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Disorder characterization of porous media and its effect on fluid displacement
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We investigate the effects of topological disorder and wettability on fluid displacement
in porous media. A modified disorder index Iv is proposed to characterize the disorder of
porous media. By changing Iv , different displacement patterns (stable displacement and
fingering) under the same flow condition and fluid property are obtained. We analytically
demonstrate how increase in disorder promotes fingering due to uneven distribution of
local capillary pressure. It is shown that the displacement efficiency for different wettability
conditions and disorder well correlates with the distribution of local capillary pressure. A
power-law relation between fluid-fluid interfacial length and saturation of invading fluid
is proposed by taking geometry into account, where the parameters in power-law relation
can be predicted by the capillary index, Ic, unifying the effects of topological disorder and
wettability.
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I. INTRODUCTION

Displacement of multiphase fluids in porous media is involved in many industrial and natural
processes, such as injection of CO2 into geological formations [1,2], enhanced oil recovery [3,4],
remediation of contamination in aquifer systems [5], and water infiltration into soil [6]. Studies have
been conducted with a focus on impacts of flow conditions and fluid properties on displacement of
multiphase flows [7,8], and effects of gravity [9] and wettability [10–12], while less attention has
been paid on correlating the pore-scale disorder of porous media with the fluid displacement.

The displacement patterns, including capillary fingering (CF), viscous fingering (VF), and stable
displacement (SD), are primarily controlled by capillary number, Ca, and viscosity ratio, M,
between the defending and invading fluids [13–18]. When the invading fluid is more viscous than
the defending fluid, i.e., M < 1, the displacement patterns tend to shift from SD to CF with the
decrease of Ca, indicating the dominance of the interfacial tension. While in the case of M > 1,
increase of Ca modifies the flow toward VF. At the same time, wettability is also proven to play
an important role: Increasing contact angle of invading fluid results in more efficient displacement
at all Ca [19–21], but when the contact angle exceeds a critical value, the trend is reversed due to
corner flow [12].

Another important factor that influences fluids displacement is disorder of the porous media. For
flows dominated by capillary effects (low Ca), increase in disorder promotes fingering, leading to a
transition from SD to CF [10,22]. While for large Ca with M > 1, high disorder modifies the viscous
fingerings to become more chaotic instead of having ordered patterns in regular media [13]. When
both capillary and viscous effects are important, Holtzman [23] found that increase in disorder leads
to higher interfacial area and lower displacement efficiency due to trapping. Holtzman [23] also offer
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subtle observations on effects of disorder by considering both capillary and viscous effects through
scaling analysis [23]. However, many pore-scale simulation models assume quasistatic displacement
[15], thus not capable of properly simulating dynamic mechanisms which are crucial even in slowly
driven systems [21]. Despite a recent improvement of pore-scale simulation on ability of capturing
nonlocal nature of interface dynamics [21], some processes during multiphase flow still remain
un-captured such as droplet fragmentation [24]. In addition, due to the complex interplay among
fluids properties, flow conditions, and topological features, the study of disorder effects on fluid
displacement remain an active area of research, and attracts increased attention in the recent years
with the help of development in microfluidics and advances in computational methods.

Multiphase flow in porous media has been studied both experimentally using micromodels
[12,15,16,25–27] and numerically by a range of simulation methods. Pore-network (PN) models,
though computationally efficient, have limited predictive capability and accuracy due to simplifi-
cation of pore geometries and/or flow equations [28–30]. Statistical models including diffusion-
limited aggregation (DLA), anti-DLA, and invasion percolation (IP) have been used to simulate VF,
SD, and CF, respectively. However, these “specialized” models cannot capture transitions between
different regimes [18,31]. Grid-based methods with interface tracking such as volume of fluid (VOF)
method and level set (LS) method have been proposed to study multiphase flow in porous media
[32–36]. However, they suffer from numerical instability at the interface when interfacial tension
becomes dominant for microdroplets [37]. In addition, they have only been applied to simple pore
geometries due to relatively high computational costs. The lattice Boltzmann method (LBM), as a
mesoscale method, has been developed into a powerful tool for flow simulation in porous media
[38–42]. Comparing to other numerical methods, the LBM is particularly suitable for pore-scale
simulation of multiphase flows due to its ability of handling complex geometries and also being
able to be massively parallelized. Therefore, it has been applied to study many problems in fluid
mechanics [43–45].

