
International Journal of Solids and Structures 162 (2019) 36–44 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Multiscale modeling of the effective elastic properties of fluid-filled 

porous materials 

Mingchao Liu 

a , b , Jian Wu 

a , Yixiang Gan 

b , ∗, Dorian AH Hanaor c , C.Q. Chen 

a , ∗

a Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 10 0 084, China 
b School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia 
c Institute for Materials Science and Technology, Technische Universität Berlin, Berlin 10623, Germany 

a r t i c l e i n f o 

Article history: 

Received 20 November 2017 

Revised 13 September 2018 

Available online 24 November 2018 

Keywords: 

Porous materials 

Effective elastic properties 

Micromechanical model 

Double- porosity 

Fluid diffusion 

a b s t r a c t 

Fluid-filled porous materials are widely encountered in natural and artificial systems. A comprehensive 

understanding of the elastic behavior of such materials and its dependence on fluid diffusion is there- 

fore of fundamental importance. In this work, a multiscale framework is developed to model the overall 

elastic response of fluid-filled porous materials. By utilizing a two-dimensional micromechanical model 

with porosity at two scales, the effects of fluid diffusion and the geometric arrangement of pores on the 

evolution of effective properties in fluid-filled porous materials are investigated. Initially, for a single- 

porosity model the effective elastic properties of the dry and fluid-filled porous materials with ordered 

pores are obtained theoretically by considering a geometrical factor, which is related to the distribution 

of pores in the matrix. Model predictions are validated by finite element simulations. By employing a 

double-porosity model, fluid diffusion from macro- to micro-scale pores driven by a pressure gradient is 

investigated, and the resulting time-dependent effective elastic properties are obtained for both constant 

pressure and constant injection rate conditions. It is found that the presence and diffusion of pressurized 

pore fluid significantly affect the elastic response of porous materials, and this must be considered when 

modeling such materials. It is expected that the proposed theoretical model will advance the understand- 

ing of the fluid-governed elastic response of porous materials with implications towards the analysis of 

geophysical, biological and artificial fluid-filled porous systems. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As a type of heterogeneous materials, porous materials are usu-

ally composed of two components, a solid skeleton and pores.

Pores may be either empty or filled with fluid (i.e., gas or liquid)

( Gibson and Ashby, 1999; Gibson et al., 2010 ). The latter type is

classified as fluid-filled porous materials, which are widely avail-

able in not only natural geophysical and biological systems, e.g.,

rock, plant, and bone, but also synthetic structures, such as hy-

drogels, tofu, and fluidic origami ( Kim and Guyer, 2014 ). Predict-

ing the effective elastic responses of fluid-filled porous materials is

a challenging problem, which has attracted considerable attention

in recent years, driven by its importance in diverse contexts such

as estimating the stored amount of carbon dioxide (CO 2 ) during

the injection in underground saline aquifer ( Streit and Hillis, 2004;

Leung et al., 2014; Szulczewski et al., 2014 ), predicting the time-

dependent response of hydraulic actuators ( Guiducci et al., 2014;
∗ Corresponding authors. 

E-mail addresses: yixiang.gan@sydney.edu.au (Y. Gan), chencq@tsinghua.edu.cn 

(C.Q. Chen). 

(  

c  

t  

t  

https://doi.org/10.1016/j.ijsolstr.2018.11.028 

0020-7683/© 2018 Elsevier Ltd. All rights reserved. 
uk et al., 2017 ), and designing fluid-filled acoustic metamaterials

 Spadoni et al., 2014; Dorodnitsyn and Van Damme, 2016 ). 

The particularity of this kind of materials is the strong coupling

etween the fluid pressure in the pores and the elastic deforma-

ion of the solid skeleton. This coupling induces a complex prob-

em, as the overall elastic responses of fluid-filled porous materi-

ls are governed by the fluid pressure in the pores ( Shafiro and

achanov, 1997; Warner et al., 20 0 0; Ayyagari and Vural, 2016 ).

o describe the coupling of pore pressure, solid deformation, and

acroscale stresses, in fluid saturated porous media, linear poroe-

asticity was established by Biot (1941) through a phenomenolog-

cal approach. The thermodynamic background of this theory has

ince been confirmed by the mixture theory ( Coussy et al., 1998 )

nd the homogenization method ( Thompson and Willis, 1991 ), as

ell as by the micromechanical approach ( Cheng, 1997 ). More re-

ently, Biot’s constitutive relations for a linearly poroelastic mate-

ial were also extended to cover the cases on finite deformation

 Brown et al., 2014 ). Furthermore, if the solid skeleton is not a

ontinuum, i.e., there are some micro-scale pores in the solid ma-

rix with a significantly smaller size than the macro-scale pores,

he fluid in macro-scale pores will diffuse into the matrix (i.e., the

https://doi.org/10.1016/j.ijsolstr.2018.11.028
http://www.ScienceDirect.com
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icro-scale pores) driven by the pressure gradient between the

wo pore scales, resulting in the evolution of effective properties

 Berryman and Wang, 1995; Rohan et al., 2012; Song et al., 2016 ).

he evolving effective properties of fluid-filled porous materials are

f importance to many practical applications and deserve further

nvestigation towards a systematic understanding. 

