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Abstract: Recently, magnetorheological elastomer–based vibration control devices have attracted increasing attention due to their field
dependence of stiffness characteristics. It is crucial to develop a comprehensive model for precisely predicting mechanical behaviors
of magnetorheological elastomers (MREs). In this work, silicon rubber–based MRE samples were prepared and investigated through dy-
namic and quasistatic stretch tests. Experimental results suggest that the samples possess an obvious magnetorheological effect, as well as
frequency- and amplitude-dependent mechanical behavior. In order to depict these properties in a unified scheme, an extended fractional-
order derivative model was developed to consider the Payne effect using the framework of the Kraus model. A comparison with experimental
data indicates that this new model is accurate in predicting the mechanical behavior of MREs. DOI: 10.1061/(ASCE)AS.1943-
5525.0000868. © 2018 American Society of Civil Engineers.
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Introduction

Magnetorheological elastomers (MREs) are a new member of
smart materials, whose mechanical properties can be varied by
an applied magnetic field instantly, continuously, and reversibly
(Cantera et al. 2017). Because of this controllability, MREs have
been attracting growing interest and possess promising potential in
applications relating to vibration control. Recently, an increasing
number of devices based on MREs have been reported, such as
building isolation systems (Behrooz et al. 2014; Li et al. 2013a, b;
Yang et al. 2013), vehicle seat suspension (Du et al. 2011; Li
et al. 2012), and adaptive vibration absorbers for beams (Deng
and Gong 2008; Liao et al. 2014; Liao et al. 2011) and shafts
(Liu et al. 2017). These devices usually operate under complex
dynamic conditions across a large range of excitation amplitudes.
In order to make full use of controllable properties of MREs, it is
necessary to build a unified model to simultaneously consider the
effects of external magnetic field, excitation frequency, and ampli-
tude on the responses of MREs.

Avariety of microscopic models have been proposed to describe
the effect of an external magnetic field, i.e., the magnetorheological
(MR) effect. In early studies, Jolly et al. (1996) built a dipole model
considering the interaction between two adjacent particles. Davis
(1999) assumed that all particles were aligned in one chain and
calculated the saturated field-induced shear modulus. Shen et al.

(2004) assumed that particles could be idealized as many infinite
chains and took into account the interaction of all particles in one
chain. These studies were based on the hypothesis of a uniform
spatial distribution of particles in MRE samples. However, there
is an obvious difference between this hypothesis and the real
distribution of particles in anisotropic MREs due to the applied
magnetic field during the matrix vulcanizing. In addition, some
mathematical models considering special manufacturing tech-
niques were proposed. For instance, Chen et al. (2007) proposed
a finite-column model based on the statistical data from the
SEM images. Zhang et al. (2008) developed a mathematical model
that was appropriate only for the two specific kinds of particle dis-
tributions, including simple cubic and body center cubic structures.
These models were developed specifically for certain types of
spatial particle distributions.

At the phenomenological scale, previous studies provided para-
metric models to capture the measured mechanical properties of
MREs. Li et al. (2010) proposed a four-parameter viscoelasticity
model in which a nonlinear spring component is added to reflect
the MR effect. Zhu et al. (2012) introduced a fractional-order
derivative to precisely portray the viscoelastic behavior of MREs.
For these two models, strain amplitudes were not considered as
an independent variable, i.e., without considering Payne effects
(Kraus 1971). As is well known, the Payne effect on mechanical
properties of MRE cannot be ignored when MRE-based devices are
applied in rather complex vibration environments. Wang et al.
(2017) took large deformation into account based on a revised
Bouc-Wen model. Nevertheless, the parameters of the revised
Bouc-Wen model lack physical meaning and, on the contrary, this
model is not suitable when MRE samples are under a small-strain
excitation.

In this work, a micromechanics-enriched parametric model
based on the assumption of a chi-square spatial distribution of par-
ticles was adopted to predict the mechanical behaviors of MREs
that can reflect Payne effects. Then, in order to take strain ampli-
tude (the Payne effect) into account, an improvement of the original
fractional-order derivative model was introduced based on the
framework of the Kraus model. In parallel, silicon rubber–based
MRE samples with different contents of ferromagnetic particles
were prepared and tested under quasistatic stretch and sinusoid
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excitation, and the proposed parametric model was then validated
by comparing with the experimental data.

