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An analytical estimate of the effective thermal conductivity of a pebble bed with mono-sized pebbles in the
presence of a stagnant gas is presented. The Discrete Element Method (DEM) is used to simulate granular as-
semblies under uniaxial compression and Resistor Network (R-N) model is applied for estimating the effective
thermal conductivity numerically. In this paper, two heat transfer paths, i.e., conduction through pebble-pebble
contact and pebble-gas—pebble interface are considered. The effect of the cutoff range for gap and the strain on
the effective conductivity is studied. The validity of the analytical model is verified with the results from the R-N

Model for different solid-to-gas thermal conductivity ratios and for different packing fractions. The analytical
and numerical models show a good agreement with the experimental results of the effective thermal con-
ductivity for lithium orthosilicate pebble beds in the presence of helium and air at different temperatures.

1. Introduction

The theoretical prediction of the effective thermal conductivity (kegf)
for granular assemblies has been the subject of research for many years.
The knowledge of the effective thermal conductivity plays a major role
in the design of solid breeder blankets in fusion reactors. These blankets
comprise of breeder materials and neutron multipliers in the form of
pebble beds in a gaseous environment [1,2]. Similarly, several other
energy systems such as pebble bed reactors [3], granular thermal en-
ergy storage systems [4] and solid oxide fuel cells [5] require estima-
tion of the effective conductivity of their constituent granular systems.

Batchelor and O’Brien [6] developed a model to estimate the con-
ductance between two adjacent particles in the presence of a fluid.
These individual contact conductances were then used to predict the ke
for a granular assembly. With the development of the Discrete Element
Method (DEM) [7-12] as a tool to simulate granular assemblies, the
accounting for the individual contact conductances at each contact has
been made possible. The individual contact conductances were then
used to estimate the keg through different approaches [13-17]. Dif-
ferent conductance relations [18-20] between the adjacent granules
were also developed. Several experiments [21-25] have been reported
in the literature to establish a parametric correlation for the de-
pendency of the effective conductivity on the microstructural
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parameters. Even with the development of numerous simulations and
experimental data, analytical studies are still helpful. This is because
the simulations are computationally expensive and in some cases, it is
not feasible to simulate large granular assemblies. Furthermore, ana-
lytical solutions may allow to derive an immediate understanding of the
relation between parameters. Also, experiments are both time-con-
suming and expensive. Numerous theoretical models are reported in the
literature [26-30] for predicting the effective thermal conductivity of
granular assemblies.

Zhao et al. [28] proposed a simple thermal model for the effective
thermal conductivity of a monosize and binary pebble beds with stag-
nant gas in the interstitial spaces. In their model, the pebble bed was
assumed to be in a simple cubic lattice configuration. But, the effective
conductivity also depends on the granular arrangement, individual in-
teraction between the granules characterized by parameters such as
coordination number (N), contact radius (r.), etc. The model developed
by Kovalev and Gusarov [29] includes the effects of these parameters
but neglects the effect of conduction due to a fluid in the pore space. In
this paper, we attempt to develop a theoretical model that captures the
effects of the microstructural parameters of the granular assembly and
the presence of fluid in pore space.