There has been a series of effort s made to understand the

verall elastic responses of porous materials. As a simple case,

he elastic constants and their porosity dependence in dry porous

aterials, i.e., pores are empty or filled with air, have attracted

uch attention ( Mackenzie, 1950; Walsh et al., 1965; Wang, 1984;

ay et al., 1992; Hu et al., 20 0 0; Pabst et al., 2006; Li et al.,

010; Chen et al., 2015; Chen et al., 2018 ). However, the role

f the spatial distribution of pores has rarely been considered.

oussev et al. (20 0 0) showed that the transverse Poisson’s ratio of

orous materials depends strongly upon the spatial arrangement of

he pores. More recently, Liu et al. ((2016) (a) and (c)) also identi-

ed the effect of pore distribution on the elastic responses of or-

ered porous materials to inner pressure. 

Naturally occurring porous materials, such as rocks and plants,

enerally contain fluid-filled pores, and effects of pressure on their

verall elastic properties cannot be ignored ( Brown and Korringa,

975; Christensen and Wang, 1985; Georget et al., 2003; Gibson

t al., 2010 ). More recently, synthetic porous materials have been

esigned by incorporating pressurized fluid in pores for use as tun-

ble systems ( Guiducci et al., 2014; Lv et al., 2014; Yuk et al., 2017 ).

lthough intrinsically phenomenological, substantial work on the

heoretical modeling of effective responses in fluid-filled porous

aterials can be found in the literature ( Shafiro and Kachanov,

997; Warner et al., 20 0 0; Kitazono et al., 20 03; Vincent et al.,

009; Ma et al., 2014; Guo et al., 2015; Su et al., 2017 ). Differ-

nt methods for the prediction of overall mechanical properties

f fluid-filled porous materials have been proposed by considering

ressurized fluid as a compressible inclusion. For the poroelasticity,

y introducing the Biot modulus as a parameter, the effect of fluid

ressure on the effective response can be considered. However, as

 phenomenological theory, the effect of the geometric distribution

f pores is not captured by the Biot theory. 

It must be noted that, in various previous studies, the solid

keleton was assumed as a continuous phase with its interaction

ith pore fluid occurring only at the pore wall, assumed to be

mpermeable. However, many porous materials, such as rocks and

ones, exhibit multiscale pore structures ( Cowin, 2001; Tsakiroglou

t al., 2009; Borgomano et al., 2017 ). In such materials, the struc-

ure can be considered as two or more interacting pore systems,

hich collectively have a strong influence on fluid transfer and ef-

ective elastic properties. The transport of fluid in such multiscale

orous materials, especially the double-scale cases has been the

ubject of numerous studies ( Moutsopoulos et al., 2001; Ba et al.,

008; Choo et al., 2016 ). Homogenization technologies have been

roposed to explore the elastic behaviors of multi- (or double)

cale porous materials ( Auriault and Boutin, 1992, 1993; Boutin

nd Roye, 2015; Rohan et al., 2016 ). However, to date, few attempts

ave been made to incorporate the diffusion effect into homoge-

ization techniques, and to further address the evolution of effec-

ive properties induced by fluid diffusion in the skeleton of porous

aterials. 

In this paper, a two-dimensional (2D) micromechanical model,

hich consists of pores at two scales, is employed to develop a

ultiscale framework to analyze the overall elastic responses of

he fluid-filled porous materials. This model allows for the cou-

ling of fluid pressure and the deformation of the solid matrix at

ach pore scale and for fluid diffusion from macro-scale to micro-

cale pores imbedded in a non-continuum skeleton driven by a

ressure gradient. Based on this micromechanical model, a theo-

etical model is proposed to predict the effective elastic proper-
ies of porous materials with/without pressurized pore fluid and is

alidated by finite element method (FEM) simulations. With this

odel, time-dependent elastic properties are obtained for constant

nd variable fluid pressure cases. 

. A micromechanical model of porous materials with double 

orosity 

In order to investigate the overall elastic properties of fluid-

lled porous materials, a 2D micromechanical model with double-

orosity is considered. As shown in Fig. 1 , a porous material is rep-

esented by double-scale periodically distributed pores imbedded

n an elastic solid. At the macro-scale, see Fig. 1 (a), the cylindri-

al pores are arranged in a well ordered 2D triangular lattice, and

ll pores are filled with pressurized fluid. A unit cell comprising a

hick-wall cylinder from the macro-scale porous structure is shown

n Fig. 1 (b), and micro-scale cylindrical pores are distributed in

he cylinder wall. The micro-scale pore structure within the solid

keleton is shown in Fig. 1 (c), with a similar triangular distribution.

It should be noted that the considered macro-scale pores are

uch larger than the micro-scale pores and much smaller than the

imensions of the overall structure. Accordingly, the porous mate-

ial can be treated as a continuum solid in representing its over-

ll mechanical behavior. Moreover, we assume the presence of fine

iffusion pathways within the solid matrix, facilitating the trans-

ort of fluid from macro- to micro-scale pores. Additionally, fluid

ow between pores at the same scale is assumed to be restricted.

or simplicity, the pores within each level are assumed with the

ame size. 

. Effective elastic properties of fluid-filled porous materials 

Fluid pressure acting on pore walls can have a significant effect

n the homogenized mechanical behavior of porous materials. In

his section, we examine the overall elastic responses of fluid-filled

orous materials based on the single-scale micromechanical model

s described in Section 2 . 

