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The objective of this study is to develop and test a coarse-grained molecular dynamics framework to
model microscale multiphase systems with different inter-particle interactions and recover emerging
thermodynamic and mechanical properties at the microscale. A water-vapor model and a fused silica
model are developed to demonstrate the capability of our framework. The former can reproduce the
water density and surface tension over a wide range of temperatures; the latter can reproduce exper-
imental density, tensile strength, and Young’s modulus of fused silica. Therefore, the deformable
solid model is implemented in the proposed framework. Validations of spatial scaling methods
for solid, liquid, and multiphase systems suggest that the proposed framework can be calibrated
at an arbitrary microscale and used at a different length scale without recalibration. Different val-
ues of wettability for a solid-liquid-vapor system that is characterized by the contact angle can be
achieved by changing the solid-liquid inter-particle potential. Thanks to these features, the proposed
coarse-grained molecular dynamics framework can potentially find applications in modeling systems
in which multiple phases coexist and have substantial interactions. Published by AIP Publishing.
https://doi.org/10.1063/1.5038903

I. INTRODUCTION

It is critical to understand and predict the mechanical
and hydraulic behavior of partially saturated porous media
under various loading conditions given its importance in many
applications in civil and mining engineering, petroleum engi-
neering, earthquake engineering, and hydrogeological sci-
ences. The dynamics of partially saturated porous media have
been studied with experimental techniques, suggesting that
the effect of pore fluid can be crucial in the response of geo-
materials under loading.1 However, it is hard to quantify the
effect of pore fluid on the solid skeleton experimentally. For
example, it is very challenging to measure the pore water
pressure in partially saturated porous media,2 which can sig-
nificantly affect solid crushing.3,4 To better quantify the effect
of pore fluid on the response of porous media to stresses,
numerical simulations can be an effective way to study the
multiphase interaction quantitatively for a better understand-
ing of the hydro-mechanical coupling in partially saturated
porous media.

Partially saturated porous media exhibit multiphase inter-
actions across multiple scales. At the macroscopic scale, the
representative element volume of partially saturated porous
media is assumed to be homogeneous as commonly found
in continuum constitutive models implemented in finite ele-
ment methods.5–7 However, the assumptions on homogeneity
in these continuum models do not hold at the microscale of

a)Author to whom correspondence should be addressed: luming.shen@
sydney.edu.au. Tel.: +61-2-93512126. Fax: +61-2-93513343.

materials made of discrete and heterogeneous grains with
unevenly distributed pores filled with liquid and/or air. In addi-
tion, the mesh in finite element methods usually has difficulties
in handling large deformations of the representative volume
element due to severe mesh distortion, making the simula-
tion of grain crushing difficult. In this sense, a particle-based
method can be more suitable for modeling partially saturated
porous media at the microscopic scales. So far, several meth-
ods have been developed to model multiphase interactions,
especially for multiphase fluids and fluid-solid interactions.
The Lattice Boltzmann Method (LBM),8 dissipative particle
dynamics (DPD),9 smoothed particle hydrodynamics (SPH),10

and grid-based computational fluid dynamics coupled with an
interface tracking model such as the volume-of-fluid (VOF)
method11 have been used for simulating multiphase flows.
Some of these methods, such as the LBM and VOF method,
can be coupled with the discrete element method (DEM)
to model transport of solid particles.8,12 However, in these
methods, solids are generally non-deformable and thus grain
deformation or crushing cannot be effectively modeled.

At the atomic scale, molecular dynamics (MD) methods
are suitable for modeling multiphase systems, where materials
and phases can be described by atoms and molecules.13 How-
ever, carrying out MD simulations at microscopic scales can
be extremely costly due to the need of a very large number of
atoms and molecules and small step sizes for time integration.
To model multiphase interactions with deformable solid at the
microscopic scale, therefore, a particle-based coarse-grained
approach is proposed in this study. This idea follows from
coarse-grained molecular dynamics (CGMD), which uses one

0021-9606/2018/149(12)/124505/16/$30.00 149, 124505-1 Published by AIP Publishing.
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particle to represent a group of atoms or molecules in order to
reduce the degrees of freedom of the system.

In general, there are two main groups of coarse-grained
(CG) methods: (1) the bottom-up method, where the CG poten-
tial function is derived from the information retrieved from
all-atomistic simulations; (2) the top-down method, where an
imposed potential function is selected, and the parameters are
optimized to meet the targeted macroscopic properties. For
the bottom-up method, one approach is to estimate the pair
potential derived from the resultant forces of a cluster of MD
particles and the trajectories using a multiscale coarse-graining
method (MS-CG) or a force matching (FM) method.14 The CG
potential force field can also be derived from the MD particle
distribution using iterative Boltzmann inversion (IBI).15 How-
ever, the CG potential constructed from the bottom-up method
at one thermodynamic state may not be suitable for recovering
properties at a different thermodynamic state, and the deriva-
tion of the density-dependent or temperature-dependent CG
potential would be required.16

The top-down method aims to fit the thermodynamic
quantities to experimental observations by adjusting the
parameters of a proposed potential model. There are several
CG models for fluids that map small numbers of molecules into
one CG particle using mathematical potential functions such
as Lennard-Jones (LJ), Mie, and Morse potential.17–19 By con-
trast, the DPD and many-body dissipative particle dynamics
(MDPD) are able to map a large number of molecules (e.g.,
∼106 water molecules or above) into one particle by matching
the relevant properties against experimental data.20,21 In addi-
tion, the scaling method for DPD was proposed to scale the
DPD system to any desired length scale by Füchslin et al.22

This method has also been applied to the MDPD system
recently.20 While compressibility of the modeled material is
conserved during scaling from one length scale to another,
the surface tension reproduced by the MDPD model is not
conserved.20

The original DPD force field leads to an equation of
state where pressure is a quadratic function of density.23 The
MDPD was first introduced by Pagonabarraga and Frenkel24

as an extension to DPD by using the density-dependent repul-
sive force, to have more options for the equation of state.
MDPD was later improved by Warren25 to model liquid-vapor
interfaces, by including the attractive and repulsive forces at
different ranges. The studies and developments of MDPD are
an active research area, especially for multiphase interactions.
Ghoufi and Malfreyt26 have reported that the MDPD method
is able to reproduce the experimental density, surface tension,
and compressibility of water by calibrating one of the MDPD
parameters to fit the surface tension at 298 K. In their studies,
one MDPD particle represented three water molecules and a
top-down coarse-graining method was used. Arienti et al.20

also have used a set of simple scaling relations which links the
MDPD model from a dimensionless system to dimensional
system by reproducing the experimental density, surface ten-
sion, and viscosity properties of various fluids. Goujon et al.27

studied the finite-size effects of the surface area on surface ten-
sion for several coarse-grained models, including the MDPD
water model reported by Ghoufi and Malfreyt.26 They showed
that there is a weak dependence of the surface tension on the

surface area for the MDPD water model. Recent studies com-
monly adopt the MDPD force field for the MDPD solid-liquid
interactions and control the wettability by adjusting the param-
eter of attractive forces between solid and liquid particles.28

Other solid-liquid interaction models which use a force func-
tion with attractive and repulsive forces are also possible.20

As a result, the MDPD droplet on a solid substrate can also
be modeled.29 The coalescence of water droplets on the water
surface was also studied using the MDPD model.30

In this paper, the top-down method is used to map many
molecules into one particle without running the full atom-
istic simulations, which are not affordable at the micro-
length scales in most situations. A framework based on
the CGMD is developed within LAMMPS.31 This proposed
framework combines MDPD, the Morse potential function,
and the Lennard-Jones potential function to describe the mul-
tiphase interactions of the solid-liquid-vapor system with solid
being modeled deformable. Specifically, MDPD and the Morse
potential function will be used to describe the liquid-liquid
(or liquid-vapor) and solid-solid inter-particle interactions,
respectively, while the solid-liquid inter-particle interaction
will be modeled using the Lennard-Jones potential function.

The capability of the framework is demonstrated by cal-
ibrating the simulated physical quantities against experimen-
tally measured values of (1) the density and surface tension of
water at room temperature, and the changes in water surface
tension against the temperature for the MDPD liquid-vapor
model; and (2) the density, Young’s modulus, and tensile
strength of fused silica for the Morse-potential solid model.
For solid-liquid-vapor interactions, water droplets on a solid
substrate with different wetting ability are modeled, resulting
in different contact angles. The scaling method in Ref. 22 is
applied to maintain the bulk properties of the solid model but
modified to maintain the surface tension of the MDPD liquid-
vapor model during scaling. In addition, the scaling method is
also extended to the multiphase system for modeling micro-
scopic systems of different sizes without recalibration of model
parameters.