Experiments

Sample Preparation

Because of its lower hardness, silicon rubber is usually chosen as
the matrix material of MREs, allowing a rather wide range of con-
trollable stiffnesses. Thus, this study used HTV-type methyl-vinyl
silicon rubber as the matrix of samples. Carbonyl iron powder of
2.5-μm diameter was taken as filling ferromagnetic particles. The
other compositions of the samples are given in Table 1. In this
work, two samples were prepared, named Q60 and Q70, respec-
tively, according to the content of ferromagnetic powder.

The whole manufacturing procedure included three steps:
(1) mixing the additives with silicon rubber homogeneously on
a two-roll mill step by step at room temperature; (2) filling a mold
with the mixture and curing the material in a plate-type vulcanizing
machine under a pressure of 15 MPa at 165°C for 30 min and
appling 100-mT external magnetic field during the whole process;

and (3) forming the MRE samples into sandwich-type specimens,
as shown in Fig. 1.

Test Procedure

In order to systematically investigate the mechanical properties of
MREs, the quasistatic and dynamic experiments were carried out
on a mechanical testing system (MTS) loading frame as shown
in Fig. 2.

In the quasistatic tests, MRE samples Q60 and Q70 were
stretched under the magnetic fields of 0 and 150 mT measured
by a magnetometer, as shown in Fig. 2(d), with a given stretching
rate of 0.1 mm=s and final stretching distance of 4 mm. However,
the real stretching rate did not follow the setting value exactly due
to the issue of equipment precision. The mean shear rate was calcu-
lated by using the actual stretching time and it is given in Table 2.

In the dynamic experiments, various sinusoidal excitations are
applied to the MRE specimens under different magnetic fields, and
the test conditions can be seen in Table 3. The load-displacement
hysteresis curve obtained from dynamic experimental data is a typ-
ical elliptical curve, and important parameters including the shear
storage modulus G1 and shear loss modulus G2 can be calculated
according to classic viscoelasticity theory (Cho 2016) as

G1 ¼
F1 · tv

u0 · mv · Av
ð1Þ

G2 ¼
F2

F1

· G1 ð2Þ

where mv = number of MRE layers; tv and Av = thickness and area
of the MRE layer, respectively; u0 = excitation amplitude; F1 =
force when the displacement reaches maximum; and F2 = force
when the displacement is zero.

Table 1. Compositions of MRE samples

Composition Content (phr)

Silicon rubber 100
Carbonyl iron powder 60=70
White carbon black 20
Methyl silicone oil 15
DCP 2
CTP 5

Note: CTP = C14H15O2NS; DCP = Dicumyl Peroxide; and phr = parts per
hundreds of rubber.

MRE

Aluminum plates

(a)

(b)

Fig. 1. (a) Schematics of the MRE specimen containing MRE with dimensions in millimeters; and (b) photo of the MRE specimen, image by authors.
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Experimental Results

As for quasistatic tests, the stress-strain curves of Q60 and Q70
are shown in Figs. 3(a and b), respectively. For both cases, the
shear modulus decreases with respect to the shear strain when
strain is below 0.2 and then stays almost a constant; compared
with zero external magnetic field condition, the tangent modulus
presents an obvious raise with an applied external magnetic
field.

Through dynamic tests, the influence of external magnetic field,
excitation frequency, and amplitude were investigated independ-
ently. As for the external magnetic field, the conditions of 5 Hz
and 1 mm under different magnetic intensities (0, 50, 100, and
150 mT) are compared in Fig. 4. The shear storage modulus G1

increases with the external magnetic field for both MRE samples
Q60 (10.0% increment at 150 mT) and Q70 (7.3% at 150 mT),
while there is only a slight raise (<5%) in the shear loss modulus
G2 compared with G1.

H

(a) (b) (c)

(d) (e)

Fig. 2. Experimental setup: (a) MTS loading frame; (b) details of the load cell; (c) the magnetic field apparatus; (d) Tesla magnetometer; and
(e) schematic of loading condition. (Images by authors.)