.1. Elastic properties of dry porous materials 

We first consider a dry porous material, in which the pores are

mpty or filled with air. Under ambient conditions, the effects of

ir pressure on the deformation of the solid skeleton are negligi-

le. The effective bulk modulus can be obtained by analyzing the

eformation of porous samples under equi-biaxial external load, as

hown in Fig. 2 (a). It is not easy to directly solve the stress and

eformation fields of this structure, on account of the interaction

f microstructures (i.e., the ordered pores arranged in the matrix).

owever, Gor et al. (2015) pointed out that the overall deforma-

ion of a plate with many pores can be approximately represented

y the deformation of a unit cell comprising a homogeneous cylin-

er. Our previous works (i.e., Liu et al. ((2016) (a ) and ( c )) further

howed that each unit cell is affected by its neighboring cylinders,

mplying that the outer boundary conditions of the cylinder are re-

ated to the geometrical arrangement of the pores. This single-pore

odel will be extended here to calculate the bulk modulus of the

ry porous material. 

In order to calculate the bulk modulus of porous materials

hrough the single-pore model, the inner and outer boundaries

ave to be determined. The deformation of the porous sample sub-

ected to equi-biaxial external tension, σ 0 in Fig. 2 (a), can be con-

idered as a combination of two components: I. Uniform deforma-

ion as shown in Fig. 2 (b), i.e., the same uniform loads are applied

n the outer boundary of the sample and the pore surfaces; II.

ore-load deformation, as shown in Fig. 2 (c), i.e., the internal pres-

ure is only applied on the pore surface, and the outer boundary
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Fig. 1. Schematic representation of a porous material with double porosity: (a) Marco-scale pores filled with pressurized fluid; (b) a unit cell containing pores at two scales; 

(c) the solid skeleton containing micro-scale pores. Only the triangular distribution of pores is shown as an example. 

Fig. 2. Schematics of the superposition method used to determine the bulk modulus of porous materials: (a) a porous sample subjected to external equi-biaxial tension, 

which can be superposed by (b) a porous sample subjected to external equi-biaxial tension and the uniform pore pressure, and (c) a porous sample subjected to uniform 

pore pressure. The blue dotted lines represent the outer boundaries of the cylindrical unit cell. 
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of the sample is free. For the uniform deformation case, the outer

boundary of the unit cylinder can be obtained as p I = σ o . For the

pore-load deformation case, Liu et al. ((2016) (a ) and ( c )) gave the

outer boundary condition as p II = αξ i σ o , where α is a geometrical

factor related to the interaction of neighboring pores and depend-

ing on the arrangement of pores, i.e., α = 1/3 for porous materials

with a triangular lattice. For materials with a square lattice pore

arrangement, considering the symmetry of both the structure and

the loading conditions, the applicability of the single-pore model is

also valid, with α = 1/2. Here, ξi = r 2 
i 
/R 2 

i 
( r i and R i are the inner and

outer radii of the cylinder unit cell, respectively) is a dimensionless

porosity factor related to the porosity ϕi of the porous material by

ξi = ( 2 
√ 

3 /π ) · ϕ i for triangular lattice or ξ i = (4/ π ) · ϕi for square

lattice. Subscript i = 0 and 1 refer to the micro- and macro-scale

pores, respectively. 

By superposing the two components, the outer boundary con-

dition of the unit cylinder in Fig. 2 (a) can be obtained as

p o = σ o (1 −αξ i ). In the case of plane stress, the radial displace-

ment of the thick-wall cylindrical unit cell can be calculated ac-

cording to the classical theory of elasticity ( Timoshenko and Good-

ier, 1970 ) 

u r ( r ) = 

1 

E i 

[
( 1 − v i ) 

R 

2 
i 

p o 

R 

2 
i 

− r 2 
i 

r + ( 1 + v i ) 
R 

2 
i 
r 2 

i 
p o 

R 

2 
i 

− r 2 
i 

1 

r 

]
, (1)

where E i and v i are Young’s modulus and Poisson’s ratio of the

solid matrix, respectively. The volumetrical strain of the cylinder

unit cell is 

θi = 

u r ( R i ) · 2 πR i 

πR 

2 
i 

= 2 · u r ( R i ) 

R i 

. (2)

Substituting Eq. (1) into Eq. (2) , the effective bulk modulus of

dry porous materials can be obtained by the definition K̄ = σo /θ as

K̄ i = 

E i 
2 

· ( 1 − ξi ) 

[ ( 1 − v i ) + ( 1 + v i ) ξi ] ( 1 − αξi ) 
. (3)
It can be found that the effective bulk modulus of dry porous

aterials (i.e., K̄ i ) depends on not only the mechanical properties

i.e., elastic modulus E i and Poisson’s ratio v i ) of the solid matrix,

ut also the porosity ϕi in terms of ξ i and the geometrical arrange-

ent of pores through the factor α. 

It is noted that the geometrical arrangement of pores can have

 significant effect on the overall elastic deformation. In particu-

ar, the transverse Poisson’s ratio of a system having triangularly

acked pores increases with porosity while that of a square packed

rray decrease ( Goussev et al., 20 0 0 ). This porosity dependence of

oisson’s ratio cannot be captured by existing theoretical models.

o fill this gap, we present a semi-empirical equation by adopting

he geometric factor α, introduced by Liu et al. ((2016) (a ) and ( c ))

o describe the effect of pore distribution on the pore-load mod-

lus, to relate the effective Poisson’s ratio to the porosity of the

orous material as 

¯
 i =1 −[ ( 1 − v i ) + ( 1 + v i ) ξi ] ( 1 −ξi ) 

2 · Exp 

{
3 αξi [ 2 + ( 1 + α) ξi ] 

2 [ 2 − ( 2 − α) ξi ] 

}
. 