The remaining sections of the paper are organized as fol-
lows. Section II presents the potential functions used for the
inter-particle interactions (Sec. II A), parameters calibration
for the liquid-vapor and solid models (Sec. II B), the scaling
methods for liquid-vapor, solid, and solid-liquid-vapor sys-
tems (Sec. II C), numerical validation for liquid-vapor and
solid models, and the solid-liquid-vapor system applications
used in the simulations (Sec. II D). Section III describes and
discusses the results of the numerical validation and appli-
cations. Section IV presents the conclusions of this work.
Appendixes A–E report the details of all simulations carried
out in this work.

II. METHODS
A. Potential functions for inter-particle interactions

Under the proposed coarse-grained framework, all phases
are discretized and modeled by the coarse-grained particles.
The motions of all particles obey the laws of Newtonian
mechanics. The potential functions for inter-particle interac-
tions are described in this section.
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The interaction between liquid-liquid or liquid-vapor par-
ticles is described by MDPD forces. Only the conservative
part of the MDPD interaction is adopted here; its dissipative
and random forces that act as a thermostat in DPD are not
included. The DPD thermostat indeed can conserve momen-
tum locally and hence preserve hydrodynamics.30 While the
DPD thermostat has been used for fluid and hydrodynamics
modeling, the Nosé-Hoover chain thermostat13,32,33 has been
applied successfully in both solid and liquid models, as well
as the multiphase system at the atomistic level. Since our pro-
posed model also includes the modeling of deformable solid
grains, the Nosé-Hoover chain thermostat is used in our frame-
work for temperature control. The conservative force Fij on the
ith particle due to the jth particle is expressed as25

Fij = Awc

(
rij

)
eij + B

(
ρi + ρj

)
wd

(
rij

)
eij, (1)

where A and B are parameters of the attractive and repulsive
forces, respectively; rij is the distance between the ith and the
jth particles; eij is the unit vector pointing from the jth particle
to the ith particle; wc(rij) and wd(rij) are the weight functions
defined as

wc

(
rij

)
=




1 −
rij

rc
, rij ≤ rc

0, rij > rc,
(2)

wd

(
rij

)
=




1 −
rij

rd
, rij ≤ rd

0, rij > rd ,
(3)

where rc and rd are the cutoff distances for the attractive and
repulsive forces, respectively. rc is greater than rd to recover
the attractive force at the surface. The weighted local density
of the ith particle, ρi, is calculated as the sum of the weight
function wρ toward its neighbor particles up to the cutoff
radius rd,

ρi =
∑

j,i
wρ =

∑
j,i

15

2πr3
d

(
1 −

rij

rd

)2

, rij ≤ rd . (4)

The force on the ith particle due to the jth particle calcu-
lated in the embedded atom method (EAM)34 has a sim-
ilar structure as Fij in Eq. (1), where the first term of
Eq. (1) is a pairwise force and the second term of Eq. (1)
is related to the local density functions. To implement the
MDPD into molecular dynamics simulator LAMMPS, the
MDPD potential energy of the ith particle can be calcu-
lated using Eq. (1) and written in the form of the EAM
potential,

ui =
1
2

∑
j,i

Arc

2
wc(rij)

2 +
πr4

d

30
Bρi

2, (5)

where ui is the potential energy of the ith particle.
To model the interaction between solid particles, a pair-

wise Morse potential function with a cutoff distance rss,cut is
used,

uss =



Do
[
exp(−2α(rss − ro)) − 2 exp(−α(rss − ro))

]
, rss < rss,cut

0, rss ≥ rss,cut ,
(6)

where uss is the potential energy between two solid particles
and rss is their relative distance; Do and ro are the depth of
the potential well (minimum energy for the Morse potential)
and the location of the well, respectively; the parameter α
controls the curvature of the potential well at ro. Since the
Morse potential function has three parameters Do, ro, and α,
it can be fitted against the three mechanical properties, i.e.,
density, Young’s modulus, and tensile strength of a particular
solid material.

The interaction between solid and liquid particles in a
full-atom MD scheme has commonly been modeled using the
Lennard-Jones (LJ) potential, which is also adopted in our
CG model. The potential energy usl between a liquid parti-
cle and a solid particle, separated by a distance rsl, is given
by

usl =



4εsl

[(
σsl
rsl

)12
−

(
σsl
rsl

)6
]
, rsl < rsl,cut

0, rsl ≥ rsl,cut ,
(7)

where εsl and σsl are the potential well and distance for the LJ
potential, respectively. The LJ potential has a minimum energy
at the distance of 21/6σsl between a liquid and a solid particle.
While different σsl values can be used in Eq. (7), we estimate

σsl as the arithmetic mean,

σsl = 2−
1
6

( rmdpd + ro

2

)
, (8)

where ro is the location of the minimum energy in the Morse
potential and rmdpd is estimated from the distance of the first
peak in the pair distribution function of the liquid model.
Adjusting εsl can easily lead to different levels of solid-liquid
interaction and will result in various degrees of wettabil-
ity for the solid-liquid-vapor system, i.e., different contact
angles.

Simulations are run in dimensionless units in the MDPD.
As all MDPD particles have the same particle mass mmdpd

and the cut-off distance for attractive force rc, both mmdpd and
rc are equal to the unity in dimensionless unit, i.e., the unit
of mass mmdpd

∗ = 1 and the unit of length σmdpd
∗ = rc

∗ = 1.
In addition, the dimensionless MDPD parameters [Eq. (5)]
can be expressed in terms of the fundamental units of energy
εmdpd (εmdpd

∗ = 1) and distance σmdpd as A∗ = Aσmdpd/εmdpd,
B∗ = B/(εmdpdσmdpd

2), rc
∗ = rc/σmdpd = 1, and rd

∗ = rd/σmdpd.
Note that a variable with the asterisk represents a dimension-
less quantity. Consequently, the dimensionless properties of
the MDPD system are expressed in terms of the fundamental
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units as density ρ∗ = (N /V )σmdpd
3, length L∗ = L/σmdpd,

surface tension γ∗ = γ(σmdpd
2/εmdpd), pressure P∗ = P

(σmdpd
3/εmdpd), and time t∗ = t(εmdpd/mmdpdσmdpd

2)1/2. Note
that N is the number of particles and V is the volume of the
system.

B. Methods of parameter calibration

The calibration of the liquid-vapor MDPD model param-
eters involves an iteration process, as explained next. The
MDPD parameters are calibrated against experimental den-
sity and surface tension at room temperature, as well as the
surface tension over a large range of temperatures. Since both
MDPD parameters A∗ and B∗ are related to the energy unit
εmdpd, we can keep one parameter as invariant and vary the
other. Here, we choose A∗ = −40 and try to determine B∗. For
rc
∗ and rd

∗, we set rd
∗ = 0.75 and rc

∗ = 1 which have been used
in earlier studies.20,26 Therefore, B∗ is the only unknown. To fit
the model of liquid phase against the surface tension at differ-
ent temperatures, we define the reference dimensionless room
temperature T room

∗ by calculating the melting temperature
Tm
∗ at atmospheric pressure P∗1atm. Tm

∗ is calculated using
direct solid-liquid coexistence simulation (see Appendix A)
for the MDPD model with a given set of MDPD parameters
at P∗1atm. Therefore, T room

∗(Tm
∗) is a function of Tm

∗ with
T room = 293.15 K,

T ∗room
(
T ∗m

)
=

Troom

Tm
T ∗m, (9)

where Tm is the experimental melting temperature at atmo-
spheric pressure of the liquid. Since the MDPD model is
calibrated against the liquid properties of water, Tm = 273.15 K
is used.

For a given set of parameters (A∗, B∗, rc
∗, and rd

∗),
both ρ∗(T ∗) and γ∗(T ∗) depend on T ∗ and their values can
be calculated from the liquid-vapor interface simulations in
the canonical ensemble (see Appendix B). When T room

∗(Tm
∗)

is calculated, both ρ∗(T room
∗(Tm

∗)) and γ∗(T room
∗(Tm

∗)) are
used to match the experimental density ρexp and surface ten-
sion γexp of the liquid at room temperature by calculating the
values of the fundamental units. The real particle mass mmdpd

depends on ρexp, the number of particles N used for modeling
liquid phase, and the simulated liquid volume V,

mmdpd = ρexpV/N . (10)

Then, the values of σmdpd and εmdpd can be calculated from
ρexp and γexp at a room temperature,

σmdpd
(
T ∗room

(
T ∗m

))
=

(
mmdpd

(
ρ∗

(
T ∗room

(
T ∗m

))
ρexp

)) 1
3

, (11)

εmdpd(T ∗room
(
T ∗m

)
) = σ2

mdpd(
γexp

γ∗(T ∗room(T ∗m))
). (12)

The dimensionless atmospheric pressure P∗1atm is then calcu-
lated from σmdpd(T room

∗(Tm
∗)) and εmdpd(T room

∗(Tm
∗)), with

P1atm = 101 325 Pa,

P∗1atm
(
T ∗m

)
= P1atm

σ3
mdpd

(
T ∗room(T ∗m)

)
εmdpd(T ∗room(T ∗m))

. (13)

Because the value of P1atm
∗(Tm

∗) can affect the calculation
of Tm

∗ in the direct solid-liquid coexistence simulation, an
iterative process is needed to calculate Tm

∗ (see Table I). We
start from P0

∗ = 0 to calculate T0,m
∗ for the initial value (the

first subscript i is the ith iteration), since the vapor pressure is
relatively small in the liquid-vapor system at low T ∗. If T1,room

∗

< T0,m
∗, the set of parameters is rejected because it would

not be physically sound to simulate a liquid-vapor system at
T ∗ < Tm

∗. After Tm
∗ converges, T room

∗ is also defined for each
set of parameters [Eq. (9)] and the values of σmdpd and εmdpd

can be calculated [Eqs. (11) and (12)]. Since only the parameter
B∗ is unknown, γ∗(T ∗) calculated at different T ∗ for each B∗

can be converted to dimensional values γ(T ) as γ(T ) = γ∗(T ∗)
εmdpd/σmdpd

2 and T = T ∗(Tm/Tm
∗). Hence, B∗ is calibrated

by fitting the calculated γ(T ) against the experimental value
γexp(T ) at different T.