In Section 2, an analytical model similar to Kovalev and Gusarov
[29], now extended to include the effect of the fluid in the pore space is
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proposed for mono-sized granular assemblies. This model includes the
heat transfer between adjacent granules which are in contact and also
between the granules which are not in contact but separated by a small
gap. Only the granular pair (i, j) with a gap width (h;) less than the
cutoff distance (uR) is considered for conduction through the fluid.
Here, u is the cutoff factor and in the further discussion it is referred to
as “cutoff”. In Section 3, the Resistor Network (R-N) model for calcu-
lating keg is presented. For these models, the conductance relations
developed by Batchelor and O’Brien [6] are used as they are in good
agreement with experimental results [16]. Due to the low gas velocity,
necessary to guarantee tritium extraction in the pebble beds, stagnant
condition is considered here. Therefore, the heat transfer due to con-
vection is neglected. The effect of radiation was investigated in [31]
and it was found to be negligible for pebble diameters lower than 1 mm
from room temperature to 1200 K. Therefore, the contribution due to
thermal radiation is also not implemented in this work. The pebbles are
assumed to be neither generating nor accumulating any heat. Dalle
Donne et al. [21] and Pupeschi et al. [25] studied the influence of gas
pressure on the effective thermal conductivity (keg) of the bed. They
found that the k. depends on the mean free path of the gas molecules
and the configuration of the assembly. Such dependence is observed
only when the mean free path of the molecules is of the order of in-
terstitial spaces of the pebble bed. For the present model, the influence
of gas pressure on the effective thermal conductivity is neglected. The
Random Close Packing (RCP) algorithm has been used to generate the
granular assemblies and the Discrete Element Method (DEM) is used for
simulating uniaxial compression of the pebble assembly which is pre-
sented in Section 4. The effect of the cutoff (1) on k. is discussed in
Section 6 and the evolution of kg with uniaxial compression is also
presented. The proposed analytical model is compared with the ex-
periments performed by Pupeschi et al. [25] for lithium orthosilicate
(OSi) pebble beds in the presence of helium and air in Section 6.3. Also,
a comparison of the proposed model with other theoretical models re-
ported in the literature [26-29] is presented.

2. Analytical model

In this section, the analytical model for the effective conductivity
(keg) of a 3D mono-sized spherical granular assembly proposed by
Kovalev and Gusarov [29] is modified to include the effect of a fluid in
the pore space. The microstructural parameters that define the granular
assembly are the diameter D (or radius R) of the particles, the packing
fraction 5, the mean coordination number N, the mean contact radius 7.
and the angular density of contacts v. The angular density of the con-
tacts v is defined as the number of contacts per unit solid angle around a
given direction. For an isotropic system, the angular density (v) is in-
dependent of the direction, but for an anisotropic system, v depends on
the direction. In this work, we assume the assemblies to be isotropic as
will be justified later.

For a granular assembly, the effective conductivity of the system
depends on the conductance between the nearby granules. A schematic
of the heat transfer paths between the particles in a granular assembly
is shown in Fig. la. There are mainly two types of contacts between
adjacent granules through which conduction takes place. They are

(a) overlap: through the overlapped area of adjacent granules and the
fluid surrounding the overlapped region
(b) gap: through the fluid between adjacent granules.

One can even consider touch contact as a different type as discussed
in Batchelor and O’Brien [6]. However, in the derivation of the analy-
tical model, we assume that the contribution of touch type contact is
negligible which will be justified in Section 6. Hence, we can consider
the conduction between granules to be of two types — gap and overlap.
The mean coordination number (N) includes only the overlap type
contacts. Hence, one can define a new mean (total) coordination
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number Z which includes the gap type contacts as well. Let N,,, Ng be the
mean coordination numbers of overlap and gap type contacts and p,, pg
be their relative fractions, respectively such that

N,=Nand Z=N, + N, 2.1
=N = -
D, = 7 fori=o,g and p, + p, = 1. 2.2)

The effective thermal conductivity (keg) of a granular assembly
without any fluid effect is given by Kovalev and Gusarov [29] as
qg _nNC

_dr 7D
dz

Keftnt =
2.3)

Here, g is the rate of heat flux, dT/dz is the temperature gradient in
the direction of heat flow. The conductance C is replaced with effective
conductance C° to include the effect of fluid conductivity in both
overlap and gap type contacts. Note that, the overlap contact con-
ductance depends on the fluid and solid where as the gap contact
conductance depends only on the fluid. The contact coordination
number N should be replaced by the total coordination number Z. The
effective conductance C° can be estimated as

C¢=p,Cs + De Cg (2.4)

Here, C; and C; are the effective conductances due to overlap and
gap type, respectively for the entire assembly. Hence, the effective
conductivity of the granular assembly including the effect of the stag-
nant fluid is given by
nZce