In this paper, we investigate the effects of disorder and their coupling with wettability on fluid
displacement in porous media. To better describe multiphase flow in porous media, a modified
disorder index Iv is proposed to characterize disordered geometry by reflecting the degree of
fluctuation of local porosity. Samples are generated to have distinct values of Iv for numerical
simulations using lattice Boltzmann method. Through controlling the disorder of geometry, we are
able to produce different displacement patterns (stable displacement and fingering) under the same
capillary number and viscosity ratio, providing new insights toward the conventional displacement
phase diagram which is independent on system geometry. We demonstrate how increase in disorder
collaborated with interfacial phenomena promote fingering due to uneven distribution of local
capillary pressure. It is shown that for different wettability conditions and disorder, the displacement
efficiency well correlates with the distribution of local capillary pressure. Finally, a power-law
relation between fluid-fluid interfacial length and saturation of invading fluid is constructed. The
parameters in power-law relation can be predicted by the capillary index, Ic, which combines the
effects of topological disorder and wettability.

II. METHOD

A. Media generation and characterization

Our geometry is a rectangular domain filled with circular obstacles to simulate the solid phase in
porous media as as as shown in Fig. 1. The porosity of the medium, defined as the ratio of void area
to total area in the 2D space, is controlled by varying the diameter of the obstacles. These obstacles
are initially regularly placed on a triangular lattice.

To characterize the disorder of the medium, we use similar idea from Laubie et al. [46] but a
different calculation method: Instead of using fixed square meshing in their study of mechanical
behavior of solid material (originally named as Id ), a Voronoi diagram is constructed for obtaining
the local porosity, then a disorder index Iv can be defined as the corrected standard deviation of local
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FIG. 1. Our porous medium is composed of 440 circular obstacles with diameter d = 0.06, which are
initially regularly placed on a triangular lattice. The area enclosed by black dot-dash line is the simulated area
with injection width H and longitudinal length W , while our results and analysis are based on the area of
interest (LAOI), which is enclosed by red solid line. Geometrical periodicity in horizontal and vertical direction
is ensured inside periodic boundary (purple-dashed line). The invading fluid is injected from the left with a
constant velocity Vinj. The pressure at the right end is set to be constant Pout. Periodic boundary condition is
imposed at top and bottom of the simulation area.

porosity:

Iv =
√∑N

n=1(φn − φ̄)2

N − 1
, (1)

where N is the number of obstacles in the domain, φn is the local porosity within the Voronoi cell,
and φ̄ is the overall porosity of the medium.

Disorder is introduced by Monte Carlo iterative movement of each obstacle with an apparent
diameter Dapp = λD with λ ∈ [1, Dmax/D], where D is the original diameter of obstacle and Dmax

is the maximum diameter to achieve the maximum packing, e.g., ideally
√

3π
6 in 2D, and its value

depends on the system dimension and number of obstacles. Thus, λ = 1 corresponds to a fully
disordered system where no restriction is applied during perturbation except that overlap is avoided,
while λ = Dmax/D corresponds to a regular system where no obstacle is able to move since they
are already in contact with each other according to their apparent diameter. Here, we focus on
media with obstacles of same size. Periodicity is ensured in both horizontal and vertical direction
for obstacle distribution and for the consequent Voronoi diagram in the periodic boundary (Fig. 1).
During each time-step, perturbation is applied to each particle, after which the disorder index Iv is
calculated. This process stops when Iv stabilizes around a certain value for given λ (the fluctuations
in Iv are generally smaller than 5% at the end). Thus, Iv = 0 corresponds to a perfectly ordered
system, exhibiting no variation in local porosity; whereas large values of Iv correspond to disordered
systems by reflecting fluctuation of local porosity with respect to fully ordered one. We found that
the disorder index Iv has a monotonic correlation with λ: as λ decreases, Iv increases and the system
becomes more disordered. It is also found that the achievable maximum value of Iv is dependent
on the size of system domain, total number of obstacles, and the overall porosity. With our choice
of a simulation domain with a length to width ratio W/H = 4, and a periodic domain with x ∈
[0.1299, 3.9404] and y ∈ [0, 1] filled with 440 obstacles having a diameter of 0.06 (corresponding
to an overall porosity of 0.6735), Iv ∈ [0, 0.08]. Using this method, five geometries with distinct
disorder have been generated for simulation with Iv = [0, 0.020, 0.036, 0.047, 0.054] (see Fig. 2).
Generally, with increasing Iv , the medium becomes more disordered and the variations in throat sizes
becomes larger.
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FIG. 2. Generated porous media and corresponding throat size probability distribution. From top to bottom,
Iv = 0, 0.020, 0.036, 0.047, 0.054.