In the solid model, a trial and error heuristic search is used
to calibrate the parameters of the Morse potential function Do,
ro, and α against the experimental density, tensile strength,
and Young’s modulus of the fused silica in Ref. 35. The cal-
culations of simulated density, tensile strength, and Young’s
modulus for the solid model are reported in Appendix D.

TABLE I. The algorithm of the iteration process for determining Tm
∗ for a given set of parameters.

Step no. Description

1 For a given set of parameters (A∗, B∗, rc
∗, and rd

∗), calculate T i,m
∗ with P0

∗ = 0
from the direct solid-liquid coexistence simulation (see Appendix A), starting from
iteration i = 0

2 Calculate T i,room
∗ with T i,m

∗ using Eq. (9)

3 Compute ρi
∗ andγi

∗ from the liquid-vapor interface simulations using T i,room
∗ from

Step 2 (see Appendix B)
4 Compute σi,mdpd and εi,mdpd using Eqs. (11) and (12) with ρi

∗(T i,room
∗) and

γi
∗(T i,room

∗) from Step 3
5 Calculate Pi,1atm

∗ with σi,mdpd and εi,mdpd from Step 4 using Eq. (13)

6 i = i +1

7 Calculate T i,m
∗ with Pi�1,1atm

∗ (calculated in Step 5) from the direct solid-liquid
coexistence simulation (see Appendix A)

8 Repeat Step 2 to Step 7 until |T i,m
∗
� T i�1,m

∗ |/T i,m
∗ ≤ 0.5%, and T i�1,m

∗ is selected
as the final Tm

∗; stop if T1,room
∗ ≤ T0,m

∗ and repeat from Step 1 by choosing a new
set of parameters
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C. Scaling methods

Füchslin et al.22 proposed a set of scaling relations to
determine the DPD parameters from one scale and apply them
to another scale. The main concept of the scaling method in
Ref. 22 is illustrated in Fig. 1 for a 2D system. A 16-particle
system [Fig. 1(a)] is scaled to a 4-particle system [Fig. 1(b)]
by mapping 4 particles into one large particle and maintaining
the same system size. The radius of particle interaction was
also scaled accordingly (Fig. 1). Both systems can be con-
verted from dimensionless systems [Fig. 1(c)] and the scaling
relations are used to maintain the desired physical quantities.
Here the scaling factor φ = N /N ′ is introduced, where N and
N ′ are the two different particle numbers in the two systems
of the same size. For example, φ = N /N ′ = 4 for the scaling
of the systems in Figs. 1(a) and 1(b), with N = 16 and N ′ = 4,
respectively. The scaling relations of the fundamental units for
a 3D system are listed as: the mass unit m′ = φm, the energy
unit ε′ = φε, and the length unit σ′ = φ1/3σ, according to
the method of Füchslin et al.,22 where the “prime” indicates
quantities in the N ′ system after scaling. The parameters and
relevant physical quantities after scaling can then be calculated
with the fundamental units.

The scaling method of Füchslin et al.22 maintains the
bulk properties such as compressibility under the assumption
of no phase transition during compression, while the inter-
facial properties such as surface tension are not necessarily
conserved during scaling. We here provide an alternative way
of deriving the scaling relations to maintain the surface tension
quantity for the liquid-vapor system. The relationship between
the dimensional compressibility κ and the dimensionless com-
pressibility κ∗ is expressed as κ = κ∗(σ3/ε). The dimensional
compressibility after scaling κ′ is calculated as κ′ = κ∗(σ′3/ε′)
= κ∗((φ1/3σ)3/ε′) = κ∗(φσ3/ε′), with σ′ = φ1/3σ. For the two
systems before and after scaling to have the same compress-
ibility, i.e., κ = κ′, equation ε′ = φε must hold. Similarly, the
surface tension before scaling is expressed as γ = γ∗(ε/σ2) and
the surface tension after scaling is expressed as γ′ = γ∗(ε′/σ′2)
= γ∗(ε′/φ2/3σ2), withσ′ = φ1/3σ. Hence, ε′ = φ2/3ε is required

FIG. 1. The schematic plot of the scaling method by Füchslin et al.22 Repro-
duced with permission from Füchslin et al., J. Chem. Phys. 130, 214102
(2009). Copyright 2009 AIP Publishing LLC.

to have γ′ = γ. This also explains why γ′ = φ1/3γ has been
found when ε′ = φε was used in the MDPD simulation as in
Ref. 20, as γ′ = γ∗(ε′/σ′2) = γ∗(ε/σ2)φ1/3 = φ1/3γ. N ′ and N
should be large enough to avoid the finite size effect in order to
make the scaling relations valid. It should be noted that the sur-
face tension is conserved with ε′ = φ2/3ε during our proposed
scaling process, while the compressibility of the liquid is not
conserved. Since the pressure of the vapor particles and the
pressure induced from the curved surfaces of the droplets are
relatively small, the change in compressibility would not affect
liquid density much. The liquid density difference between the
two simulated droplets with the scaling factors for the liquid-
vapor model φlv = 1 and φlv = 1/64 is within 0.5% at room
temperature, as shown in Sec. III C, which is quite accept-
able. On the other hand, the effect of surface tension on the
microscale multiphase flow can be significant. Therefore, in
order to maintain the surface tension instead of the compress-
ibility, the modified scaling relations of the fundamental units
for the MDPD liquid-vapor model are introduced as

m′mdpd = φlvmmdpd, (14)

ε′mdpd = φlv
2
3 εmdpd, (15)

σ′mdpd = φlv
1
3σmdpd, (16)

where φlv = N lv/N lv
′ is the scaling factor for the liquid-

vapor model and N lv and N lv
′ are the two numbers of

liquid-vapor particles used to represent the same dimensional
size. In addition, as the dimensional time is calculated as
tlv = tlv

∗(mmdpdσmdpd
2/εmdpd)1/2, the scaled time can be

expressed as tlv
′ = φlv

1/2 tlv for the MDPD liquid-vapor model.
The MDPD parameters after scaling are then calculated as

A′ = φlv
1
3 A, (17)

B′ = φlv
4
3 B, (18)

r ′c = φlv
1
3 rc, (19)

r ′d = φlv
1
3 rd . (20)

The fundamental units of the Morse-potential solid model
are defined by using the particle mass ms, the energy parameter
Do, and the distance parameter ro. Therefore, to maintain the
bulk properties of the solid model, the scaled particle mass and
Morse potential parameters are calculated as

m′s = φsms, (21)

D′o = φsDo, (22)

r ′o = φs
1
3 ro, (23)

α′ = φs
− 1

3 α, (24)

where φs = N s/N s
′ is the scaling factor for the solid model,

with N s and N s
′ as the two numbers of solid particles used to

represent the same dimensional size. Hence, the scaled time
for the solid model is ts

′ = φs
1/3ts, as ts = ts

∗(msro
2/Do)1/2.

To scale the liquid-vapor and solid model together in the
same system, i.e., to maintain the same surface wettability dur-
ing the scaling process, it requires scaling parameters of the LJ
potential as well. Since different scaling relations are applied
to the energy units for the liquid-vapor and solid systems, scal-
ing in energy parameters of the LJ potential εsl

∗ requires that
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TABLE II. The summary of the five simulation cases with the simulation setups being reported in Appendixes A–E.