(4)

For an isotropic elastic material, there are only two indepen-

ent elastic parameters. For a planar problem, the effective Young’s

odulus can be obtained through the relation of 1 − v̄ i = ̄E i / 2 ̄K i 

ombining with Eqs. (3) and (4) as 

¯
 i = E i · ( 1 − ξi ) 

3 

1 − αξi 

· Exp 

{
3 αξi [ 2 + ( 1 + α) ξi ] 

2 [ 2 − ( 2 − α) ξi ] 

}
. (5)

By means of Eqs. (3) –(5) , the elastic properties of a porous ma-

erial can be related to the porosity and the arrangement of pores.

It should be mentioned that E i and v i are the intrinsic elas-

ic constants of the solid matrix of the micro-scale porous struc-

ure (i.e., i = 0). However, for the macro-scale porous structure (i.e.,

 = 1), E i and v i should be the homogenized elastic constants of the

on-continuum skeleton. Furthermore, it should also be noted that

he stiffness of a porous material having a square lattice can be
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Fig. 3. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the effective elastic constants of porous materials with triangular (TR) and square 

(SQ) lattice as a function of porosity: (a) the normalized effective bulk modulus; (b) the normalized effective Young’s modulus; (c) the effective Poisson’s ratio. 

c  

i  

a  

s  

r  

t  

r  

t

 

a  

f  

t  

p  

F  

y  

j  

m  

(  

e  

a  

m  

i  

a

 

s  

b  

F  

a  

E  

c  

c  

w  

l  

a  

m  

t  

t

3

 

o  

s  

d  

2  

t  

i  

s  

i  

m

 

p  

r  

i  

w  

e  

p  

t  

p  

t  

w  

p

 

e

σ  

w  

m  

f  

g

L

L

w  

t  

(

M

 

Y

E  

w  

w  

t  

r

 

s  

r

K  

w  

g  

u  

t  

P  

d

 

c  

p  
onsidered as isotropic only under extreme hypothetical conditions

n which porosity is sufficiently low and the so-called macro-pores

re distributed quite sparsely. However, from a more accurate per-

pective, the stiffness of materials with a square lattice pore ar-

angement is orthotropic, and two stiff and two compliant direc-

ions can be found ( Gibson and Ashby, 1999 ). Due to the symmet-

ical pore distribution, the relation of 1 − v̄ i = ̄E i / 2 ̄K i is also valid for

he definition of elastic constant at principal directions. 

In order to validate the proposed theoretical model of the over-

ll elastic properties, i.e., Eqs. (3) –(5) , FEM simulations are per-

ormed to calculate to the effective elastic constants of porous ma-

erials with triangular and square lattices. A 2D FEM model of a

orous plate with ordered pores is established, as illustrated in

ig. 1 (c). The left and bottom surfaces are constrained in the x and

 directions, respectively, while the right and top surfaces are sub-

ected to uniform tension. Numerical experiments show that a FEM

odel with 15 × 17 unit cells for porous sample with triangular

and 15 × 15 for square) lattice is sufficient to show the homog-

nized responses of the corresponding porous materials. Moreover,

 mesh sensitivity study has been conducted to confirm the nu-

erical convergence of FEM models. The constituent solid matrix

s assumed to be linear elastic with Young’s modulus E 0 = 70 GPa

nd Poisson’s ratio v 0 = 0.3. 

The FEM simulated porosity dependent effective elastic con-

tants of the porous material are shown in Figs. 3 (a)–(c) for the

ulk modulus, Young’s modulus and Poisson’s ratio, respectively.

or each case, pore distributions of triangular and square lattices

re considered. The corresponding theoretical predictions given by

qs. (3) –(5) with different geometrical arrangement factors are in-

luded as solid lines for the purpose of comparison. For all three

ases, one can find that the proposed theoretical model agrees well

ith the FEM results with different pore distributions. In particu-

ar, the opposing relationships between the effective Poisson’s ratio

nd porosity can be qualitatively predicted by employing the geo-

etric factor. The theoretical model of Eqs. (3) –(5) will be used to

he further analysis of the effects of fluid pressure and diffusion on

he overall elastic properties of fluid-filled porous materials. 

.2. Effect of fluid pressure 

When pores are filled with pressurized fluid, the deformation

f a solid skeleton can be significantly affected by the fluid pres-

ure. Accordingly, the overall elastic properties of these materials

epend upon fluid pressure ( Warner et al., 20 0 0; Gibson et al.,

010 ). Here we investigate the dependence of the effective proper-

ies of porous materials on the fluid pressure from a micromechan-

cal point of view. The pressurized fluid within the pores is de-

cribed by pressure boundary conditions on the wall of the pores

mbedded in a solid matrix. For simplicity, the effect of pore defor-

ation upon fluid pressure is neglected. 

In order to determine the effective properties of the fluid-filled

orous material, we consider a reference case of a porous mate-
ial filled with pressurized fluid (a representative volume element

s shown in Fig. 4 (b)). Under external load, the porous material

ill deform, as shown in Fig. 4 (c). Since the solid matrix is linearly

lastic, the deformed state can be obtained by superimposing the

ore pressure and external load on the dry porous material (i.e.,

he pressure free state, see Fig. 4 (a)). As we have discussed in the

receding section, the effective elastic constants of dry porous ma-

erials, i.e., K̄ i , v̄ i and Ē i , can be obtained from Eqs. (3) –(5) . Here

e are going to relate the effective elastic constants of fluid-filled

orous materials (i.e., ˜ K i , ˜ v i and 

˜ E i ) to the fluid pressure, P f . 