D’ (2.5)
Upon substituting C° from Eq. (2.4),
_ n@Zp,C + Zp,C))  n(N,Cy + Ne Cy)

off = D h D

ket =

n(C + Cp)
D

nc’
D’

kegt = (2.6)
where C; and C; are total overlap and gap conductances, respectively
and C' is the total conductance. The gap and overlap contact con-
ductance values are calculated using the relations proposed by Batch-
elor and O’Brien [6]. A simplified version of these relations for mono-

disperse assemblies is presented in the following section.
2.1. Conductance relations

Adjacent particles in a granular assembly are considered to possess
two types of contacts — overlap and gap. Figs. 2a and b illustrate the
particle contact condition. The contact radius r.; and the gap width hy
between the particles i and j are defined as

/3 \2
[
rcyij = |RF—|— and hij = dij — 2R.
\/ 2 2.7)
As the particle conductance (C/, Cj) and the contact conductance C,j
are in series as shown in Fig. 2b, the thermal conductance (C;) between
the particles i and j is given by
11,1,
G GG G (2.8)
The contact conductance relations as proposed by Batchelor and
O’Brien [6] are adopted in this work with a few modifications. If K; and
K; are the bulk conductivities of solid and fluid, respectively, then the
conductance of each type of contact can be formulated as below,

e Conductance between the overlapped particles i and j with contact
radius (r. ;) as adopted by Moscardini et al. [17]
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Fig. 1. (a) Schematic of a granular assembly showing the modes of conduction through the solid and gaseous regions for overlap and gap type contacts, (b) Schematic of the temperature
distribution in a granular assembly from the DEM simulation with imaginary hot and cold plates at the bottom and top, respectively.

(2.9)Cy 5 = nK;R[K, + AK, + In(a?)]where K. = 0.22,311‘2 and
AK, = —O.OSﬁij2 for B; < 1, linear interpolation for 1 < B; < 100,
K. = 2Bj/n and AK,=—2In(B;) for B; > 100 and a = K/K; and
Bij = (arc;)/R.

e Conductance between the neighboring particles i and j with gap
width (h;) by employing a linear interpolation for near touch type
region (0 < A; < 1)

thij = 7K;R[(1 — 2p)In(@?) + 43In(Q + a*?)], for 25 <1, (2.10a)

Ceij = ﬂKngij otherwise, (2.10b)
where A; = (azhij)/R, &i=In(1 + (jzR/hi,-) and ¢ is the estimate of
the fraction of the mean radius R [14].

Now, for calculating the particle conductance (C°), the conductance
of the half sphere is estimated using its equivalent cylinder. The con-
ductance due to the half particle (C®) is given by Kanuparthi et al. [14]
as

(2.11)

The value of ¢ is chosen as 0.71 as it was observed to produce good
agreement between the numerical and experimental results [17]. The
estimation of a newly introduced effective gap (h.) and its importance
in the analytical estimation of effective conductivity (keg) is discussed
in the following subsection.

2.2. Effective gap

It can be observed from Eq. (2.10) that the gap conductance (Cé)ij) is
a logarithmic function of the gap width h;;. For calculating the effective
gap (h.), we take the mean of &; (§) over all gap type contacts rather
than using the mean of h; (h). Therefore, the effective gap (h,) is esti-
mated as

__ SR

exp(g) -1 (2.12)

It is evident from Fig. 2c that the conductance corresponding to h, is
a better estimate of the mean gap conductance Cgy than the con-
ductance corresponding to h. This is because of the logarithmic de-
pendence of the gap conductance (Cy ;) on the gap width hy, thus jus-
tifying the use of h, for the analytical model. The calculation procedure

of ke using the proposed analytical model is presented in the following.

2.3. Cadlculation of kg using the analytical model

The values of the microstructural parameters such as mean co-
ordination numbers (N,, N, Z), mean contact radius (7;) and effective
gap (h,) are obtained from the DEM simulations. In order to calculate
the value of overlap contact conductance (C;) of the entire assembly,
we replace r.; in Eq. (2.9) with the mean contact radius 7. of the as-
sembly. Similarly for the gap contact conductance (Cy) of the assembly,
h; in Eq. (2.10) is replaced with the effective gap h, of the assembly.