Case Simulation Potential model Quantities calculated Simulation purpose

1 Solid-liquid MDPD Calculate Tm
∗ i. To benchmark against the experimental surface

(Appendix A) at P∗ tension over temperature in combination with Case 2

2 Liquid-vapor MDPD Calculate ρ∗(T∗) ii. To benchmark against the experimental surface
(Appendix B) and γ∗(T∗) tension over temperature in combination with Case 1

3 Water droplet in a MDPD Calculate water density and surface iii. To study the effect of droplet size on
vacuum (Appendix C) tension at different droplet sizes density and surface tension droplet

iv. To verify the scaling method for water-vapor model

4 Fused silica Morse Calculate the mechanical properties v. To benchmark against the experimental
(Appendix D) potential of the fused silica mechanical properties of the fused silica

vi. To verify the scaling method for fused silica model

5 Water droplet MDPD, Morse potential, Calculate contact angles of the vii. To show the ability to achieve different values
on a solid substrate and Lennard-Jones liquid-vapor-solid system of wettability;
(Appendix E) using different interaction energies viii. To verify the scaling method in the

between liquid and solid particles solid-liquid-vapor system

φs = φlv
2/3 to maintain the ratios among interfacial energy

terms (i.e., solid-vapor, solid-liquid, and liquid-vapor) during
scaling, such as

ε′sl = φlv
2
3 εsl = φsεsl. (25)

For the distance parameters σsl, we assume that Eq. (8) holds,
so the scaled σsl

′ is calculated as

σ′sl = 2−
1
6

*..
,

φ
1
3
lvrmdpd + φ

1
3
s ro

2

+//
-
. (26)

This scaling constraint, φs = φlv
2/3, also satisfies automat-

ically the thermal equilibrium condition for different phases.
Füchslin et al.22 have used kbT ′ = φ(kbT ) for the DPD ther-
mostat because the dissipation-fluctuation relation involves the
energy term kbT (where kb is the Boltzmann constant). Since
a Nosé-Hoover thermostat is used in our model, the scaled
temperature parameter used in the Nosé-Hoover thermostats
is calculated as T lv

′ = φlv
2/3T lv for the liquid-vapor model and

FIG. 2. The total energy of the liquid-solid coexistence simulations evolves
with time in the NPT ensemble at P∗ = 0 for B∗ = 50. The systems at T∗ ≥
0.81(the two curves at the top) form liquid and the systems at T∗ ≤ 0.808
(the two curves at the bottom) become solid. The liquid and solid states are
determined by plotting the pair distribution function (see Appendix A for more
details).

T s
′ = φsT s for the solid model. In the solid-liquid-vapor sys-

tem, given φs = φlv
2/3 and T lv = T s, we have T lv

′ = T s
′, which

satisfies the thermal equilibrium among all phases.

D. Methods of validations and applications

In this study, five cases were used to validate the pro-
posed coarse-grained approach and demonstrate its capability
(Table II). The simulations in the first two cases (Case 1 and
Case 2) worked together to determine the MDPD parameter B∗

for the water-vapor model, as described in Sec. II B. In Case
1, Tm

∗(P∗) was calculated using the direct solid-liquid coex-
istence simulations for MDPD particles. In Case 2, ρ∗ and γ∗

were calculated using the planar liquid-vapor interface simula-
tion at different temperatures. In Case 3, the simulated density
and surface tension were calculated from the water droplet
simulation with different droplet sizes, to study the effect of
droplet size and quantify the discrepancies from the planar
liquid-vapor interface simulation. The scaling method for the
water-vapor model was also verified using the results in Case
3. In Case 4, the density, tensile strength, and Young’s modulus
of the fused silica model were calculated. The tensile strength
and Young’s modulus were calculated with tensile test simu-
lations at a strain rate of 0.01 s−1. While the minimum strain
rate of 0.01 s−1 was limited by the computational resources, a
number of strain rates were used to study the rate-dependency
of the model. The scaling method for the solid model was also
verified in Case 4. In Case 5, different values of the wettability
of the water-vapor-fused silica system were achieved in the
simulations of water droplets on a solid substrate by adjusting
different interaction energy between liquid and solid particles.

FIG. 3. A snapshot of the liquid film after equilibration for the model with
parameters A∗ = −40, B∗ = 50, rd

∗ = 0.75, rc
∗ = 1 at T∗ = 1.
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TABLE III. The results of the iteration process for B∗ = 50.

ith iteration P1atm
∗ T∗m T∗room ρ∗ γ∗ σ (µm) ε (10�12 J) |T i,m

∗
� T i�1,m

∗ |/T i,m
∗ (%)

0 0 0.809 0.868 4.862 4.795 16.94 4.351 . . .

1 113.2 0.945 1.014 4.774 4.26 16.84 4.839 14.39
2 100 0.955 1.025 4.767 4.233 16.83 4.865 1.05
3 99.3 0.957 1.027 . . . . . . . . . . . . 0.21

The scaling method for the solid-liquid-vapor system was also
verified.

The proposed framework was implemented in LAMMPS.31

Snapshots of the simulations were plotted and rendered
using Ovito.36 The EAM tabulated files of MDPD poten-
tials [Eq. (5)] were created by using a python code called
“atsim.potentials.”37 The Nosé-Hoover chain thermostat was
used for temperature control in an isothermal ensem-
ble (constant-temperature, constant-volume NVT ensemble),
unless otherwise stated. The pressure control in an isothermal–
isobaric ensemble (constant-temperature, constant-pressure
NPT ensemble) was achieved with both a Nosé-Hoover chain
thermostat and a Parrinello-Rahman barostat.13,32,33,38 Unless
otherwise stated, the damping parameters for the thermo-
stat and barostat were 100 time steps and 1000 time steps,
respectively.

III. RESULTS AND DISCUSSIONS
A. Case 1: Direct liquid-solid coexistence
simulation for MDPD

The calculation of Tm
∗ in the water-vapor model at P∗ was

carried out by direct liquid-solid interface simulation (details
in Appendix A), where the MDPD solid and MDPD liquid
were coupled to form a solid-liquid interface and run in the
NPT ensemble at the assigned T ∗ and P∗. Figure 2 shows that
the total energy of the system changes with time at different T ∗

for B∗ = 50 at P∗ = 0 as an example. When the solid melts, an
increase of the total energy is observed because the thermostat
provides extra energy to the system; when liquid freezes, the
energy is removed by the thermostat and a decrease of the total
energy is observed. The upper and lower limits of the melting
temperature Tupper

∗ = 0.81 and T lower
∗ = 0.808 are found in

this case, respectively (Fig. 2). The Tm
∗ is then calculated

as the average of Tupper
∗ and T lower

∗, i.e., Tm
∗ = 0.809. The

simulations were run using 4394 solid particles. To eliminate
the finite size effect, simulations with 2000 and 6750 solid
particles were also carried out for B∗ = 50 at P∗ = 0, and Tm

∗

= 0.809 was found in all cases. Ultimately, 4394 solid particles
have been used in all direct liquid-solid interface simulations.

B. Case 2: Liquid-vapor interface simulation
for MDPD

The liquid-vapor interface simulations were performed to
calculate the values of ρ∗(T ∗) and γ∗(T ∗) at a given T ∗. The

TABLE IV. The calculated T room
∗ for B∗ = 40, 48, 49, 50, 51, and 60.

B∗ 48 49 50 51 60
T room

∗ 0.971 0.999 1.025 1.051 1.177

details of the simulations and calculations of ρ∗(T ∗) and γ∗(T ∗)
are reported in Appendix B. An example of the equilibrated
liquid-vapor simulation is shown in Fig. 3. To calculate Tm

∗

using the iteration process shown in Table I, Tm
∗(P1atm

∗) is
calculated based on the simulations in Case 1, while water
density ρ∗(T room

∗(Tm
∗)) and surface tension γ∗(T room

∗(Tm
∗))

FIG. 4. (a) Surface tension against temperature in dimensional units for
B∗ = 48 (cross), 49 (square), 50 (circle), 51 (triangle), and 60 (diamond);
the solid line is the experimental data;39 (b) water density at different tem-
peratures for B∗ = 50; and (c) the vapor density at different temperatures for
B∗ = 50.
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FIG. 5. (a) Vapor density against the
number of particles at T∗ = 1.025 and
(b) surface tension against the number
of particles at T∗ = 1.025.

are calculated here. We have chosen Tm = 273.15 K for water
to calculate T room

∗ using Eq. (9). The iteration results for
B∗ = 50 are listed in Table III as an example. The calcula-
tion stops at the 3rd iteration, as |T3,m

∗ −T2,m
∗|/T3,m

∗ = 0.21%.
Hence, T2,room

∗ = 1.025 is chosen as the final room temperature
T room

∗.
The calculated T room

∗ values for B∗ = 48, 49, 50, 51, and 60
are reported in Table IV. The simulated surface tension against
the temperature for each B∗ is plotted and compared against
the experimental surface tension from Ref. 39 [Fig. 4(a)]. The
bars in Fig. 4(a) represent the statistical errors of the simulated
surface tension, which have been calculated by estimating the
statistical inefficiency.13,40,41 The best prediction of the exper-
imental surface tension is found for B∗ = 50 for a temperature
in the range of 293 K–600 K. The corresponding fundamen-
tal units for B∗ = 50 are then calculated as εmdpd = 4.8646
× 10−12 J, σmdpd = 16.83 µm, and mmdpd = 9.98 × 10−13 kg.
Figures 4(b) and 4(c) show that the simulation results match
the experimental water density up to 450 K and experimental
vapor density up to around 600 K. Note that only the simu-
lated water density at the T room has been calibrated against the
experimental water density.