The deformation of the fluid-filled porous materials due to the

xternal uniaxial tensile load, σ e , can be obtained as 

e / ̃  E i = L ( 
2 ) 

x /L ( 
1 ) 

x − 1 , (6)

here ˜ E i is the effective Young’s modulus of the fluid-filled porous

aterials. L (1) 
x and L (2) 

x are the x -direction dimensions of the unde-

ormed and deformed fluid-filled porous materials and can also be

iven from the porous materials without fluid as 

 

( 1 ) 
x = 

(
P f / M i + 1 

)
L ( 

0 ) 
x , (7) 

 

( 2 ) 
x = 

(
P f / M i + σe / ̄E i + 1 

)
L ( 

0 ) 
x . (8) 

Here, L (0) 
x is the x -direction dimension of the porous materials 

ithout fluid, P f is the fluid pressure in the porous materials, and

he pore-load modulus, M i , is given by Liu et al. ((2016) (a) and

c)) as 

 i = 

E i ( 1 − ξi ) 

( 1 − v i ) ( 1 − α) ξi − ( 1 + v i ) ξi ( αξi − 1 ) 
. (9) 

By substituting Eqs. (7) and (8) into Eq. (6) , the effective

oung’s modulus can be obtained with an explicit form as 

˜ 
 i / ̄E i = 1 + P f / M i , (10)

here Ē i and M i are effective properties of the porous materials

ithout fluid given by Eq. (5) and Eq. (9) , respectively. It is seen

hat the effective Young’s modulus of the fluid-filled porous mate-

ial is linearly dependent on the pore pressure. 

The effective bulk modulus can be obtained according to the

imilar analysis through the micromechanical model, and the cor-

esponding expression is 

˜ 
 i / ̄K i = 1 + P f / M i , (11)

here K̄ i is the effective bulk modulus of the dry porous material

iven by Eq. (3) . The linear dependence of the effective bulk mod-

lus on the pore pressure is further evident. Considering the rela-

ion of 1 − ˜ v i = ̃

 E i / 2 ̃  K i , by combining Eqs. (10) and (11) , the effective

oisson’s ratio of the fluid-filled porous material can be found in-

ependent of the pore pressure, i.e., ˜ v i = ̄v i . 
To verify the proposed theoretical model for effective moduli

onsidering the effect of fluid pressure, FEM simulations are em-

loyed to calculate to the effective elastic constants of fluid-filled
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Fig. 4. Schematic representation of the deformation of a fluid-filled porous material subjected to inner fluid pressure and external load: (a) Porous structure with empty 

pores (pressure free); (b) The reference configuration of porous materials including pore pressure; (c) The deformed configuration of pressurized porous materials subjecting 

external load. L ( j) 
x and L ( j) 

y ( j = 0, 1 and 2) refer to the dimensions of the porous material under different states at x - and y -directions, respectively. 

Fig. 5. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the effective elastic moduli of fluid-filled porous materials as a function of pore 

pressure: (a) the normalized effective Young’s modulus; (b) the normalized effective bulk modulus. 
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porous materials with square lattice form. The FEM simulated pore

pressure-dependent effective Young’s modulus and bulk modulus

of the porous material, normalized by the corresponding moduli of

the solid matrix, are shown in Fig. 5 (a) and (b) as symbols, respec-

tively. Four different porosities (i.e., ϕ = 0.26, 0.40, 0.58 and 0.79)

are considered for each case. The corresponding theoretical pre-

dictions given by Eqs. (10) and (11) are also included as lines for

comparison. For both cases, one can find that the theoretical model

can accurately predict the FEM results. It further confirms that the

effective moduli of fluid-filled porous materials are indeed linearly

dependent on the pore pressure, which is qualitatively consistent

with the results of Gibson and Ashby (1999) . 

4. Diffusion-induced evolution of effective properties 

For fluid-filled porous materials having non-continuum ma-

trixes, i.e., there are some micro-scale pores imbedded in the solid

skeleton, the fluid in the macro-scale pores can diffuse into the

solid skeleton driven by pressure gradient. The transfer and re-

distribution of pressurized fluid can also affect the overall elas-

tic response. Here we investigate this diffusion-induced evolution

through a micromechanical model with double- porosity, as illus-

trated in Fig. 1 . 

4.1. Fluid diffusion induced heterogeneity of porous material 

Let us first consider the pressure-driven fluid diffusion from

macro-scale pores to micro-scale pores. A thick-wall cylinder unit

cell containing a macro-scale pore, which is filled with pressur-

ized fluid, is shown in Fig. 6 (a). It is assumed that the micro-

scale pores at the diffused region are fully filled with the pres-

surized fluid (see Fig. 6 (b)), and the pressure at these micro-scale

pores is equal to the one at the macro-scale pore. Ignoring the ef-

fect of deformation of the solid skeleton on the diffusion process,

the pressure-driven diffusion of fluid is similar to capillary-driven
enetration in porous media, and can be described by Darcy’s

aw ( Whitaker, 1986 ). The fluid front r , i.e., the interface between

uid-filled micro-scale pores and empty ones, see the blue line in

ig. 6 (a), moves from the inner boundary r 1 to the outer bound-

ry R 1 of the cylinder unit cell during diffusion. The variation of

he fluid front against diffusion time can be obtained as ( Conrath

t al., 2010; Liu et al., 2016 (b) ) 

r 

r 1 

)2 (
ln 

r 

r 1 
− 1 

2 

)
+ 

1 

2 

= 

t 

t 0 
, (12)

here t 0 = μϕ 0 r 
2 
1 / 2 k P f is a time scale, in which μ is the viscos-

ty of the fluid, ϕ0 the porosity of the solid skeleton with micro-

cale pores, k the permeability of the porous skeleton, and P f the

ressure of the macro-scale pores. The fluid front position can be

redicted quantitatively by Eq. (12) . 