ON ‘ Ny M W x10°
‘ \ 3 , . :
; | A; o 18
i R d. = 1
i ‘ B:: 15 i
: / j i J LM i Wh
@ @ gl |n
Soof |1
=]
i 2 o6l |
N—ANN— W~ S 061 |
(R 3 b —c
>l | s ~C ] !
R T 7T R G e C] g 03-& ! Cg,ij
d > < O L i CC
y. i . J T T
i Y L adAVAV) 00602 '0.04 0.06 008 0.1 0.2 0.14
¢ Gap width (h;; mm)
(a) (1) Gap contact; (2) Schematic for ¢ (b) (1) Overlap contact; (2) C;; (c) C; i Vs hij

Fig. 2. (a.1) Schematic showing the condition for gap type contact i.e., 0 < h; < uR, (a.2) Schematic for the radius of the equivalent cylinder ((R). (b.1) Schematic for overlap type
contact, (b.2) Schematic for the inter-particle conductance (Cy) for the neighboring particles i, j as the particle conductances (C/, Cf ) and contact conductance (CUC-) are in series. (c) Gap

conductance (Cgc’ij) as a function of gap (hy).
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Fig. 3. Flow chart for the calculation of k.g through the analytical model.

The effective overlap and gap conductances (C;, Cy) are estimated from
the Eq. (2.8) with particle conductance as C° and contact conductance
as C, and Cg, respectively. Then, the effective conductance (C.) can be
estimated from Eq. (2.4). Upon estimating the effective conductance
(C.), the kegr can be calculated by Eq. (2.5), where the particle diameter
(D) and the packing fraction () are known parameters. The steps in-
volved in calculating the kg through the analytical model from the
microstructural parameters are presented in the form of flow chart in
Fig. 3.

Resistor Network model is used for validating the proposed analy-
tical model and the results are compared in Section 5. The Resistor
Network model for calculating the effective thermal conductivity (kegr)
of the pebble bed is presented in the following section.

3. Resistor Network Model

In this section, the Resistor Network (R-N) model for calculating the
effective conductivity (k) is presented. Consider a periodic granular
assembly as described in Section 2. The temperature of the top and
bottom layers of the assembly are fixed to simulate imaginary hot and
cold plates at bottom and top, respectively as shown in Fig. 1b. The
periodic boundary condition is considered for finding the adjacent
particles at the sides of the assembly.

Each particle is considered as a node and the resistance between the
adjacent particles is taken as a resistor. This creates a network of re-
sistors which in turn can be solved to obtain the total thermal con-
ductance of the system and the temperature of each particle. For solving
this network of resistors, a system of linear equations is generated using
Ohm's law and Kirchoff's current law as the heat flow rate is analogous
to an electric current. At every particle i, the rate of heat flow (Qij) from
the particle i to the neighbor particle j is proportional to the tempera-
ture difference between them with inter-particle conductance (Cy)
being the proportionality constant. Therefore, the heat flow rate from
particle i to j is given as

Qi = Cy(T, — T). 3.1

The conductance (C;) between the particles i and j is calculated
using the relations from [6] presented already in Section 2.1. The sum
of the heat flow rates entering and leaving the particle i should be zero
as it is neither generating nor accumulating any heat. Hence,
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E Qy+ Q=0
j (3.2)
where Q; is the heat flow rate between the particle i and the plate.
Hence, Q; will be 0 for every particle i which is not in contact with the
plate.