It is necessary to elaborate on reasons to introduce Iv instead of directly using λ as the disorder
parameter [10,23,25,47]. First, although a monotonic relation has been observed between λ and Iv ,
from the definitions, λ is a parameter for generating the geometry controlling the minimum distance
between obstacles, while Iv is the parameter for geometry characterization. Second, at the start of
perturbation, the disorder of geometry can be quite different (usually in an increasing trend) for
the same λ, until a sufficient number of iterations have passed. This is reflected by Iv having an
increasing tendency followed by fluctuation around a constant value, without which it is hard to
define how many iterations are “sufficient.” Finally, due to the the construction of Voronoi diagram
for calculating Iv , each local porosity is dependent on its proximity of adjacent obstacles. Therefore,
a large Iv not only reflects the uneven spacial distribution of individual obstacles, but also implies
the existence of dense clusters, which has strong influences on regional trapping as we will show in
our results.

B. Simulation method

Standard lattice Boltzmann method with D2Q9 lattice is used for our 2D numerical simulations,
which includes streaming and collision steps as

fi(x + ci�t, t + �t ) = fi(x, t ) + �i(x, t ), (2)

where fi is the density distribution function in ith direction. In this study, Bhatnagar-Gross-Krook
(BGK) approach was preferred to multirelaxation time (MRT) one due to extra computational

034305-4



DISORDER CHARACTERIZATION OF POROUS MEDIA …

resources and complexity required for the latter [42]. The BGK collision operator is

�i(x, t ) = − fi − f eq
i

τ
�t, (3)

which relaxes the distribution function towards an equilibrium f eq
i at a rate determined by the

relaxation time τ . The equilibrium distribution function is given by

f eq
i (x, t ) = ωiρ

[
1 + u · ci

c2
s

+ (u · ci )2

2c4
s

− u · u
2c2

s

]
, (4)

where ωi is the weight for the ith direction. We use Shan-Chen multicomponent model originally
proposed by Refs. [38,39]. They introduced an interparticle force as

F SC(σ )(x) = −ψ (σ )(x)
∑
σ̃ �=σ

Gσ̃ σ

∑
i

ωiψ
(σ̃ )(x + ci�t )ci�t, (5)

where ψ (σ ) is the “effective” density function for σ component, and G is a simple scalar that
controls the strength of the interaction. To model immiscible fluids, the interaction strength
G must be positive, simulating the repulsive force between different components. By adopting
different fictitious wall densities, contact angles can be tuned [48]. Regularized boundary condition
proposed by Latt and Chopard [49] is adopted to achieve second-order accuracy. For more detailed
information about lattice Boltzmann method, we refer to Mohamad [50] and Kruger et al. [42]. We
choose a mesh size of 800 × 3200 lu2 (lu: lattice unit) for the simulation area such that at least 10
lattices are in between the smallest throat to ensure the grid is fine enough [51]. Each time after the
generation of media, the minimum throat distance rmin is determined. To ensure minimum number
of lattices Nmin along rmin, the number of lattices required in vertical direction for the simulation
domain is calculated as Mv = Nmin