The finite size effect of the liquid-vapor simulation was
also examined by using different particle numbers N lv at
T room

∗ = 1.025, for B∗ = 50. The results show that there is no
effect of N lv on the liquid density, which is found to be close to
constant ρl

∗ = 4.767. The vapor density ρv
∗ and surface tension

γ∗ versus N lv are plotted in Figs. 5(a) and 5(b), respectively.
ρv
∗ fluctuates at small N lv and converges to around 0.00112 at

N lv ≥ 64 000 [Fig. 5(a)]. The values of γ∗ are approximately
the same for N lv ≥ 8000 with the error bars overlapping each
other [Fig. 5(b)]. Since we are mainly interested in the liquid
density and surface tension, this convergence study justifies
the use of N lv = 8000.

C. Case 3: Water droplet in a vacuum

To study the effect of droplet size on water density and
surface tension (Appendix C), water droplets of different sizes
were simulated with a different number of particles N lv at
T room

∗ = 1.025 within a box with periodic boundary condi-
tions. Figure 6 shows a snapshot of the droplet simulated with
N lv = 8000 after equilibration. The droplet is located at the
center and the flying particles in the vacuum are the vapor par-
ticles. Figures 7(a) and 7(b) show the density and pressure

profiles as a function of the distance r from the center of
the simulation box in dimensional units, respectively, for the
droplet simulated using different N lv. The profiles start at a
distance greater than 1.0 rc in Figs. 7(a) and 7(b) because the
local density and pressure have large fluctuations close to the
center due to the sampling over small volumes of spherical
shell bins (see calculation details in Appendix C). The bulk
liquid and vapor densities, i.e., ρl

∗ and ρv
∗, and bulk pressure

in liquid and vapor phases, i.e., Pl
∗ and Pv

∗, are calculated by
averaging the data in the bulk region. The corresponding
dimensional values calculated with the fundamental units
εmdpd = 4.8646× 10−12 J,σmdpd = 16.83 µm, and mmdpd = 9.98
× 10−13 kg as ρ = ρ∗mmdpd/σmdpd

3 and P = P∗εmdpd/σmdpd
3

are listed in Table V.
The error function erf42 is found to provide a better fit to

our density profile compared to the hyperbolic tangent func-
tion,43 and it is used to fit the density profile as a function of
r, given ρl and ρv,

ρ(r) =
1
2

(ρl + ρv) −
1
2

(ρl − ρv)erf(

√
π
(
r − rdp

)
w

), (27)

where rdp and w are the estimated droplet radius and the inter-
face thickness listed in Table V. The value of rdp is close to the
equimolar dividing radius re, which can be calculated using

FIG. 6. A snapshot of the simulated water droplet at equilibrium with
N lv = 8000.
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FIG. 7. (a) Density profile against
radius r for the simulations with a dif-
ferent number of particles. The solid
lines are the fitted density profile using
Eq. (27). (b) Pressure profile against
radius r for the simulations with a dif-
ferent number of particles. The error
bars are calculated from the block
averages.

TABLE V. The resulting ρl, ρv, Pl, Pv, ∆P, rdp, w, and re for the droplet simulations with a different particle
number N lv.

N lv ρl (kg/m3) ρv (kg/m3) Pl (Pa) Pv (Pa) ∆P (Pa) rdp (µm) w (µm) re (µm)

512 1011 0.500 3041.3 2.378 3038.9 48.66 11.42 49.16

1 000 1009 0.396 2412.4 1.939 2410.4 61.12 11.99 61.58

4 000 1005 0.333 1500.1 1.623 1498.4 97.60 13.44 97.98

8 000 1003 0.297 1183.8 1.459 1182.4 123.21 14.08 123.55

15 625 1002 0.278 948.3 1.367 946.9 154.22 14.57 154.52

27 000 1002 0.270 783.6 1.327 782.3 185.20 14.9 185.47

64 000 1001 0.266 587.9 1.306 586.6 247.14 15.57 247.38

125 000 1000 0.251 471.2 1.235 470.0 309.10 16.27 309.32

512 000 999 0.253 293.7 1.245 292.4 494.85 17.26 495.04

the following equation:13,43

r3
e =

1
ρv − ρl

∫ ∞
0

dρ(r)
dr

r3dr, (28)

where ρ(r) is as in Eq. (27). The calculated re values are listed
in Table V. The larger droplet has lower ρl and ρv; how-
ever, the decrease in ρl is small. In addition, the difference
in ρl between the droplet with re = 123.55 µm (N lv = 8000)
and the droplet with largest radius re = 495.04 µm is around
0.4%. Although the difference in ρv between the two droplets
(i.e., re = 123.55 µm and re = 495.04 µm) is about 18%, the
absolute density difference is in fact very small due to the small
values of the ρv.

If the droplet is large enough, the Young-Laplace equation
should hold43

∆PYL =
2γ∞
re

, (29)

where ∆PYL is the pressure difference between the bulk liq-
uid and vapor pressure and γ∞ is the surface tension at
the planar limit. Here, γ∞ can be obtained from the planar
liquid-vapor simulation using the greatest number of particles
(N lv = 512 000) in Case 2, which is 0.072 46 N/m (γ∗∞ = 4.219).
To check the validity of Eq. (29) in the droplet simulations,
the simulated ∆P (Table V) and the estimated ∆PYL using
Eq. (29) at different re

−1 are plotted in Fig. 8. It can be seen
from Fig. 8 that ∆P and ∆PYL lie closely together for the
droplets with re ≥ 97.98 µm (N lv ≥ 4000). For those droplets
(re ≥ 97.98 µm), a straight line passing through the origin has
been fitted to the ∆P at each re and its slope is used to esti-
mate the surface tension from droplet simulations (Fig. 8). The

estimated surface tension is 0.0731 N/m, which is within 1%
of γ∞, demonstrating the validity of Eq. (29) for the droplet
with sufficiently large size (re ≥ 97.98 µm).

To verify the scaling method for the water-vapor model,
the results of droplet simulations with 27 000, 64 000, 125 000,
512 000 particles are scaled to the same droplet size sim-
ulated at N lv = 8000 by considering the scaling factors φlv

= 8/27, 1/8, 8/125, and 1/64, respectively. The fundamental
units corresponding to each φlv are calculated using Eqs. (14)–
(16). Afterwards, the resulting properties ρl, ρv, Pl, Pv, and
re are calculated with the dimensionless values from each

FIG. 8. Pressure difference between liquid and vapor phases against the
inverse equimolar dividing radius: the circles are simulation results; the red
line is the calculated ∆PYL as in Eq. (29), with γ∞ = 0.072 46 N/m; the black
line is a straight line fitted using the data for re ≥ 97.98 µm and passing
through the origin, and it has a slope of 0.1462 N/m and a R-squared value of
0.999 9.
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TABLE VI. The simulated values of ρl, ρv, Pl, Pv, ∆P, rdp, w, re, and γ for water drops with different scaling
factors.

φlv ρl (kg/m3) ρv (kg/m3) Pl (Pa) Pv (Pa) ∆P (Pa) rdp (µm) w (µm) re (µm) γ (mN/m)

1 1003 0.297 1183.8 1.459 1182.4 123.21 14.08 123.55 73.04

8/27 1002 0.270 1175.4 1.990 1173.4 123.46 9.93 123.65 72.55

1/8 1001 0.266 1175.8 2.612 1173.2 123.57 7.79 123.69 72.55

8/125 1000 0.251 1178.1 3.087 1175.0 123.64 6.51 123.73 72.69

1/64 999 0.253 1174.8 4.980 1172.7 123.71 4.32 123.76 72.38

FIG. 9. (a) Density profile against
radius r for different scaling factors φlv,
and the solid lines are the fitted den-
sity profile using Eq. (27); (b) pressure
profile against r for different φlv. The
error bars are calculated from the block
averages.

case and the corresponding fundamental units (Table VI). Fig-
ures 9(a) and 9(b) show the density and pressure profiles in
dimensional units for each φlv, respectively. It can be seen
from Fig. 9(a) that the width of the interface decreases when
φlv decreases. re increases slightly with the decrease of φlv

as reported in Table VI, but the increment from φlv = 1 to
φlv = 1/64 is within 0.2%. The change in water density ρl

is also small from φlv = 1 to φlv = 1/64, which is around
0.4%. Since the Young-Laplace equation holds for N lv ≥ 4000
(re ≥ 97.98 µm), the surface tension of each droplet γ is esti-
mated as γ = ∆Pre/2 (Table VI). It appears from Table VI
that the value of γ at different φlv is close to that at φlv = 1,
and the largest difference in γ is within 1%. With the small
changes in ρl and γ, we can conclude that the scaling method
for the water-vapor model is valid, at least for the tested scaling
range.