This system of linear equations is then solved using Gauss-Seidel
method to obtain the unknown temperatures of the particles and the
unknown heat flow rates. The unknown heat flow rate is the heat ex-
change rate between the particle (contacting the plate) and the plate.
The total heat flow rate through the granular assembly can then be
estimated as the sum of all the heat flow rates entering/leaving the
assembly through the plates. Ideally, the heat flow rate entering the
assembly should be equal to the heat flow rate leaving the assembly.
However, due to the tolerance used in the Gauss-Seidel method, the
solution may not be exact. With the reduction in the tolerance, the
system converges to the exact solution at the cost of increase in com-
putational time. In this work, a tolerance of 10~ * is used which resulted
in a maximum of 2% difference between the heat flow rate entering and
the heat flow rate leaving the assembly. Hence, in the following, the
mean of the heat flow rate entering and leaving the assembly is used as
a measure of the total heat flow rate given by

— Qh + Qc
2 (3.3)
If A is the cross-sectional area of the granular assembly, AT is the

temperature difference applied between the plates and Az is the dis-
tance between plates, then the effective conductivity is given by

]

QA7 _Q Af

ket = — =07,
AT) A(M-T)

(3.4)

where Ty, and T, are the temperatures of the hot and cold plates,
respectively. The details of the DEM simulations of random mono-
disperse assemblies and the validation of the analytical model are
presented in the following sections.

4. Simulations

The Random Close Packing (RCP) algorithm has been used to gen-
erate granular assemblies. Such a random close packing assembly is
then subjected to uniaxial compression using DEM (as developed in
[9,10]) where we obtain the new configurations of the assembly with
respect to the strain applied. In this paper, lithium orthosilicate (OSi)
pebbles in the presence of helium/air are considered as the granular
assembly.

The DEM simulations are performed with periodic boundary con-
ditions on all sides to ensure a random packing in the total volume. The
assemblies consisted of 5000 OSi pebbles each of 0.5 mm diameter with
4 different initial packing fractions (A: 0.61, B: 0.62, C: 0.63 and D:
0.64). The assemblies from the RCP are then compressed till 1.5% strain
along the Z-axis. The Young's modulus, density, Poisson's ratio and the
coefficient of friction between the particles are taken as 90 GPa,
2260kg/m?, 0.25 and 0.1, respectively. The bed temperature is con-
sidered as 25°C. The bulk conductivity of the OSi (K;) pebbles and the
gaseous medium (K as a function of the temperature is given by
[32-34]

K= 7.32 x 10712T* — 1.30 X 107373 + 8.71 x 107°T?

— 0.002876T + 2.620, where T isin°C (OSi [32]), (4.1a)
Ky = 3.366 x 1073T%6%, where T is in K (Helium [33]), (4.1b)
K= —1x107"T3 — 4 x 1073T? + 8 x 10~°T + 0.0241,

where T is in°C (Air [34]). (4.1¢0)

The effective conductivity (ke is calculated for the generated as-
semblies using the R-N model and the analytical model. R-N model
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Fig. 4. (a) Comparison of the effective conductivity (keg) from the R-N model (X axis) and the analytical model (Y axis) for the assemblies generated by compressing A, B, C and D to
different strains in the presence of helium and air, where A, B, C and D correspond to granular assemblies with initial packing fraction of 0.61, 0.62, 0.63 and 0.64, respectively. (b)
Schematic showing the hemispherical shaded region defined by ¢: 0 to 360° and 6 for the calculation of angular coordination number v,(6). (c) Distribution of angular coordination

number 1,(6) showing the isotropic nature of the random assembly.

requires the configuration (i.e., the coordinates of the particles) of each
contact pair in the assembly obtained from DEM as the input. The
analytical model requires the specification of the microstructural
parameters (N,, N, T, h.) to estimate the effective thermal conductivity
of the bed. These parameters can be obtained directly from the DEM
configurations, thereby reducing the complexity of performing nu-
merical thermal simulations to estimate the effective thermal con-
ductivity (keg) of the pebble bed.

