structured packings are
expected to play an increasing role. As shown in Table 3, in all
experiments, except Exp. A, γi is larger than 0.64.
In general, εd/2 is obtained by integration of Eq. (1) over x = 0
and 0.5 which results in εd/2 = 1 − (2/3)(1− ε1min). For a hex-
agonal wall layer, εd/2 has the minimum value of≈0.4. The wall
coverages depend on D/d and wall orientation; at the top plate
the values are generally smaller than at the bottom plate; first
results were given in [47]. More detailed analyses will be the
subject of a future paper.

B) Inner radial volume, inner axial volume: In general, radial and axial
void distributions (RVD and AVD, respectively), are determined
using the total packing volume. For the RVD this means that the
void fractions in the top and bottom wall zones, cf. Fig. 2, are
also included in the evaluation. For the volume without these
two wall zones, designated as inner axial volume, Vi-ax, the RVD
is representative for an infinitely long cylinder (no end effects,
d/H = 0 according to [6,18]), therefore, this RVD is termed
“L∞”. Correspondingly, the AVD evaluated with the inner radial
volume, Vi-rad, not including the cylinder wall zones, is desig-
nated as “D∞” because it is more representative for the packing
between two plane walls. Fig. 4 shows these inner volumes
which can be only defined if the respective wall zones are sepa-
rated. In the case that both the axial and radial wall zones are
clearly separated, a random packing exists in the “bulk zone”.
The packing fractions of the different zones are listed in Table 3.

The AVDs and RVDs in Fig. 4 are evaluated both within the total
volumes and, for separated wall layers, also within the corresponding
inner volumes. In Exp. A (moderately densified sample), void fluctua-
tions are damped out at the outer cylinder wall (designated as concave,
cc, wall) after≈5 wavelengths. It should be recalled that for hexagonal
densely packed structures one wavelength corresponds to a thickness
of ≈0.82d; at the cc wall slightly larger values were measured. At the
flat top and bottom plates and at the convex, cv, inner cylinder wall
≈4 wavelengths are observed; a large bulk zone exists in between. In
this case, γb is close to γRCP.

In Exp. B, the regular structures at the cc wall and the bottom plate
are significantly more developed compared to Exp. A. The regular
structure at the top plate is less expressed than at the bottom plate be-
cause gravity promotes regular bottom structures both during filling
and vibration. All wall zones appear still to be separated but the zone
in between is much smaller than in Exp. A. The small fluctuations in
this zone, however, indicate that a “pure” random packing no longer
exists. This is also confirmed by the value for γb which is larger than
γRCP, see Table 3. In many other experiments with inner cylinders,
not presented in this article, the cc and cv wall zones are strongly
interconnected.

In Exps. C–E, no inner cylinders were used. Exp. C is representative
for cylindrical containers with H/d N 1 and a small D/d value. A radially
dominated regular structure exists in the total cross section. An inner
radial volume according to the definition above does not appear.
Analysing in more detail the fluctuations of the AVD, it proves that
they originate from the well-developed radial oscillations.
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Fig. 4. AVDs (a) and RVDs (b) for Exps. A–D, cf. Table 2.

477J. Reimann et al. / Powder Technology 318 (2017) 471–483



Table 3
Zone packing fractions.

Exp. γt-CT γd/2 γi γH∞ γD∞ γb

A 0.618 0.468 0.634 0.636 0.634 0.635
B 0.642 0.466 0.652 0.650 0.647 (0.650)a

C 0.628 0.499 0.653 0.633
D 0.668 0.559 0.687 0.731
E 0.658 0.536 0.675 0.649

a No longer pure random packing.
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Fig. 6. RVDs (Vi-ax) at cc cylinder walls.
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Exp. D is characteristic for cylinders with H/D ≤1. In this case,
crystallisation has started from the bottom plate and persists over the
total packing height. The cc wall zone is less regular than in the other
experiments because of the influence of the dominating axial structure.
The AVD for the inner radial volume shows a much larger regularity
than the AVD evaluated for the total volume. The packing fraction γD∞

is quite close to themaximumvalue of 0.74 for hexagonal dense packing,
see Table 3.