D. Case 4: Fused silica model

The parameters of the Morse potential model of the
fused silica are Do = 2.178 × 10−10 J, ro = 14.142 µm, and
α = 51.91 µm−1 with ms = 4.400 × 10−12 kg. The calculation
details of density ρsim, tensile strength f sim, and Young’s mod-
ulus Esim are reported in Appendix D. In this section, ten tensile
test simulations with different initial particle velocity distribu-
tions were carried out for a specimen with N s = 12 000 and an
aspect ratio of 1:3 at a strain rate of 0.01 s−1. The averaged f sim

and Esim from the 10 results are reported in Table VII. It can
be seen from Table VII that the simulated results can match
well the corresponding experimental data within the standard
deviations. Since the standard deviations of f sim and Esim are
small, only one simulation for each case has been carried out
for the study of the strain rate effect and verification of the
scaling method.

The stress-strain curves at different strain rates ε̇ are
shown in Fig. 10(a). The resulting Esim values are 74.16,
73.9, 73.98, and 73.71 GPa, for ε̇ = 0.01, 0.1, 1, and 10 s−1,
respectively. Esim drops slightly with the increase of ε̇ , while
f sim increases with the increase of ε̇ [Fig. 10(a)]. Both changes
in f sim and Esim are relatively small within the simulated
strain rates, suggesting that the results for ε̇ < 0.01 s−1

would not deviate much from the results of the simulation at
ε̇ = 0.01 s−1.

To verify the scaling method for the solid model, more
tensile test simulations for fused silica with φs = 8, 1/8, and
1/64 were performed at a strain rate of 1 s−1 for N s = 1500,
96 000, and 768 000, respectively. The stress-strain curves
for different φs are plotted in Fig. 10(b). The resulting
Esim values are 72.67, 73.98, 74.53, and 74.73 GPa, for the
φs = 8, 1, 1/8, and 1/64, respectively. The fluctuation of the
stress-strain curve for φs = 8 is greater than that of the other
cases due to the small N s value used in the simulation, which
affects the resulting f sim and Esim values. On the other hand, it
seems from Fig. 10(b) that for φs ≤ 1, f sim is not very sensitive
to φs, while Esim increases slightly with the decrease of φs.
However, these changes are relatively minor as the maximum
changes were around 1% for both f sim and Esim. This indicates

TABLE VII. Comparison between the simulation results and targeted exper-
imental values. The value in the parentheses is the standard deviation of the
resulting values from the ten simulations.

ρ (kg/m3) E (GPa) Tensile strength (MPa)

Experimental value 2200 74 69

Simulation result 2200 73.92 (0.219) 69.00 (0.203)
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FIG. 10. (a) The stress-strain curves for
simulations with Ns = 12 000 at different
strain rates; (b) the stress-strain curves
for simulations with different scaling
factors.

FIG. 11. Snapshots of the water droplet
on a solid substrate for (a) εsl/εmdpd
= 0.2, (b) εsl/εmdpd = 0.5, and (c)
εsl/εmdpd = 1.2. The water-vapor parti-
cles are in blue color and the fused silica
particles are in white color. The particles
in the vacuum are vapor particles.

that the proposed scaling method is valid for the solid model
with sufficiently large N s values.

E. Case 5: Water droplet on a solid substrate

To demonstrate the capability of our model in reproduc-
ing different degrees of wettability, the contact angles θ of a
water droplet on a fused silica substrate were calculated with
different interaction energy between liquid and solid particles
(εsl/εmdpd = 0.2–1.4, see Appendix E for details). Figure 11
shows a snapshot of the simulation after equilibration for dif-
ferent wettability cases. To calculate θ, the 2D density contour
is plotted using the averaged local densities of cylindrical
shell bins with Matlab [Fig. 12(a)]. The liquid-vapor interface

FIG. 12. (a) The density contour for the case of εsl/εmdpd = 0.2. (b) The cir-
cular fit at the liquid-vapor interface for the case of εsl/εmdpd = 0.2: the hollow
dots represent the liquid-vapor interface; the horizontal blue line represents
the solid interface; the yellow line is the tangent of the circle at the contact
point.

is determined from the density contour at the location with
density ρd,

ρd = 0.5(ρl + ρv), (30)

where ρl and ρv are the bulk liquid and vapor densities, which
can be obtained from the results of the droplet simulations.
To avoid the large perturbations of the liquid density near the
substrate, only the liquid-vapor interface 2σsl above the sub-
strate is used to fit a circle. An example of fitting a circle to
the liquid-vapor interface is shown in Fig. 12(b), and the blue
line represents the location of the solid interface. θ is then
calculated by determining the tangent line of the circle at the
intersection of the circle and the solid interface. Five contact
angles have been obtained for each simulation during the pro-
duction. The averaged value and standard deviation of the five
contact angles are then calculated for each case and plotted in
Fig. 13.

FIG. 13. The cosine of contact angle against the value of εsl/εmdpd. The error
bars are calculated from the standard deviation of cosine of the five contact
angles obtained at each simulation and are smaller than the symbol size.
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TABLE VIII. The results of the simulated contact angle at different φlv. The standard deviations of the contact
angles are listed in the parentheses.

N lv 1000 2197 4096 8000 15 625 64 000
φlv 8 3.641 1.953 1 0.512 0.125
φs 4 2.367 1.563 1 0.64 0.25
θ (deg) 121.57 (3.17) 124.53 (1.78) 127.32 (1.00) 126.96 (0.81) 127.15 (0.60) 127.33 (0.31)

It can be seen from Fig. 13 that a low εsl to εmdpd ratio
results in a hydrophobic interaction, while a large ratio leads
to a hydrophilic interaction. As a result, the energy param-
eter of the solid-liquid inter-particle interaction εsl can be
adjusted to reflect the wettability of a liquid on a solid surface.
Therefore, εsl can be calibrated against the desired experi-
mental contact angle. The results of contact angle simulation
using different scaling factors φlv for the liquid-vapor particles
are listed in Table VIII. The solid substrate with a thickness
of three lattice constants was prepared with solid parame-
ters calculated with the scaling factor φs = φlv

2/3. All cases
have a simulation domain around 800 × 800 × 800 µm3.
It can be seen from Table VIII that θ converges for
φlv ≥ 1.95. For the cases of φlv ≤ 3.64, the discrepancies
in the contact angle can be due to using a small number of
liquid-vapor particles (N lv ≤ 2197) since we have shown that
the Young-Laplace equation is only valid for the droplet sim-
ulations using N lv ≥ 4000 in Case 3. In summary, the results
have validated the scaling method for the solid-liquid-vapor
system.

IV. CONCLUSION

In this paper, a coarse-grained MD based framework
has been developed for modeling multiphase systems (vapor-
liquid-solid) at the microscale. The liquid-liquid/liquid-vapor,
solid-solid, and solid-liquid inter-particle interactions are
implemented using different potential functions, i.e., MDPD,
Morse potential, and Lennard-Jones potential, respectively.
As a result, the mechanical properties of the solid and liq-
uid phases emerge from the physical interactions between the
particles.

The simulated density and surface tension of the water-
vapor model, and the simulated density, tensile strength and
Young’s modulus properties of the fused silica model were
calibrated against experimental data. In particular, the water-
vapor model was calibrated against the trend of experimental
surface tension of water versus temperature. The experimental
water density at a wide range of temperatures (up to 450 K) was
also reproduced. It was found from the water-vapor model that
the increase of drop size had a minor effect on the water den-
sity or the resulting surface tension. For the fused silica model
under tension tests, increasing the strain rate could result in
a slightly larger tensile strength and slightly smaller Young’s
modulus. The multiphase interaction simulations were carried
out by modeling a water droplet on the solid substrate with
different energy parameters of the solid-liquid inter-particle
interaction. It was found that there is a clear relation between
the energy parameter and the calculated contact angles. There-
fore, the solid-liquid inter-particle interaction parameter can

also be calibrated with the experimental contact angle. The
modified scaling methods were verified for the liquid-vapor,
solid, and solid-liquid-vapor systems. This allows us to model
the same system using different particle densities or systems
of different sizes using the same particle density, without
the need to recalibrate the parameters against experimental
data.