5. Validation of the analytical model

A good agreement between the effective conductivities (keg) cal-
culated from the analytical model and the R-N model is observed as
shown in Fig. 4a. This agreement of results can be attributed to two
facts. First is that the analytical model includes the effects of the mi-
crostructural parameters and the second, the current assemblies satisfy
the assumptions used in the derivation of the analytical model. The
analytical model assumes the granular assemblies to be isotropic which
is true for the considered assemblies due to the random generation. This
isotropic nature can be verified with the help of angular coordination
number (v,(6)) plots. The angular coordination number is defined as the
number of contacts per unit polar angle 6 (covering the full azimuthal
region i.e., ¢: 0 to 360°). 1,(6) can be calculated by integrating the
angular density (v) over the hemisphere defined by ¢: 0 to 360° and 6 as
shown in Fig. 4b. For isotropic assemblies, the angular density, v(0, ¢)
is given by

N
v® ¢ =" (5.1
27
%(©) = [ v(6, $)sin6 dgso 5.2)
%) = 22 sing (53)

It can be seen from Fig. 4c that the distribution of v, for a sample
assembly generated from RCP follows the Eq. (5.3) thus justifying the
assumption of isotropic nature. A similar observation was made
through tomography experiments by Reimann et al. [35,36]. Further,
the temperature distribution along the z direction from the R-N model
shows a linear variation (result not shown) justifying the assumption of
uniform temperature gradient for the assemblies.

6. Results and discussion

In this section, the effect of cutoff (1) and strain (&) on the evolution
of the parameters that influence the effective thermal conductivity (keg)
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of the granular assemblies is discussed with the help of the proposed
analytical model.

6.1. Effect of the cutoff (1)

The value of the cutoff (1) determines the extent of gap conduction.
As the value of u increases, new conduction paths are formed increasing
the mean gap coordination number (N,) while the mean overlap co-
ordination number (N,) remains unaltered. Hence, the relative fraction
of the gap coordination (p,) increases while that of the overlap co-
ordination (p,) decreases. The variation of mean coordination numbers
(Z, No, Ng) is shown in Fig. 5a. As the cutoff (u) increases, the nor-
malized effective gap (h., = h./R) increases as shown in Fig. 5b. This is
due to the fact that the increase in u increases the upper bound of the
gap width h; required for the particles to be in gap type contact. Even
though the effective gap (h,) is a geometrical feature, it is dependent on
the fluid because the conductivity of the interstitial fluid determines
whether the contact is touch or gap type. For example, consider a gap
type contact with normalized gap width (h;/R) = 1 x 10~ °. For helium
as the interstitial gas, this gap contact becomes touch type whereas for
air, it will be gap type only (Eq. (2.10)). Since the effective gap con-
ductance (Cg) and the effective gap (h,) are inversely related as shown
in Eq. (2.10Db), Cg reduces with increase in p. The effective overlap
conductance (C;) remains constant with p as the cutoff (1) does not
affect the mean contact radius (7). As p, decreases and C; stays con-
stant, the contribution of effective overlap conductance (p,C;) to C*
decreases with y. Even-though C; decreases, the increase in pg leads to
the increase in the contribution of the effective gap conductance (p, Cg
to C° with p. The decrease in the contribution of effective overlap
conductance is more than the increase in the contribution of effective
gap conductance leading to the decrease in effective conductance (C°)
with p as shown in Fig. 5c.

As p does not effect the mean overlap coordination number (N,) and
the effective overlap conductance (C;), the total overlap conductance
(C}) remains constant with the increase in y. The total gap conductance
(Cg) increases with y as the influence of increase in Ng is greater than
that of the decrease in C; . Hence, the total conductance (C") increases
with increase in cutoff (i) as shown in Figs. 5d and e, for helium and air,
respectively. Note that due to the poor conductivity of air, the increase
in total gap conductance due to the increase in y is less for air compared
to the case of helium for the same assembly.

Hence, as the cutoff (u) increases, the total conductance (C") in-
creases leading to the increase in the effective conductivity (keg) of the
assembly as shown in Fig. 5f. In the literature [14,16], it was mentioned
that the effective conductivity reaches saturation with the value of
cutoff approaching 0.5. Here, this saturation of k¢ is observed for the
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and compressed to 1.50% strain.

case of air, but for helium, the k¢ increases even after u = 0.5. This can
be attributed to the low value of a(= K/Kp for helium (a = 16.86)
compared to air (¢ = 97.83) at 25°C bed temperature. But, the choice of
the value of 0.5 for the cutoff (1) was observed to fit with experimental
results [14,16,17]. Hence, the value of cutoff (1) is chosen as 0.5 for
further studies.