The vibration effect on a sample with a free particle surface is shown
in Exp. E: A regular structure has built up from the bottom plate with a
thickness of about 7wavelengths. Above this region, the radial structure
is increasingly prevailing in the cross section. The regular structure at
the top plate is not well-developed. The fluctuation of the AVD in the
upper part originates also from the radial oscillations. For Exp. E, an
inner radial volume can be only defined for the bottom zone. Here,
large differences in the AVD are observed.

Details of packing structures can be better demonstrated byusing re-
sults from the inner radial or axial volumes, therefore, the following
analyses are based on the related data.

Figs. 5–6 show void distributions as a function of the dimensionless
wall distance x. Fig. 5 compares AVDs at theflat bottomplates: the curve
for Exp. D is close to that for perfect hexagonal packing (εmin = 0.09,
layer distance 0.817d). The double peaked void maxima were clearly
measured for the first time. They result from the coexistence of two
neighbouring sphere layers, as calculated first by [17]. In Exp. E, the
large regularity of the first layer decreases with increasing x.

RVDs for cc walls are summarised in Fig. 6: For Exps. B, C, and E,
the wall layer void fraction minimum indicates that an almost dense
hexagonal packing exists. However, double peaks, are not measured.
Because of wall curvature, the contact points with the second wall
layer must shift radially inwards and by that, the first void minimum
should shift to x N 0.5 [14]. In practice, there are other effects which
can compensate for this effect, as already stated in [17]. The reason for
the stronger decay of regularity in the vicinity of cc walls compared to
packings at flat walls is discussed in detail in Section 4.4.

In respect to convex wall layers, only the result for Exp. B with
Di/d = 1.3 is presented, see Fig. 4. For this value, the fluctuations damp
out after a small wall distance. In other experiments, not shown here,
the increase of the cv wall zone with increasing Di/d was measured.
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Fig. 5. AVDs (Vi-rad) at plane bottom walls.
This section has demonstrated that wall fluctuationsmust not damp
out as fast as previously assumed [14,34]. The development of a more
comprehensive correlation remains a challenge for future work.

4.4. Wall layers

The regular layers at transparent cylindrical walls have attracted
many researchers and have given rise to speculations on how these
structures continue inwards. For tapped sphere beds, only small regular
zones are observed, see Fig. 7(a). After the onset of vibration, regular
structures form fast at the cc wall and a state can be reached where
almost all wall spheres are arranged in a hexagonal dense layer.
Fig. 7(b) shows such an arrangement with “horizontal sphere chains”,
which preferably start to build up from the bottom. In an early work
[8] it was assumed that owing to gravitational stability, the vertical po-
sitions of the spheres in the next wall layers are the same as in the 1st cc
layer. This structure was designated as double-nested [8] or tetragonal-
sphenoidal [16]with a packing fraction of 0.698. The existence of hexag-
onal dense packings according to the fcc or hcp structure (see below)
was excluded because of the gravitational instability.

For free surface vibration and cylindrical containers with H/D ≫ 1,
the occurrence of “vertical sphere chains” is also characteristic. Zones
with both types of sphere chains are often observed, as well as other
oblique chains due to vibration asymmetries. Exp. E is an example
where the two distinguished structures coexist, see Fig. 7(c). However,
with further vibration, the zones with vertical sphere chains tend to
shrink and eventually the total ccwall can be covered by a dense hexag-
onal array of horizontal sphere chains.

Selected sphere layers can be simply visualised by plotting the CT
sphere centre coordinates, cf. Fig. 2, in a chart with z′ and the cylinder
angleφ as coordinates. Circleswith diameters equal to the sphere diam-
eter are used as symbols.