Table 3. Dynamic test conditions

Number

External
magnetic
field (mT)

Displacement
(mm)

Frequency
(Hz)

1 0 1, 2, 3 0.3, 0.5, 1.0, 1.5, 2.0
2 50 1, 2, 3 0.3, 0.5, 1.0, 1.5, 2.0
3 100 1, 2, 3 0.3, 0.5, 1.0, 1.5, 2.0
4 150 1, 2, 3 0.3, 0.5, 1.0, 1.5, 2.0
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(a) (b)

Fig. 3. Shear stress-strain curves during quasistatic tests under different magnetic fields: (a) Q60; and (b) Q70.

Table 2. Stretching time and mean shear rate in quasistatic tests

Specimens

Stretching time (s) Mean shear rate (1=s)

0 mT 150 mT 0 mT 150 mT

Q60 96.9 66.5 0.0041 0.0060
Q70 245.8 238.3 0.0016 0.0017

Note: Mean shear rate = ratio of total shear strain to stretching time.
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In order to clarify the effects of the excitation frequency on the
storage modulus G1 and loss modulus G2, test data with an ampli-
tude of 1 mm and external magnetic field of 150 mTwere extracted,
as shown in Fig. 5. For both MREs, shear storage moduli of
Q60 and Q70 increased with excitation frequency and had sim-
ilar tendencies. More specifically, G1 rose noticeably in the low-
frequency range (≤1.0 Hz), while it became less sensitive to
frequencies higher than 1.5 Hz; compared to G1, G2 increased sig-
nificantly in the whole tested frequency range. In summary, MRE
samples present typical viscoelasticity properties, i.e., frequency-
dependent behavior.

Similarly, the effects of the excitation amplitude on MRE sam-
ples were investigated and are shown in Fig. 6, in which the test
data with an excitation frequency of 1 Hz and magnetic field of
100 mTare plotted. For both Q60 and Q70, the shear storage modu-
lus drops sharply with an excitation amplitude from 1 to 3 mm,
while the shear loss modulus decreases moderately. This suggests
that the mechanical properties of MRE samples are amplitude
dependent, i.e., Payne effects.

In accordance with the above results and discussions, it can be
concluded that the mechanical behavior of MRE samples is deter-
mined by external magnetic field and excitation frequency and
amplitude. Thus, a unified model should be developed to simulta-
neously consider all of these effects.

Modeling

Microscopic Scale

Generally, the difficulty of modeling on MREs lies in how to
precisely and concisely describe spatial distribution of particles.
Here, a microphysical model based on chi-squared distribution
(Xu et al. 2018) was adopted to describe the effect of external mag-
netic fields, and the magnetic-induced shear modulus Gm can be
expressed as

Gm ¼ ϕ · ð4 − ε2Þ · J2p
8μ1μ0 · ðε2 þ 1Þ7=2 · gðnÞ ð3Þ

where ϕ = volume fraction of the particles; ε = shear strain; μ0 =
vacuum permeability and μ1 = relative permeability of the medium;
and n = distribution parameter that can reflect the average level
of adjacent particle distance. The dipole moment magnitude Jp
is determined by external magnetic field intensity H and the rela-
tionship between these two quantities for the ferromagnetic par-
ticles used in this work was measured through a vibrating
sample magnetometer (VSM). As can be seen in Fig. 7, Jp is
proportional to H when the absolute value of H is less than
130 kA=m and the scale factor is 0.0096 T=ðkA=mÞ, while the
ferromagnetic particles are in magnetic saturation, and Jp reaches

0mT
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Fig. 4. Load-displacement loops: (a) Q60 and (b) Q70, with shear moduli of MRE samples; (c) G1 and (d) G2 under different magnetic fields.
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the maximum value of 2.14 T when the absolute value of H is
beyond 350 kA=m.

In order to describe the phenomenological behavior of MREs,
i.e., the relationship between force and displacement or stress and
strain, it is necessary to propose a macroscopic model based on
Eq. (3), in which Gm can be used as the magnetic-induced part.

Macroscopic Scale

The fractional derivative model has been widely used in describing
the viscoelastic behavior of materials in time and frequency domain
(Zhu et al. 2012). Together with the microscopic physical model, a
more appropriate scheme is proposed in this work as follows.