It should be noted that here we consider the diffusion of fluid

n the skeleton within micro-scale pores. The effect of the mi-

rostructure (e.g., the size and spatial distribution of the micro-

ores) on the diffusion process can be reflected by homogenized

acroscopic parameters, i.e., porosity and permeability. For exam-

le, a quantitative relation can be established to correlate the per-

eability and the distribution and size of micro-pores ( Sobera and

leijn, 2006 ). For materials with a square lattice pore arrangement,

rom a more accurate perspective, a permeability tensor should be

ntroduced. However, here we focus on the basic effect of diffusion

n the elastic properties, and the anisotropy of the permeability is

gnored. 

When fluid diffuses into micro-porous matrix from the macro-

cale pores, the micro-scale pores behind the fluid front are filled

y pressurized fluid, while those ahead of the fluid front remain

mpty, as shown in Fig. 6 (b). For simplicity, we ignore the pressure

radient within the fluid-filled phase, i.e., the pressure in all fluid-

lled pores are the same. As we have shown in Section 3.2 , the

ffective elastic properties of the fluid-filled porous material are

overned by pore pressure. Thus, the cylindrical unit cell becomes
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Fig. 6. Schematics of the pressure-driven fluid diffusion from macro-scale pores to micro-scale pores and its induced heterogeneity: (a) A cylindrical unit cell with pressur- 

ized fluid filled macro-scale pore; (b) The interface between fluid-filled micro-scale pores and empty ones; (c) The illustration of parallel model used to homogenize the 

porous material with partially pressurized micro-scale pores. 
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 heterogeneous structure consisting of two layers, see Fig. 6 (a).

or the dry outer layer, the effective properties (i.e., K̄ 0 , v̄ 0 , Ē 0 and

 0 ) are obtained from Eqs. (3) –(5) , and (9) by setting subscript

 = 0. For the fluid-filled inner layer, the effective properties (i.e.,
˜ 
 0 , ˜ v 0 and 

˜ E 0 ) can be obtained from Eqs. (10) and (11) with i = 0.

hese two layers form the new skeleton of the macro-scale porous

tructure which can be regarded as a composite structure with two

hases ( Wang et al., 2017 ). Under the inner and outer loads, as

hown in Fig. 6 (c), the parallel model can be employed to homog-

nize this two-phase composite ( Christensen, 2012 ). The homoge-

eous Young’s modulus of this composite skeleton can be obtained

s 

 1 = ( 1 − φ) · Ē 0 + φ · ˜ E 0 , (13) 

here Ē 0 and 

˜ E 0 are Young’s moduli of the dry outer layer and

uid-filled inner layer, respectively, and φ is the volume fraction

f the inner fluid-filled layer with 

= 

(
r 2 − r 2 1 

)
/ 
(
R 

2 
1 − r 2 1 

)
. (14) 

Here, r is the fluid front position, and r 1 and R 1 are the inner

nd outer radii of the cylindrical unit cell, respectively. During the

iffusion process, the front position r evolves according to Eq. (12) .

t also should be mentioned that the values of r 1 and R 1 are re-

tricted by the porosity ϕ1 in terms of ξ 1 , and cannot be com-

letely arbitrary. In addition, the relation between ϕ1 and ξ 1 is de-

ending on the arrangement of the macropores. Similar to Eq. (13) ,

he homogeneous bulk modulus can be expressed as 

 1 = ( 1 − φ) · K̄ 0 + φ · ˜ K 0 , (15) 

here K̄ 0 and 

˜ K 0 are bulk moduli of the dry and fluid-filled layers,

espectively. As the effective Poisson’s ratio of the fluid-filled layer

s independent of fluid pressure, i.e., ˜ v 0 = ̄v 0 , the homogeneous Pois-

on’s ratio can also be obtained as v 1 = ̄v 0 . 
The effective elastic properties of the macro-scale dry

orous structure containing partial filled micro-scale pores

see Section 3.1 ), i.e., K̄ 1 , v̄ 1 , Ē 1 and M 1 , can be obtained from

qs. (3) –(5) , (9) by setting subscript i = 1, with elastic constants of

he homogeneous solid matrix obtained from Eqs. (13) and (15) . It

hould be mentioned that the pore-load modulus of macro-scale

ry porous structure M 1 can also be calculated through the theo-

etical model given by Liu et al. (2016) (c) . To unify, here we use

he equivalent model of Eq. (9) combined with the homogeneous

arameters. Similarly, as shown in Section 3.2 , the effective prop-

rties of the macro-scale fluid-filled porous structure containing

artially filled micro-scale pores (i.e., ˜ K 1 , ˜ v 1 , ˜ E 1 ) can be calculated

hrough Eqs. (10) and (11) with a subscript i = 1. 