rmin
× H , and Mh = 4 × Mv for horizontal direction, where H is the

height of the simulation domain shown in Fig. 1. Note that this method assumes rmin and principal
directions can be aligned. For example, with Nmin = 10 and rmin = 0.02, the mesh needs to be (at
least) 500 × 2000. Finer mesh is required as the topological disorder increases (reduce in apparent
diameter leads to smaller possible rmin). After examining all possible cases, we finally choose a
mesh of 800 × 3200 to ensure Nmin = 10 for all simulation cases. The kinematic viscosities for both
fluids are 0.1667 lu. The invading and defending fluids have densities of 1 and 0.8 lu, respectively,
leading to a viscosity ratio M = 0.8. The interfacial tension can be calculated using Young-Laplace
equation, which is 0.2152 lu. The invading fluid is injected from the left with a constant velocity
of Vinj = 0.005 lu, leading to a capillary number Ca = Vinjμdef

γ
= 0.0031. The pore-scale Reynolds

number is less than 10. The outlet pressure at the right end is set to be a constant of 0.2667
lu. Periodic boundary condition is applied at top and bottom of the simulation area. Overall, 25
simulations are carried out for five different disorders (Iv = 0, 0.020, 0.036, 0.047, 0.054) and five
different contact angles (θ = 35◦, 62◦, 89◦, 109◦, 128◦).

III. RESULTS AND DISCUSSION

The displacement patterns for different wettability conditions and topological disorder are shown
in Fig. 3. These are qualitative demonstrations of effects of wettability and disorder on fluid
displacement in porous media. Note that these snapshots correspond to the final stage of simulation,
which is when the invading fluid reaches the right end of the periodic boundary (see Fig. 1).
Generally, stronger fingering and larger trapped area of defending fluid are observed when the
medium becomes more disordered (increasing Iv) and more hydrophobic (increasing θ ), implying
a less efficient displacement, consistent with previous observations [9–12,19–21,23,52]. Figure 3
also demonstrates the “competition” between the destabilizing effect due to uneven distribution
of capillary resistance and stabilizing effect from cooperative pore filling events, which have a
higher occurrence when contact angle is small. To provide quantitative information about these
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FIG. 3. Displacement patterns (from data of invading fluid) for different disorder (left to right, Iv =
0, 0.020, 0.036, 0.047, 0.054) and wettability (top to bottom, θ = 35◦, 62◦, 89◦, 109◦, 128◦). The color
map represents the density of invading fluid in lattice unit. Note that in LBM, the density fields of invading and
defending fluids are stored in separate matrices. Here only the matrix storing data of invading fluid is shown.
The blue color (density of invading fluid being zero) stands for the location of defending fluid, and the density
fluctuation represents the pressure variation.

patterns, the normalized fluid-fluid interfacial length, L∗ = interfacial length
width of geometry , is calculated and plotted

as a function of saturation of invading fluid S for each time-step (Fig. 4). Note that to exclude the
boundary effect at outlet we conduct representative volume analysis and found an area of interest
with LAOI = 3 well captures the displacement data, so it is within this area (Fig. 1) our results are
based on. Figure 4 shows that the rates at which interfacial length increase are larger as the media
become more disordered (following the direction of black arrow) for all wettability conditions. This
dependence becomes stronger as the contact angle increases, which again can be explained by the
stabilizing effect of wettability [20,21]: trapping is mitigated by cooperative pore filling, or overlap,
during displacement for disordered media (corresponding to the four collapsed curves for θ = 35◦).
As the contact angle increases, this “mitigating effect” is reduced such that more trapping events
occur, leading to higher interfacial length. Furthermore, we also quantify (a) the residual saturation
[Figs. 5(a) and 5(c)] and (b) the ratio of final interfacial length to saturation [Figs. 5(b) and 5(d)] as
functions of Iv and θ : increase in Iv and θ leads to decrease in displacement efficiency and increase
in interfacial length per unit of saturation. These results again demonstrate the combined impacts of
topological disorder and wettability.