Fig. 8 shows a portion of the cc wall region of Fig. 7(c) with vertical
sphere chains. In theupper part, sphere positions of the 1st and 2ndwall
layer are plotted. The spheres of the 2nd layer in the column below the
sphere A fit in the interstices between three neighbouring spheres of
the 1st layer, corresponding to a locally hexagonal dense lattice. With
increasing wall distance, the radius decreases on which subsequent
sphere centres are located. Therefore, 2nd layer spheres in the columns
adjacent to A are shifted to positions where locally a hexagonal dense
packing is no longer possible. For the column B, a position is reached
where the 2nd and 1st layer spheres are arranged in an orthorhombic
structure. The 2nd and following cc wall layers can therefore be consid-
ered as mixtures of hexagonal dense and orthorhombic structures. This
is confirmed by the positions of the spheres of the 3rd cc layer, shown in
the lower part of Fig. 8.

For horizontal sphere chains at the ccwall, see lower part of Fig. 7(c),
the structure in the subsequent layers is similar to that outlined in Fig. 8,



Fig. 7. Photographs of cc cylinder wall layers.
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i.e. a double-nested or tetragonal-sphenoidal packing according to [8]
has no relevance in our experiments.

Fig. 9 shows sphere layers for the bottom zone of Exp. D. Except for
the spheres close to the cylinder wall, a hexagonal dense sphere
arrangement exists in the 1st layer, labelled as Type A. The spheres of
the 2nd layer (Type B) are located in the interstices of the 1st layer.
The spheres of the 3rd layer can be arranged either as Type A or, as it
is the case in Fig. 9, fill the other available interstices (Type C). The re-
peating sequences AB or ABC correspond to the hexagonal close packed,
hcp, crystal structure, and the face centred cubic, fcc, crystal structure,
respectively [20]. In sphere packings above horizontal plates, random
sequences are expected; and the term dense hexagonal packing used
in this work refers to the case of arbitrary sequences. In all cases the
packing fraction is 0.74 and the coordination number Nc is 12.

4.5. Contact angles

Regular packing patterns are also reflected in characteristic distribu-
tions of the contact positions on the spheres, expressed by the poloidal
contact angle ϑ, starting at the North Pole, and the azimuthal angle ψ
[41,43]. For spheres above the bottom plane, ψ is defined using a fixed
Cartesian x′-y′ system; for spheres close to cylinder walls, ψ starts per-
pendicular to the radial vector, see Fig. 10. Contacts between Plexiglas
walls and aluminium spheres were not measured by CT, hence, only
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Fig. 8. Upper portion of Fig. 7(c): 1st, 2nd and 3rd wall sphere layer.
contacts with other spheres are presented. Frequencies for 10° groups
are shown in Figs. 11–13. For the poloidal angle, the frequencywas nor-
malised by the corresponding surface increment. For the 1st cc wall
layer of Exp. B, Fig. 11, sharp “crystallinity” peaks at ϑ ≈ 30°, ≈90°,
and ≈150° are present, cf. Fig. 7(b). With increasing layer number,
the peaks become weaker and for the bulk zone a rather homogeneous
distribution is found. The azimuthal angle for the 1st cc layer has strong
peaks at ψ ≈ 0° and 180° but no peaks appear in between, Fig. 12. A
number of peaks, generated by second layer spheres, are observed be-
tween 230° and 320°. Again, a flat distribution is obtained for the bulk
zone.

For the dense hexagonal packing in the bottom zone of Exp. D, out-
standing poloidal peaks occur, as expected, at ϑ ≈ 35°, 90° and 145°.
Regarding ψ, Fig. 13, in the 1st layer there are six contacts from
neighbouring 1st wall layer spheres, separated from each other by 60°,
and additionally, displaced by 30°, three contacts originating from 2nd
layer spheres, separated by 120°. The second layer has 3 more contacts.
These corresponding ψ values are relevant for the ABC stacking.

4.6. Coordination numbers

The determination of coordination numbers Nc from experiments
encounters problems because of the finite spatial resolution (in CT
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Fig. 9. Exp. D: bottom zone sphere layers.
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measurements: the voxel size), as well as deviations from the nominal
sphere diameter. This results in uncertainties with respect to sphere
positions and diameters which might affect the correct evaluation of
Nc. This issue was tackled in detail by [25], where a computational
method was used based on the uniform expansion of the spheres. For
a diameter value of slightly larger than 1.02d a good agreementwas ob-
tained with previous results from literature. Later on, a more sophisti-
cated method was applied [26], resulting in effective d-values slightly
above the previous ones.