6.2. Effect of the strain (e)

As the assembly is compressed, new contacts are formed. In addi-
tion, the area of contact increases for the already existing overlap type
contacts. Further, gap contacts may change to overlap type with in-
crease in strain while the total coordination number (Z) stays almost
constant (for moderate strains which induce only a minor displacement
of particles). Fig. 6a shows the increase in the mean overlap co-
ordination number (N,) at the expense of the mean gap coordination
number (N,). Hence, the relative fraction of gap coordination (p,) de-
creases while p, increases with strain (¢). Fig. 6b shows an increase in
the normalized effective gap (h,,,) with the strain. This may be attrib-
uted to the fact that the gap contact pairs having the least gap width
(hy) shift to overlap type under compression. This decreases £ leading to
an increase in the effective gap (h.) because of their inverse relationship
(Eq. (2.12)). As p, decreases and h, increases with strain, the con-
tribution of the effective gap conductance (p,Cy) to the effective con-
ductance (C®) decreases. Increase in the value of p, and the mean
contact radius (7.) leads to an increase in the contribution of the ef-
fective overlap conductance (p,Cy) to the effective conductance (C%).
The effective conductance (C°) varies as shown in Fig. 6¢ with increase
in strain for the assembly with an initial packing fraction of 0.61 in the
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presence of helium. Similar behavior is observed for the assembly in the
presence of air as well (results not shown).

As the effective gap conductance (Cg) and the mean gap coordina-
tion number (N;) decrease with compression, the total gap conductance
(Cé) decreases. On the other hand, as the effective overlap conductance
(CY) and the mean overlap coordination number (N,) increase with
compression, the total overlap conductance (C/) increases. The resulting
variation of total conductance (C) with strain (¢) is shown in Figs. 6d
and e for helium and air, respectively. In Figs. 6d and e, we can observe
that the gap conductance dominates at low strain whereas the overlap
conductance dominates at higher strain values. Fig. 6f shows the var-
iation of C,/Cy as a function of strain. Note that C;/C, < 1 represents the
gap dominated region while C;/C; > 1 represents the overlap domi-
nated region. It may be noted that a dense granular assembly (case C)
approaches the above transition at a lower strain due to the availability
of higher number of overlaps compared to a loosely packed assembly.
For a given initial packing fraction (i.e., case A or case C in Fig. 6f), the
assembly in the presence of air enters the overlap dominating region at
a lower strain than the assembly in the presence of helium. The early
shift in the case of air may be attributed to its lower conductivity
compared to helium.

The increase in effective conductivity (keg) of the assembly with the
increase in strain seems to be marginal as shown in Fig. 7. This may be
due to the fact that the total conductance (C") is almost constant with
increase in compression. Hence, the only factor that contributes to the
increase in keg should be the packing fraction (i) of the assembly as is
evident from the analytical model (Eq. (2.6)). Also note that, the per-
centage increase in the effective conductivity (kg) is more for the case
of air than helium. This is because, the increase in kg with strain is due
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to the increase in conduction through the solid phase. Hence, the per-
centage increase in kg is less for helium than air as its solid to fluid
conductivity ratio (@ = 16.86) is low compared to air (a = 97.83). A
slight linear increase in the effective conductivity (keg) with strain was
also observed experimentally [22,25]. In this section, it is shown in
Figs. 5 and 6 that the contribution of touch type contact is negligible
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except for very low strains (¢ < 0.075%). Thus, the consideration of
only gap and overlap type contacts in the analytical model presented in
Section 2 is justified.