To validate the double-scale approach, the effective moduli of

 macro-scale dry porous structure, i.e., K̄ 1 , Ē 1 and M 1 , are nu-

erically simulated by FEM. Instead of calculating the real elas-

ic constants of the fluid-filled porous layers, here we only assume
hat the dry and fluid-filled porous layers have different effective

oung’s moduli, i.e., Ē 0 = 70 GPa and 

˜ E 0 = 100 GPa , respectively. The

oisson’s ratio of both layers is ˜ v 0 = ̄v 0 = 0 . 3 . Two cases with differ-

nt macro-scale porosities, i.e., ϕ 1 = 0.4 and ϕ 1 = 0.1, are considered.

he FEM models here are established in a similar manner to those

n Section 3.1 , including geometry and boundary conditions. More

pecifically, the model is a 2D porous plate with ordered pores, as

llustrated in Fig. 1 (c). Each unit cell in the model is composed of

wo layers, as shown in Fig. 6 (c), in which the inner layer repre-

ents the fluid-filled skeleton and the outer layer represents the

ry skeleton. By applying external loads, the effective moduli (i.e.,
¯
 1 , K̄ 1 , and M 1 ) can be calculated directly. The normalized effective

oduli with respect to Young’s modulus Ē 0 are plotted as a func-

ion of volume fraction of the fluid-filled skeleton layer in Fig. 7

ith symbols. The corresponding theoretical predictions Eqs. (3) ,

 (5) and (9) with i = 1) are also included as solid lines for compari-

on. It is clearly shown that the theoretical predictions can consist

ith the FEM simulations well for both cases. With increasing the

olume fraction of the fluid-filled layer, all moduli increase. This is

ecause the modulus of the fluid-filled layer is larger than the dry

ayer and stiffens the composite structure. 

.2. Evolution of the effective properties during diffusion 

When fluid is injected into the double-porosity structure, there

re two typical stages. Firstly, the macro-scale pores are filled

apidly, incurring the stiffening of the structure. Secondly, pres-

urized fluid in the macro-scale pore diffuses into the micro-scale

ores imbedded in the matrix, driven by the pressure gradient, re-

ulting in complex changes of the overall elastic behavior. Relative

o the second stage, the first one is much faster. Here we focus on

he evolution of the effective properties during the fluid diffusion

n the second stage. 

Two typical injection conditions, i.e., constant pressure and con-

tant injection rate, are considered. These conditions are common

n practical engineering problems, such as CO 2 storage and hy-

raulic fracture ( Coninck and Benson, 2014; Liu and Chen, 2015;

etournay, 2016 ). Following the filling of the macro-scale pores,

he pressure can be held constant by controlling the fluid injec-

ion rate or alternatively, the injection rate can be held constant

esulting in a change of pressure as fluid is redistributed during

he diffusion process. 

For the case of constant injection rate, learning from Boyer’s

aw for compressible fluids, a simple assumption can be employed

o calculate the variable fluid pressure P f as 

 f · V f = P 0 ·
(
V 0 + 

˙ V · t 
)
, (16) 

here, following the initial filling of macro-pores, V 0 and P 0 are

espectively the volume and pressure of injected fluids. The ex-
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Fig. 7. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the normalized effective elastic moduli of heterogeneous porous materials as a function 

of volume fraction of the fluid-filled porous layer: (a) ϕ1 = 0.40; (b) ϕ1 = 0.10. 
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pression V f = V 0 · {1 + [( r / r 1 ) 
2 − 1] · ϕ0 } yields the volume of the

redistributed fluid phase during the diffusion process. Here ˙ V is

the flow rate of injection during the diffusion process and can be

defined by a simple expression 

˙ V = κ · ( V 0 /t ∗
0 
) , with κ being a non-

dimensional factor and t ∗
0 

the initial value of the time scale t 0 (i.e.,

 

∗
0 
= t 0 ( P 0 ) ). Substituting the expressions of V f and 

˙ V into Eq. (16) ,

the variable fluid pressure P f can be calculated as 

P 0 / P f = 1 + 

[
( r/ r 1 ) 

2 − 1 

]
· ϕ 0 − κ · ( t /t ∗0 ) , (17)

which shows that the pressure P f changes during the process of

diffusion. For the special case of κ= 0, no additional fluid is injected

into the porous materials after the initial filling of the macropores.

Thus, the situation reduces to the condition of constant fluid vol-

ume. 

It should be noted that in evaluating pressure, the assumption

inspiring from Boyer’s law is only applicable for the highly com-

pressible fluid but cannot be applied for cases of fluid with low

compressibility. For the cases of the incompressible fluid, the dif-

fusion process may be driven by other mechanisms, such as ma-

trix suction. This compressibility simplification is imposed here to

give a reasonable estimation of the fluid pressure profile under

the injection. Moreover, it is also worth noting that the capillary

effect further plays a role at micropores when the fluid diffuses

from the macropores into the non-continuum skeleton, and con-

sequently the permeability of the skeleton will be changed during

the diffusion process. Both the capillary effect and the permeabil-

ity variation should be taken into account to further improve the

accuracy of the present models. 

It was shown in the previous section that as fluid diffuses from

macro- into micro-scale pores, the effective properties of the non-

continuum solid matrix are enhanced by the pressurized fluid.

With the movement of the fluid front during the diffusion process,

the thickness of the fluid-filled porous layer increases, whereas the

thickness of the dry porous layer decreases. The overall elastic re-

sponses of the fluid-filled porous material change accordingly. The

evolution of the effective properties can be captured through an

iterative procedure, and the corresponding flow chart of the iter-

ated algorithm is given in Fig. 8 . The key point is that the pressure

needs to be updated at each step for the constant injection rate

condition. 