With the watershed algorithm (see Section 3.2), Nc is determined
directly. The bulk zone of Exp. A is suited to compare our method with
those from [25,26], because of similar packing fractions close to γRCP,
see Table 3. Our results agree well (not shown in this article) with
those from [26] for an expanded diameter of 1.05d, thus giving confi-
dence in our evaluated Nc values for other cases.

For the RCP, Nc was experimentally determined to be ≈7 [26],
whereas Nc must be 12 for hexagonal dense packings, except for the
first wall layer, where Nc = 9. The Nc distribution close to cc walls
was first investigated by [31] and, apart from the first layer, Nc was
≈8, independent from wall distance. Again, it should be reminded
that previous measurement techniques were associated with larger
uncertainties.

For the well-ordered cc wall zone of Exp. B, Fig. 14, Nc peak values of
7 and 8 are obtained for the 1st and 2nd cc layer, respectively. For the
other layers, as well as for the zone in between the wall zones, Nc ≈ 7.

Fig. 15 presents Nc results for the inner volumes of Exp. D: in the
large regular structure in the bottom region, Nc=12 and no remarkable
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Fig. 11. Exp. B: Poloidal angle distribution (Vi-ax) for cc wall zone.
differences exist for the different layers, with the exception of the 1st
layer with Nc = 9. Much less regular is the packing in the 1st layer of
the cc wall.

4.7. Radial distribution function

The radial distribution function (RDF) is the probability of finding
one particle centre at a certain distance r (distance normalised by the
sphere radius) from the centre of a given particle, defined by

RDF rð Þ ¼ ΔN rð Þ∕ 4πr2Δrρ0
� �

; ð3Þ

where ΔN(r) is the number of sphere centres situated at a distance
between r and r + Δr from the centre of a given sphere and ρ0 is the
average number of particles per unit volume in the packing. The RDF
has been used first by [9] using experimental data and has become a
standard tool for DEM simulations. For the CT experiments in [25] the
RDF was calculated for RCP. Our result for the bulk zone of Exp. A, not
shown in this article, agrees very well with those in [25].

Results for the bottom zone of Exp. D, Fig. 16, show first large peaks
for r=1, √2, √3. For layerswithABC stacking sequence (fcc crystal), less
peaks appear compared to the ABA sequence (hcp crystal), e.g. a peak at
r = 1.91 exists only for the ABA sequence. This peak occurs first in the
5th layer, consequently, the sequence ABCABA must exist. This could
be also confirmed by plotting the sphere positions in the corresponding
layers according to Section 4.3.
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For the ccwall zoneof Exp. B, Fig. 17, already the RDF for the 1st layer
displaysmuch less details compared to Fig. 17. This is another proof that
the regularity of the 2nd layer is already considerably perturbed. With
increasing wall distance, the peaks become even smaller and the curve
for the bulk zone agrees again fairly well with that from [25] for RCP.
Compared to angle distributions, the RDF appears to be less sensitive
for characterising regular structures.

4.8. Voronoi cell packing fractions

There are several othermeasures to quantify order/disorder of pack-
ings [50–51]. Voronoi tessellation is oneof the frequently usedmethods.
For a packing of mono-sized spheres the Voronoi cell is the polyhedron
that contains all points closer to a given sphere centre than to any other.
Voronoi tessellation partitions the whole space of a packing unequivo-
cally into a set of Voronoi cells.