The DPD method and its variants have been shown in
the literature to successfully model single-phase or multiphase
flows at small scale with complex geometric boundaries. How-
ever, the assumption of rigid solid is often used in these studies.
Our proposed framework includes the explicit modeling of
solid-solid interactions, which can be potentially applied to
the multiphase simulations involving solid deformation and
fracture, such as the crushing of grains in partially saturated
porous media under impact. Nonetheless, further development
and validation are required for such applications to be fulfilled
in future research.
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APPENDIX A: DIRECT LIQUID-SOLID
COEXISTENCE SIMULATION

To determine the melting temperature for water mod-
eled by MDPD, we carried out direct liquid-solid coexistence
simulations, which have been applied to molecular dynam-
ics simulations of simple fluids, metal, water, and other types
of fluids.44 To determine the lattice structure for the MDPD
solid, an isothermal-isobaric cooling process was performed
from high temperature to low temperature and the BCC struc-
ture for the solid was found after solidification. Therefore,
a BCC-structure solid system was prepared with 4394 parti-
cles and a size of 13 × 13 × 13 lattice constants. The system
was equilibrated in the NPT ensemble for 100 000 steps, at
the assigned P∗ and a T ∗ close to the melting temperature.
The method of direct liquid-solid coexistence simulations used
here was similar to the method of Garcı́a Fernández et al.45

for water models. The time step size for the MDPD model was
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∆τ∗ = 0.001. The liquid system was prepared and relaxed in
the NVT ensemble for 100 000 steps to have the same volume
and temperature as the solid system so that the two systems can
be combined. The particle numbers used in the liquid system
were estimated with the equilibrium density calculated from
the simulation of bulk liquid phase in the same NPT ensem-
ble conditions of the solid system. Next, the liquid and solid
systems were combined, and a short run (10 000 time steps)
was performed to relax the interfacial stress between the two
phases. During this relaxation, only the liquid particles were
allowed to move with a Langevin thermostat to prevent the
solid from melting due to a large amount of energy generated
at the interface. After the relaxation, the initial velocities of the
particles were drawn from Gaussian distribution and adjusted
to have zero total linear and angular momenta. The system
was then run in the anisotropic NPT ensemble with a given P∗

but varying T ∗ values. The anisotropic NPT ensemble allows
each length of simulation box to change independently to meet
the desired pressure in each direction. If the solid melts, it
indicates that T ∗ is greater than Tm

∗. If the liquid solidifies,
then T ∗ is smaller than Tm

∗. The liquid or solid state of the
system was determined using the pair distribution function.
The total energy of the system was monitored to capture melt-
ing or solidifying phenomena.45 The melting temperature was
calculated as the average of the upper and lower limits at the
given P∗.

The liquid or solid state of the system can be determined
using the pair distribution function with OVITO.36 An exam-
ple of pair distribution functions plotted at P∗ = 0 and B∗ = 50
for both liquid (T ∗ = 0.81) and solid (T ∗ = 0.808) states is
shown in Fig. 14, corresponding to the plot of total energy
against time in Fig. 1. As we can see from Fig. 2, the total
energy of the system reaches an equilibrium after around
1600 t∗ for T ∗ = 0.81 and drops to an equilibrium just before
around 1000 t∗ for T ∗ = 0.808. The pair distribution functions
are then plotted at a time after the system is equilibrated: at
1000 t∗ for T ∗ = 0.81 and at 1800 t∗ for T ∗ = 0.81. One can
see that the pair distribution function changes from its initial
state (liquid-solid coexistence) to liquid state for T ∗ = 0.81,
as the function for T ∗ = 0.81 tends to fluctuate around 1
after the first sharp peak (Fig. 14). The pair distribution func-
tion of the solid state has slightly greater maximum values
at the peaks and smaller minimum values at the valleys of

FIG. 14. Pair distribution functions for P∗ = 0 and B∗ = 50 at the ini-
tial state (beginning of the simulation), T∗ = 0.81 (at 1800 t∗), and
T∗ = 0.808 (at 1000 t∗).

FIG. 15. The diagram shows the particles in the y-z plane for (a) the initial
state (solid-liquid coexistence), (b) the liquid state for T∗ = 0.81 at 1800 t∗, and
(c) the solid state for T∗ = 0.808 at 1000 t∗. The particle radius of 0.1 is used
to plot the figures for the purpose of visualization. The length is not to scale,
as Lz changes under the anisotropic NPT ensemble during the simulation.

the functions, as compared to the function of the initial solid-
liquid coexistence (Fig. 14). Another method to determine the
liquid and solid states is to plot the snapshot of the simula-
tions. The initial particle coordinates, the particle coordinates
obtained from the simulations for T ∗ = 0.808 at 1000 t∗ and for
T ∗ = 0.81 at 1800 t∗ are plotted in Fig. 15. It can be seen that the
system becomes solid for T ∗ = 0.808 [Fig. 15(c)] and becomes
liquid for T ∗ = 0.81 [Fig. 15(b)]. It is noted that a small amount
of particles does not turn into solid structures, as this may be
due to the boundary effects of the rectangular cell.

APPENDIX B: LIQUID-VAPOR INTERFACE
SIMULATION

To calculate the bulk density and surface tension of water
at a specific temperature T ∗, the liquid-vapor interface sim-
ulation was performed. We first created 8000 particles in a
cubic simulation box with a density not far away from the
equilibrium density. This 8000-particle system represented a
microscale computational domain of 200 × 200 × 200 µm3

with periodic boundary conditions. The experimental water
density at room temperature was 998 kg/m3. Hence, the mass
per particle mmdpd = 9.98 × 10−13 kg was calculated from
Eq. (10). The number of molecules per particle was estimated
as mmdpd/mwater = 3.336 × 1013, where mwater is the mass of
one water molecule. The time step ∆τ∗ = 0.001 was selected
to satisfy the criterion of energy conservation for the equili-
brated liquid system running in a microcanonical constant-
energy, constant-volume (NVE) ensemble: the root-mean-
square (RMS) fluctuation of the total energy had to be less
than 10% of the RMS fluctuation of kinetic energy.46,47 The
cubic water system was equilibrated through a 500 000 step
run in the NPT ensemble at the assigned T ∗ and P∗ = 0.
The initial particle velocities were drawn from a Gaussian dis-
tribution so as to have temperature T ∗ and were adjusted to
result in zero total linear and angular momenta. After the bulk
water system was equilibrated, a liquid film with two planar
interfaces was created by expanding the simulation box length
in the z-direction by a factor 4. The NPT ensemble was then
switched to the NVT ensemble for an isothermal simulation
with a fixed volume. The simulation was run for 2 000 000
steps for equilibration and for another 4 000 000 steps for
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production. Equilibrium of the system was verified when the
total energy fluctuated around a constant value. For the simu-
lation running at high T ∗, it took a longer time to equilibrate.
Using 2 000 000 steps was adequate for all the liquid-vapor
interface simulations considered in this work. To calculate the
density profile, the simulation box was divided into slab bins
with a width of 0.2 rc

∗ in the z-direction, and the local density
in each bin was calculated at every 20 ∆τ∗. The density profile
along the z-axis was computed from the time-averaged den-
sity in each bin and was used to calculate the bulk liquid and
vapor densities. The density profile would drift slightly during
the simulation along the z-direction, especially at high T ∗. To
better compute the liquid and vapor densities, for the system
running at T ∗ > 1.2, the center of mass of the system was kept
at the center of the box by shifting the positions of particles.
This was achieved by modifying the LAMMPS code. The sur-
face tension γwas calculated every 20∆τ∗ using the following
equation:48

γ =
1
2

Lz < Pzz −
Pxx + Pyy

2
>, (B1)

where Pxx, Pyy, and Pzz are the virial pressure components and
Lz is the length of the box in the z-direction. The statistical
errors of the surface tension were estimated by calculating the
statistical inefficiency.13,40,41

APPENDIX C: WATER DROPLET
IN VACUUM SIMULATION

The water droplets of different sizes in dimensionless units
were simulated by varying the number of particles, namely,
N lv = 512, 1000, 4000, 8000, 15 625, 27 000, 64 000, 125 000,
and 512 000. The parameters of A∗ = −40, B∗ = 50, rc

∗ = 1,
and rd

∗ = 0.75 were used. To model the droplet, the initial
configurations of the relaxed bulk liquid were taken from
the size-effect studies of liquid-vapor interface simulations, in
which the system had been equilibrated in the NPT ensemble
at T ∗ = 1.025 and P∗ = 0 for 500 000 time steps with periodic
boundary conditions being applied to all faces. The lengths of
the simulation box in all three directions were then extended
by a factor of 3 so that water could have enough space to evolve
into a spherical droplet. Random velocities generated with a
Gaussian distribution at the temperature T ∗ = 1.025 were then
assigned to the particles and adjusted to have zero total lin-
ear and angular momentum for the system. The system was
run in the NVT ensemble for 6 × 106 steps. The first 2 × 106

steps were considered for equilibration, and the last 4 × 106

steps were considered for production, except for the simulation
with N lv = 512 000. The simulation with N lv = 512 000 took
longer to equilibrate; hence, 4 × 106 steps of equilibration and
2 × 106 steps of production were used. The center-of-mass of
water particles was fixed at the center of the simulation box
by shifting the coordinates of the particles at every time step.
To obtain the local density as a function of the radial distance
from the center of the simulation box, the simulation box was
divided into a set of spherical shell bins with a thickness of
0.1σmdpd

∗ and an origin from the center of the box. The normal
pressure component was calculated from the Irving-Kirkwood
pressure tensor,49 by following the details of calculation

presented in Ref. 43. A modified LAMMPS was used to per-
form such a calculation. The local density and pressure were
computed every 20 steps averaged during production. The bulk
density and pressure in liquid and vapor phases were obtained
by averaging the corresponding data within the bulk region.50

Since the spherical shell bins have smaller volumes approach-
ing to the center, only small numbers of particles were sampled
in the shell bins close to the center. Hence, large fluctuations
of the density and pressure profiles occurred over the region
close to the center of the droplet, the data in such a region
were not used in the calculation of the bulk liquid density and
pressure.43 The standard deviations were calculated from the
block averages. There were 20 blocks in total for N lv ≤ 125 000
and 10 blocks for N lv = 512 000 and each block contained
10 000 configurations.