To analytically investigate how wettability and disorder cooperate together to influence fluid
displacement, we start with the equation that contain the physics of fluid displacement in multiple

FIG. 4. Normalized fluid-fluid interfacial length (L∗) as a function of saturation of invading fluid (S)
for different wettability and topological disorder. The black arrow indicates the direction of increasing
disorder: Iv = 0, 0.020, 0.036, 0.047, 0.054 corresponding to blue, orange, yellow, purple, and green curves,
respectively.
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(a) (b)

(c) (d)

FIG. 5. (a) Final saturation of invading fluid Sr (or displacement efficiency, which is the fraction of
defending fluid that has been displaced from the media at the end of the simulation) as a function of Iv and θ .
(b) Final normalized interfacial length L∗ over final saturation Sr as a function of Iv and θ . (c), (d) Same data
set as a function of contact angle θ for different topological disorders. Black arrow indicates the direction of
increasing values of Iv from 0 to 0.054.

throats as suggested by Lenormand et al. [15]:

q = K1
(
P − Pc1

)+ + K2
(
P − Pc2

)+ + · · · =
N∑

n=1

Kn
(
P − Pcn

)+
, (6)

where q is is the total flow rate, N is total number of throats, Kn is the hydraulic conductance
at local pore throat n, P is the pressure difference of invading and defending fluids, and Pcn is
the local capillary pressure providing resistance to the invasion of throat n. Locally, as long as P
is smaller than Pcn , there is no displacement. Then, the pressure difference between invading and
defending fluids increases as more invading fluid is injected, resulting in P > Pcn at throat n, leading
to local throat invasion. Thus, in absence of viscous fingering, it is the uneven distribution of local
capillary pressure that leads to uneven invasion of pores and consequent trapping and fingering,
which ultimately affects the fluid-fluid interfacial length and displacement efficiency. To calculate
the maximum allowable capillary pressure Pc,max before a throat is invaded, we consider three
basic pore-scale mechanisms: “burst,” “touch,” and “overlap” [53]. First, the equation for capillary
pressure Pc at throat n in porous medium filled with circular obstacles of same diameter can be
calculated by

Pcn = 2γ sin(α + θ − 90◦)

hn − d cos(α)
, (7)
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FIG. 6. (a) Schematic figure for calculation of local capillary pressure as a function of center-to-center
distance of particle h, radius r, contact angle θ , and filling angle α. (b) Schematic figure for calculation of αcrit ,
which is the maximum allowable α, larger than which the local throat being considered (red dashed line) will
be invaded.

where γ is the interfacial tension, h is the center-to-center distance of obstacles, d is the diameter,
and α is the filling angle shown in Fig. 6(a). Then, we define that the throat is invaded if (i) the
front of invading fluid comes in contact with the next obstacle (touch), or (ii) α reaches αoverlap

corresponding to cooperative pore filling event (overlap), assuming that obstacles are placed on
triangular lattices [Fig. 6(b)]. Thus, for given contact angle θ , the critical angle αcrit can be calculated
as αcrit = min(αtouch, αoverlap), where αtouch is calculated based on θ and αoverlap = 90◦. Different
characteristic front shape indicated by αoverlap may be used by other researchers depending on the
porosity of the medium [21]. In our study it is found αoverlap will not significantly impact the results
and 90◦ is adopted. Finally, for every throat, the Pc,max can be calculated as

Pc,max = max(Pc), α ∈ [−90◦, αcrit], (8)

which is the maximum capillary pressure before the front reaches any of the instability state at burst,
touch, or overlap. It is found that log-normal curves can well fit most of the Pc,max distributions,
and the probability distributions of Pc,max for different Iv and θ are plotted in Fig. 7. It shows that
as the medium becomes more disordered, the distribution of Pc,max spreads out. In the meantime,
increase in contact angle of invading fluid amplifies this effect, which further increases the variation
in Pc,max. Thus, the Pc,max distribution captures the interplay among wettability and geometry of

FIG. 7. Probability distribution of local maximum capillary pressure for different disorder and wettability
(histogram for Iv = 0 and probability density function for log-normal fitting of other values of Iv). Black
dashed arrow indicates the direction of increasing contact angle. Blue, orange, yellow, purple, and green colors
correspond to θ = 35◦, 62◦, 89◦, 109◦, 128◦, respectively.
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FIG. 8. Final saturation Sr as a function of standard deviation of logarithm maximum capillary pressure for
different topological disorder and wettability.

the system, reflecting the resultant capillary resistance, which should have close relationship with
the displacement patterns. To validate this hypothesis, the final saturation of invading fluid Sr , or
displacement efficiency, is plotted against the standard deviation of ln(Pc,max) in Fig. 8 for all
our simulation cases. Collapses of curves for different wettability conditions and disorder can be
observed, showing a linear relationship with a correlation coefficient R = −0.9261.