6.3. Comparison with the experimental results

We use the experimental results of Pupeschi et al. [25] to validate
the proposed numerical and analytical models. The experiments cor-
respond to OSi (denoted as EU.Ref in [25]) polydisperse pebble beds
with an initial packing fraction of 0.642. The value of the mean dia-
meter (D = 0.36 mm) of the polydisperse assembly is taken as the
pebble diameter (D) for further analysis. Moscardini et al. [17] have
shown the comparison between the simulation and the experimental
results reported in the literature, accounting for different pebble ma-
terials, different interstitial gases, various bed temperatures and gas
pressures. Their numerical simulations reproduce the experimental re-
sults with a good agreement by employing ¢ = 0.71 and u = 0.5.
Therefore, { = 0.71 and u = 0.5 are used in our work for the validation.

Theoretical models from the literature [26-29] are also plotted for
comparison. As seen in Figs. 8a and b, the proposed R-N model and
analytical models provide a better estimate than other analytical
models. It can be seen that the proposed model fits quite well with
experimental results in helium at 4 bar while Hsu et al. [27] fits better
with results at 1 bar. The other proposed methods underestimate the
effective thermal conductivity in helium. In air, only the presented
model is able to predict the experimental results. The good agreement
in air and in helium at 4 bar can be explained by the Smoluchowski
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effect [37]. The Smoluchowski effect states that the thermal con-
ductivity of a gas decreases with decreasing gas pressure if the gas is
confined in small gaps, as in the present scenario. But, the thermal
conductivity will be independent of the gas pressure for an unconfined
gas. Also, the thermal conductivity of a gas is less in a confined space
than in an unconfined space at a given pressure. The mean free path of
the interstitial gas molecules increases with the decrease in pressure at
a given temperature. As a result, when the mean free path of the gas
molecules reaches the order of magnitude of the geometrical dimension
of the gas confinement, the thermal conductivity of the gas becomes
dependent on its pressure. For the pressures considered in this paper,
the Smoluchowski effect is observed predominantly in helium rather
than air [25]. Since the mean free path of air is lower than helium, the
gas pressure needs to be reduced further for air to show the Smo-
luchowski effect. Hence, the proposed analytical model may be used for
estimating the effective thermal conductivity of a granular assembly in
the presence of a gaseous environment with negligible effect of pressure
on the gas conductivity.

7. Conclusions

In this paper, an analytical model for estimating the effective
thermal conductivity of a pebble bed in the presence of a stagnant gas is
proposed. Two types of contacts, i.e., overlap and gap type are con-
sidered for the calculation of the effective conductivity. The influence
of the cutoff range for gap width and the strain on the evolution of
effective thermal conductivity has been presented. The proposed ana-
lytical formulation includes the effect of the microstructural parameters
such as coordination numbers, contact radius and effective gap re-
sulting in a good agreement with the Resistor Network model.

The gap coordination number (N,) increases with the cutoff (u),
whereas the overlap coordination number (N,) is independent of cutoff
resulting in a net increase of total coordination number (Z). Even
though the total overlap conductance (C}) remains constant, the in-
crease in total gap conductance (Cé) leads to the increase in effective
conductivity (keg) with the increase in cutoff (). Foru > 0.5, the value
of kg for a pebble bed in the presence of air shows saturation while in
the presence of helium k.¢ continues to increase. The value of i can be
calibrated initially to fit the experimental results.

The overlap coordination number (N,) increases with increase in
strain (¢) at the expense of the gap coordination number (N,) resulting
in an almost constant total coordination number (Z). The total gap

conductance (Cg’) decreases, while the total overlap conductance (C})
increases leading to a slight increase in the total conductance (C") with
an increase in strain (¢). Hence, the effective thermal conductivity (keg)
shows a slight increase with strain (¢) as observed in the experiments
[22,25]. The analytical model matches with the experimental results
[25] for air in the pressure range of 1-4 bar as the Smoluchowski effect
for air in this regime is negligible. But for helium (in the pressure range
of 1-4 bar), the proposed model overestimates the value of kg as the
analytical model does not consider the Smoluchowski effect. Hence, it
may be concluded that the proposed analytical model estimates the
effective thermal conductivity (keg) of a pebble bed in a stagnant gas-
eous environment accurately for the gas pressures where the Smo-
luchowski effect is negligible.
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