As shown in Fig. 8, the storage modulus G1 and the loss modu-
lus G2 can be expressed as

G1 ¼ Gm þ Gc þ ηc · ωα · cos

�
απ
2

�
ð4Þ

G2 ¼ ω · μ · Gm þ ηc · ωα · sin

�
απ
2

�
ð5Þ

whereGc = static shear modulus, which determines the elastic com-
ponent; ηc = viscosity coefficient and α = fractional order, both
of which determine the viscous component; Gm can be obtained
according to Eq. (3), fðGmÞ = additional damping due to external

magnetic fields, and these two components describe the magnetic-
induced behavior; and ω = angular frequency. The additional damp-
ing is assumed to be proportional to Gm as fðGmÞ ¼ μ · Gm.

In accordance with Eqs. (4) and (5), this existing fractional
derivative model can take the excitation frequency and external
magnetic field into account, but the model obviously excludes
the influence of strain amplitude, which is also an important factor
according to the experimental results, shown in the section “Experi-
ments.” Therefore, a modification is proposed as follows based on
the Kraus model.

From experimental data, the behavior of MRE samples demon-
strates a clear amplitude dependency, i.e., the so-called Payne
effect, which can be explained and modeled by the classical Kraus
model. In order to couple the Kraus model with macroscopic para-
metric model of MREs, it is modified firstly as follows. In the
Kraus model, the breaking function fb and rebuilding function
fr are both in the form of an exponent with the same index m.
However, filling particles in MRE may form additional van der
Waals interactions and provide more friction, which results in a
different influence on the breaking and rebuilding processes. There-
fore, it can be assumed that

fbðε0Þ ¼ εm1

0 ; frðε0Þ ¼ ε−m2

0 ð6Þ

where m1 and m2 = breaking factor and rebuilding factor, respec-
tively. Then, following the Kraus modeling scheme, the storage
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Fig. 5. Load-displacement loops: (a) Q60 and (b) Q70, with shear moduli of MRE samples; (c) G1 and (d) G2 under different excitation frequencies.
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modulus G1ðω; ε0Þ and loss modulus G2ðω; ε0Þ, at any strain am-
plitude ε0, can be derived as

G1ðω;ε0Þ ¼ ½G1ðω;0Þ−G1ðω;∞Þ� · 1

1þðε0=εcÞm1þm2
þG1ðω;∞Þ

ð7Þ

G2ðω;ε0Þ¼ ½G2ðω;εcÞ−G2ðω;∞Þ� · 2ðε0=εcÞm1

1þðε0=εcÞm1þm2
þG2ðω;∞Þ

ð8Þ
where εc is a constant and its physical meanings can be referred
(Kraus 1971).

For simplicity, we assume thatG1ðω;∞Þ ¼ b1 andG2ðω;∞Þ ¼
b2 are both constants; G1ðω; 0Þ − G1ðω;∞Þ ¼ k1 · G1 and
G2ðω; εcÞ − G2ðω;∞Þ ¼ k2 · G2, where k1 and k2 are proportional
coefficients; G1 and G2 can be referred to Eqs. (4) and (5). Thus,
considering the Payne effect, the fractional derivative model can be
modified as

G1¼k1 ·

�
GmþGcþηc ·ωα · cos

�
απ
2

���
½1þðε0=εcÞm1þm2 �þb1

ð9Þ

-3 -2 -1 0 1 2 3
-250

-200

-150

-100

-50

0

50

100

150

200

250

Displacement (mm)

L
oa

d
(N

)

1 mm
2 mm
3 mm

-3 -2 -1 0 1 2 3
-250

-200

-150

-100

-50

0

50

100

150

200

250

Displacement (mm)

L
oa

d
(N

)

1 mm
2 mm
3 mm

0 1 2 3 4
130

150

170

190

210

230

250

Amplitude (mm)

G
1

(k
Pa

)

Q60
Q70

0 1 2 3 4
20

30

40

50

60

70

80

Amplitude (mm)

G
2

(k
Pa

)

Q60
Q70

(a) (b)

(c) (d)

Fig. 6. Load-displacement loops: (a) Q60 and (b) Q70, with shear moduli of MRE samples; (c) G1 and (d) G2 under different excitation amplitudes.
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Fig. 8. Schematic of the fractional derivative model.
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G2 ¼ k2 ·

�
ω · μ · Gm þ ηc · ωα · sin

�
απ
2

��

·
2ðε0=εcÞm1

1þ ðε0=εcÞm1þm2
þ b2 ð10Þ

In summary, parameters in this model include the fractional
derivative model parameters, Gc, ηc, α, and μ; modified Kraus
model parameters, εc, m1, and m2; and linear parameters, k1,
b1, k2, and b2. Also, the distribution parameter n in the microscopic
physical model should be included, and it can be identified as fol-
lows according to the quasistatic test results and three-parameter
solid model, as shown in Fig. 9.