APPENDIX D: FUSED SILICA SIMULATIONS

The calculation of density, tensile strength, and Young’s
modulus for fused silica is presented in this section. After a few
simulations using the trial and error method, the final param-
eters were found as ms = 4.400 × 10−12 kg, Do = 2.178 ×
10−10 J, ro = 14.142 µm, and α = 51.91 µm−1. For calcula-
tion of the density, 4000 CG particles in the FCC structure
were created in a simulation box with periodic boundary con-
ditions, representing the 200 × 200 × 200 µm3 fused silica.
For the given parameters, each particle was mainly influ-
enced by their nearest neighbor particles so that a relatively
small cutoff radius rss,cut = 1.1 ro was used. The damping
parameters for the thermostat and the barostat were 100 ∆τ
and 10 000 ∆τ, respectively, where ∆τ was the time step.
∆τ = 0.5 ns was selected so that the ratio of the root-mean-
square fluctuation of the total energy to the root-mean-square
fluctuation of kinetic energy was less than 10%, for the equi-
librated simulations running in the NVE ensemble.46,47 The
system was first run in the NPT ensemble for 50 000 steps
for equilibration with P = 0 and T calculated from the room
temperature of the water model. Afterwards, a production run
of 50 000 steps was performed, during which the density was
calculated.

To perform the tensile test, a 200 × 200 × 600 µm3 spec-
imen was constructed using 12 000 particles in the simulation
box with a periodic boundary condition applied in the loading
direction (z-axis). The system was equilibrated at a zero pres-
sure along the z-axis (Pz = 0) and T calculated from the room
temperature of the water model for 500 000 steps. The length
of the equilibrated specimen in the z-direction is recorded as
Lo. Engineering strain was calculated as (L − Lo)/Lo. After
equilibration, the specimen was stretched in the z-direction
at a constant strain rate of 0.01 s−1 until it fractured. This
strain rate was limited by the computational resources. Dur-
ing the displacement controlled loading, a Nosé-Hoover chain
thermostat was used to control the temperature. To accurately
represent the bulk properties and minimize the surface effects,
the stresses of the inner center group of the particles within
the initial region of 140 × 140 × 420 µm3 were calculated
every 100 000 steps (Fig. 16). The virial stress tensor of the
ith particle in LAMMPS was calculated as the negative value
of the pressure tensor,51
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FIG. 16. The stress is calculated from the blue particles inside of the specimen
in the initial region of 140 × 140 × 420 µm3. Only half of the specimen is
shown.

Si,pq = −
1
Vi

[mivi,pvi,q +
1
2

∑Np

j
(ri,pFi,q + rj,pFj,q)], (D1)

where p and q are the indices for tensor components (e.g.,
values for x, y, and z), mi and vi are the mass and velocity
of the ith particle, F i is the force on the ith particle due to
its jth neighbor particle, and the summation is taken over all
the neighbor particles Np of the ith particle. The volume of
the ith particle V i in this group was calculated from Voronoi
tessellation using Voro++.52,53 There were around 3000 data
points for the stress-strain curve from the beginning of loading
to failure. The simulated tensile strength f sim was calculated
as the maximum value of the calculated stress. The simulated
Young’s modulus Esim was calculated as the slope of the line
that best fits the data points within the first 10% of the failure
strain. In addition to the strain rate ε̇ = 0.01 s−1, the simula-
tions under ε̇ = 0.1, 1, and 10 s−1 were also performed. The
stress and strain data were obtained at every 10 000, 1000,
and 100 time steps for ε̇ = 0.1, 1, and 10 s−1, respectively, to
have around 3000 data points from the beginning of loading
to failure. The tensile test simulations were also performed for
different scaling factors: φs = 8, 1/8 and 1/64, at a strain rate of
1 s−1. Here the simulation using N s = 12 000 corresponded to
the case of φs = 1. Thus, we used N s = 1500, 96 000 and 768
000 for the simulations with φs = 8, 1/8 and 1/64, respectively.
The parameters for φs = 8, 1/8 and 1/64 were calculated using
Eqs. (21)–(24) with the current parameters of the fused silica
model.

APPENDIX E: SIMULATIONS OF DROPLETS
ON A SOLID SUBSTRATE

The liquid-vapor-solid simulation was demonstrated by
modeling a liquid droplet on a solid substrate. The calibrated
MDPD parameters of the water-vapor model in Case 2 and
the Morse potential parameters of the fused silica model in
Case 4 were used for modeling a droplet and a solid substrate,
respectively. A time step of 0.5 ns was used, as taken from the
minimum value of the time steps used in the above two mod-
els. An 800 × 800 × 800 µm3 simulation box with periodic
boundary conditions was created. The FCC solid substrate was
created in the x-y plane of the box with a thickness of 3 lat-
tice constant (as = 20 µm) using 22 400 particles. A cube of
8000 water particles was then placed above the solid substrate.
To adjust the energy interaction between the liquid and solid
particles, the ratio of εsl to εmdpd was changed from 0.2 to
1.4. The σsl value in the LJ potential function was estimated
using Eq. (8): σsl = 2−

1
6

( rmdpd+ro

2

)
. The location of the min-

imum energy in MDPD potentials rmdpd was estimated from
the first peak of the pair distribution function for liquid at room
temperature under zero pressure, which was 10.948 µm, and
ro = 14.142 µm from the fused silica parameters was used.
Therefore, σsl was calculated as 11.176 µm. A cutoff radius
of 3σsl was used. Two NVT ensembles were applied individ-
ually to the water-vapor particles and solid particles with the
same temperature damping parameter of 100 ∆τ, except for
the bottom layer of the substrate, which was fixed to constrain
the center of mass of the entire solid substrate. In addition,
the center-of-mass velocity of the droplet was removed for the
temperature calculation of the water-vapor particles used in the
Nosé-Hoover chain thermostat. Each simulation was run for
50 × 106 steps. The first 30 × 106 steps were for equilibration
and the following 20 × 106 steps were for production. Dur-
ing the production, the coordinates of the entire system were
shifted every time step to ensure that the x- and y-coordinates
of the center-of-mass of the water-vapor particles were fixed at
the center of the simulation box. This is to make sure that the
center-of-mass of the droplet in the x- and y-directions would
not deviate much from the center, given the small amount of
vapor particles in the system. To plot the 2-D density con-
tour, the simulation box was divided into cylindrical shell bins
with an origin at the center of the box, a radial thickness of
5 µm, and a height thickness of 5 µm. The density profile
was recorded every 1000 time steps and averaged at every 4 ×
106 steps during production. Each density profile was used to
calculate the contact angle. The mean contact angle was cal-
culated by averaging five contact angles and the uncertainty
was estimated by calculating the standard deviation. The same
calculations were applied to the cosine of the contact angle.
To check the validity of the scaling method in the solid-liquid-
vapor system, the liquid-vapor particles were scaled with the
liquid-vapor scaling factor φlv. The number of liquid-vapor
particles N lv

′ were then created based on N lv
′ = N lv/φlv, while

the solid particles were created with a thickness of three lattice
constants and an area of around 800 × 800 µm2. The scaled
liquid-vapor particle mass was calculated using Eq. (14) and
the parameters of liquid-vapor particles were calculated with
φlv using Eqs. (17)–(20). The particle mass and parameters
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of the solid particles were calculated with the solid scaling
factor φs = φlv

2/3 using Eqs. (21)–(24). The parameters of
interaction between solid and liquid-vapor particles (Lennard-
Jones potential) were calculated using Eqs. (25) and (26). The
sizes of the simulation box were also simulated at around
800 × 800 × 800 µm3 for each case.
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