Here we assume the constituent solid matrix of the micro-scale

porous structure is linearly elastic with Young’s modulus E 0 = 70GPa

and Poisson’s ratio v 0 = 0.3. To simplify the analysis, both porosities

at macro- and micro-scale are fixed at ϕ 0 = ϕ 1 = 0.5. The theoreti-

cal predictions of the normalized effective elastic moduli are plot-

ted as a function of the normalized diffusion time in Fig. 9 . The

effective moduli are normalized by the corresponding initial value

of each case before diffusion, i.e., ˜ E 1 ( P 0 ) and 

˜ K 1 ( P 0 ) . Therefore, the

vertical coordinates in Fig. 9 indicate the relative variation of the
ffective moduli induced by fluid diffusion. Under the conditions

f constant injection rate and constant volume, the time scale t 0 
hanges with varying P f and the initial value t ∗0 was used to nor-

alize the diffusion time. Three initial pressures (i.e., P 0 = 0.02 K 0 ,

.1 K 0 and 0.2 K 0 ) are considered for both constant pressure and

onstant volume conditions. For the constant injection rate con-

ition, two initial pressures ( P 0 = 0.1 K 0 and 0.2 K 0 ) with three sets

f parameters, i.e., κ = 0, 1, and 2, are considered. It is noted that

he evolution rules for bulk modulus and Young’s modulus are the

ame, due to the fact that the distribution of both moduli depends

inearly on the local fluid pressure, as shown in Eqs. (10) and (11) . 

For the constant pressure conditions shown in Fig. 9 (a), the ef-

ective moduli increase with increasing diffusion time for different

nitial pressures. This results in an increase in the fraction of pres-

urized micro-scale pores in the non-continuum solid matrix dur-

ng the diffusion process. This effect stiffens the fluid-filled porous

aterial and is well known before. However, for conditions of con-

tant injection rate, see Fig. 9 (b), the evolution varies with injec-

ion rate and shows different tendencies over time. This behavior

rises from two factors. On the one hand, the volume ratio of pres-

urized micro-scale pores increases during diffusion and strength-

ns the non-continuum solid matrix. On the other hand, due to the

njection and redistribution of the fluid, the pressure will change in

ifferent ways under the different injection rates. These two fac-

ors, i.e., diffusion and injection, compete with each other and lead

o the final evolutionary properties. As an extreme case of con-

tant injection rate conditions, for constant volume conditions, de-

reasing effective moduli are found with increasing diffusion time

or different initial pressures, as shown in Fig. 9 (c). It also should

e mentioned that the specific evolution law also depends on the

orosities of both macro- and micro- porous structures. Here we

resented the representative results for specific values of porosi-

ies at both scales as a numerical example. Further systematical

nalyses with varied combinations of porosities at the two scales

an be conducted following our proposed theoretical solutions pre-

ented here. 

. Discussion and conclusion 

We have developed a multiscale framework for investigat-

ng the overall elastic response of fluid-filled porous materials

ith multiscale structures, on the basis of a micro-mechanical

odel with double-porosity. The effective properties of the dry

orous material are predicted quantitatively based on a single-

orosity model, and validated by FEM simulations. By intro-

ucing the geometric factor, the effect of pore distribution is

aken into account. With these results, the effect of fluid pres-

ure on the effective properties of porous materials is further

nvestigated. The results show that the effective bulk modu-
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Fig. 8. Flow chart of the iterative algorithm used for determining the variation of effective properties of fluid-filled porous materials. 

Fig. 9. Variation of normalized effective elastic moduli as functions of the normalized diffusion time under injection conditions of: (a) constant pressure; (b) constant 

injection rate and (c) constant volume. 
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us and Young’s modulus are linearly dependent on fluid pres-

ure. Additionally, according to the double-scale micromechan-

cal model, the diffusion of fluid between macro- and micro-

cale pores driven by the pressure gradient is considered.

y implementing an iterative algorithm in the presented multiscale

ramework, the complex evolution of the effective properties under

ifferent injection conditions is revealed. 

The multiscale framework developed in this paper provides a

ool to analyze the overall elastic response of fluid-filled porous

aterials and has implications towards the improvement of the

esign of sensors and actuators in various applications. As a typ-

cal example, estimating the storage performance of CO 2 injected

nto underground saline aquifers is an important problem in car-

on geosequestration. It is also related to the safety assessment of

he operation process. Saline aquifers are typical multiscale porous

tructures, and during the injection of CO 2 , their overall mechani-

al properties will vary as CO 2 diffuses from macro- to micro-scale

ores. By means of the theoretical model presented here, these ef-

ective properties can be correlated to the amount and distribu-
ion of CO 2 . By applying acoustic detection technology ( Van Den

beele et al., 2002 ), the effective properties of partially saturated

aline aquifers can be measured, and then the stored amount of

O 2 therein can be accessed. However, here we only present a ba-

ic idea, and further in-depth studies are still needed for actual

perations. 

Additionally, it should be noted that the interaction between

he pore fluid and the solid skeleton in fluid-filled porous ma-

erials is, in general, bi-directional. In this work, to explore their

ressure/diffusion-dependent effective properties, and at the same

ime to simplify the analysis, only unidirectional coupling, i.e., the

ffect of fluid pressure on solid deformation, is taken into account,

nd the reverse effect is neglected. In future studies, bi-directional

oupling should be considered, and in that case, the diffusion pro-

ess should be incorporated into the numerical simulation. 

Furthermore, although this paper is limited to the elastic re-

ponses of porous materials with ordered 2D structures and ex-

ludes any random distribution of pores and the connectivity of

he porous structures, the same methodology used in this paper
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can be extended to 3D porous structures with multiscale random

pores. However, for the 3D porous structure, the effects of distri-

bution and orientation of pores on the effective response requires

further consideration. 
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