Assuming strain γ is linearly proportional to loading time t,
i.e., γ ¼ k · t, then total stress τ can be solved as

τ ¼ k · ðq0 · p1 − q1Þ · ½e−γ=ðk·p1Þ − 1� þ q0 · γ þ Gm · γ ð11Þ

where q0, p1, and q1 = undetermined coefficients; Gm = magnetic-
induced shear modulus, which can be referred to the microscopic
model shown in Eq. (3). Then, the least-squares method is adopted
according to the error formulation as follows:

δ ¼
Xm
i¼1

½τMðiÞ − τEðiÞ�2 ð12Þ

where τM = model value; τE = experimental results; and m = total
number of experimental cases. The identified model parameters are
shown in Table 4 and comparisons between the experiment and
model are shown in Fig. 10.

For predicting the dynamic tests, the distribution parameter n of
two samples is obtained previously from the quasistatic tests, as
shown in Table 4, while the other model parameters can be iden-
tified according to the proposed macroscopic parametric model.
The error formulation is the same as that above Eq. (12), where
τM can be expressed as

τM ¼ ε0 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

1 þ G2
2

q
sinðω · tþ φÞ ð13Þ

where φ = phase difference φ ¼ tan−1ðG2=G1Þ; and ε0 = strain am-
plitude. The model parameters are listed in Table 5. The proposed
model fits the experimental data very well through the compari-
son shown in Fig. 11, and the errors between experimental data
and model value for Q60 and Q70 are less than 7.3 and 9.9%,
respectively.

As can be seen in Fig. 11, the predictions of the proposed math-
ematical model fit well with the experimental data; i.e., it can por-
tray the mechanical properties of MREs, in particular accurately
capturing the dependency on the excitation amplitude. Here, only
typical results under two magnetic fields (0 and 150 mT) are
shown, and the comparison with other cases demonstrates similar
trends.

Fig. 9. Three-parameter solid model.

Table 4. Quasistatic model parameters of Q60 and Q70

Sample

Parameters

q0 (kPa) q1 (kPa · s) p1 (s) n

Q60 113.74 5,771.9 21.56 1.8542
Q70 68.13 6,101.6 33.91 2.5873
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Fig. 10. Comparison between quasistatic tests and model predictions: (a) Q60; and (b) Q70.

Table 5. Parameters of macroscopic parametric model

Samples

Fractional derivative model parameters
Modified Kraus model

parameters Linear parameters

Gc
a (kPa) ηc

a (kPa · sα) αa μ (s) εc m1 m2 k1 b1 k2 b2

Q60 270.25 53.5 0.4 0.05 0.098 0.03 0.87 0.78 80.0 0.3 21.0
Q70 199.35 70.7 0.6 0.03 0.101 0.01 1.09 0.80 85.3 0.16 33.6
aIdentified based on the cases without external magnetic fields only.
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Conclusions

In this paper, we proposed a micromechanics-enriched model that
can predict the MR effect of MREs exactly in a simple formation,

and then the existing fractional-order derivative model was im-
proved based on the Kraus model in order to consider the Payne
effect. Combining the above theoretical approaches, we developed
a unified parametric model that can reflect the MR effect, as well as
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Fig. 11. Comparison between dynamic test results and model predictions for the shear storage and shear loss moduli (left and right columns,
respectively) under different excitation amplitudes (1, 2, and 3 mm from top to bottom in each subfigure): (a and b) Q60 (0 mT); (c and d)
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the frequency- and amplitude-dependent mechanical properties of
MREs.

The validation of the proposed model was conducted through
comparing the model predictions with quasistatic and dynamic test
results of silicon rubber–based MRE samples. This model is suit-
able and applicable as long as the load-displacement loops of MRE
samples keep an elliptic shape; i.e., no unrecoverable deformation
occurs in MRE samples. Because of the experimental limitation,
the external magnetic field is smaller compared with saturate car-
bonyl iron powder in MRE samples, so future work should also
focus on the effect of magnetic saturation on the mechanical prop-
erties of MREs.
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