Fig. 18 shows the Voronoi cell packing fraction, defined as the
sphere-to-cell volume ratio. For the 1st cc layer the Voronoi packing
fraction cannot be very large because the wall is one side of the polyhe-
dron, which results in rather large cells. For the 2nd cc layer the
packing fraction is remarkably larger than the bulk value, which reflects
better the influence of ordered structure. Farther from the wall, the
packing factors approach the bulk value, shown also in thefigure legend
by listing the mean packing fractions. Although Voronoi tessellation
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appears to be not better suited to characterise the degree of structure
regularity than other measures presented before, the advantage is the
determination of packing fractions of individual sphere layers which is
important for the flow distribution in systems with fluid flow.
Fig. 17. Exp. B: RDF for cc wall zone, (Vi-ax).
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5. Conclusions

AdvancedX-ray computed tomographyhas demonstrated to bewell
suited for the measurement of local structures of mono-sized sphere
packings in cylindrical containers with and without inner cylinders.
Five experiments with specifically differing packing structures have
been analysed.

The development of regular structures depends on geometric pa-
rameters (main variables: d, D, Di and H), filling mode (one step filling,
batch-wise or continuous filling), and vibration mode (free/restricted
particle surface, vibration parameters Γ and a/d). The total packing frac-
tionγt is also dependent on these parameters and the large scattering of
measured data reported in literature reflects the complex interaction of
the parameters.

The existence of significant regular structures can be assessed by cal-
culating the packing fraction in the inner container volumewhich is the
total volume minus the volume of the wall layers with d/2 thickness.

Structural features in the packings in the proximity of concave, flat
and convexwalls were analysed bymeans of void fraction distributions,
sphere centre positions, contact angle distributions, coordination num-
bers, radial distribution function and Voronoi cell packing fractions. The
combination of these tools provides a comprehensive understanding of
structural details.

The increase of container packing fractions by using appropriate
vibration parameters is caused by the growth of structured packings
in wall zones, as demonstrated by two experiments with the same geo-
metric parameters.

For cylinders with a height to diameter ratio H/D ≫ 1, ordered con-
figurations build up preferentially in radial direction starting from the
hexagonally ordered layer at the concavewall. Depending on D/d, regu-
lar zones can persist throughout the total cross section. For H/D b 1 and
D/d ≫ 1, hexagonal dense structures grow preferentially from the flat
bottom plate and can dominate the total container volume.

Only at flat walls (D/d = ∞), hexagonal dense packings can grow
and persist in a large volume fraction. At curved walls, the regularity
must progressively decrease away from the wall, as demonstrated by
visualising sphere centre positions and confirmed by employing the
analytical tools mentioned above.

The role of granular convection on the crystallisation process has
been addressed and deserves further attention in future investigations.

Previous statements that the thickness of wall zones is about (4–5)d
cannot be generalised to mono-sized sphere packings. The elabora-
tion of a generalised correlation for void fraction distributions is still a
pending task.

Only a few characteristic resultswere presented; special topics going
beyond the scope of this article will be addressed particularly in forth-
coming publications.

Nomenclature
a vibration amplitude (m)
d sphere diameter (m)
D outer (concave) container diameter (m)
Di inner (convex) cylinder diameter (m)
g(r) radial distribution function RDF
f frequency (s−1)
H cylinder height (m)
Nc coordination number
r distance between spheres divided by d
r′ radial coordinate (m)
Vb bulk volume (m3)
Vd/2 volume of d/2 wall layers (m3)
Vi inner volume = Vt − Vd/2 (m3)
Vi-rad inner radial volume = volume between radial wall layer

zones (m3)
Vi-ax inner axial volume= volume between axial wall layer zones

(m3)
Vt total packing volume (m3)
w′ width of prismatic container (m)
x wall distance divided by d
x′ horizontal coordinate (m)
y′ vertical coordinate (m)
z′ axial coordinate (m)

Greek symbols

ε void fraction or porosity
δ polodial contact angle
γ packing fraction
Γ vibration intensity
ω angular frequency
φ cylinder angle
ψ azimuthal contact angle

AbbreviationsAVD
axial void distribution
cc concave
cv convex
CT computed tomography
DEM discrete element method
RDF radial density function
RVD radial void distribution
D∞ container without cylinder wall effects
H∞ container without axial wall effects
1sf one step filling
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