On the other hand, regarding the fluid-fluid interfacial length, Liu et al. [54] found that
the interfacial length L and saturation of invading fluid S can be correlated with a power-law
relationship: L = kSβ , where k and β are fitting parameters depending on the geometry. Here,
we propose a modified correlation between interfacial length and saturation assuming a power-law
relation between normalized interfacial length L∗ and “injection length” vt :

L∗ = L

H
= k(vt )β = k(φW S)β, (9)

where, v is the injection velocity, t is time, H is the injection width (across which the invading fluid
is injected), φ is porosity, W is the domain longitudinal length, S is saturation of invading fluid, k
and β are parameters that can be estimated based on capillary index Ic depending on system disorder
and wettability conditions, which is defined as

Ic = Iv,max − Iv
Iv,max − Iv,min

cos(θmax) − cos(θ )

cos(θmax) − cos(θmin)
, (10)

where Iv,max is the maximum disorder index depending on overall porosity of the geometry and total
number of obstacles inside the system, being 0.08 for the current setting. Iv,min = 0 is the disorder
index for fully ordered system. cos(θmax) and cos(θmin) are −1 and 1, corresponding to θ = 180◦ and
θ = 0◦, respectively. As we have discussed previously that increase in contact angle and topological
disorder promotes fingering, therefore, Ic is a direct indicator of the collaborative effect due to
medium geometry and wettability conditions. A small value of Ic implies relatively large θ and
Iv , which leads to less efficient displacement, while larger values of Ic would correspond to more
stable displacement. We plot the parameters β and ln(k) from Eq. (10) as function of Ic in Fig. 9(a)
and found that with Ic < 0.5, both β and ln(k) show a strong linear relation with Ic, having R of
−0.9467 and 0.9958, respectively. For Ic � 0.5, the displacement patterns are all stable, resulting
in small β and large ln(k), indicating weak dependence of L∗ on Sr : L∗ is only composed of the

034305-9



WANG, CHAUHAN, PEREIRA, AND GAN

(a) (b)

FIG. 9. (a) β (blue cross) and ln(k) (orange circle) in Eq. (9) as a function of Ic. The blue dashed line and
orange solid line are the best fit lines for β and ln(k), respectively. Black dashed line indicates the theoretical
value for ln(k) in perfect stable displacement. (b) Contour plot of Ic as functions of topological disorder (Iv)
and wettability (θ ).

fluid front, being almost constant during the stable displacement. In Fig. 9(a), the black dashed line
and a value of 0 correspond to the theoretical values for ln(k) and β for perfect stable displacement.
Clearly, it can be seen that Ic can also be used to classify displacement patterns Fig. 9(b). As shown
in Fig. 3, 25 patterns are separated into three regions by the dashed line (Ic = 0.5) and solid line
(Ic = 0.3) depending on the values of Ic. A smaller value of Ic implies larger interfacial length per
unit of saturation. Note for the left-bottom displacement pattern in Fig. 3, if we zoom in and observe
carefully, trapping event actually occurs at every obstacle during which small bubbles are formed,
leading to much larger interfacial length between fluids than it appears to be. Overall, the proposed
power-law relation [Eq. (9)] together with capillary index Ic [Eq. (10)] provide a rigorous method to
capture the quantitative relation between L∗ and Sr for different disorder and wettability conditions,
offering a reasonable way to predict the value of interfacial length.

In the current study, to focus on the effects of disorder and its coupling with wettability
on fluid displacement in porous media, the injecting velocity in all simulations are the same,
implying a constant capillary number Ca. Although the influence of Ca is not investigated, based on
numerous past works, since it is the uneven distribution of capillary pressure that leads to unstable
displacement, a decrease in Ca would make all the displacement patterns shown in Fig. 3 more
unstable since the capillary effect would become more significant. We also limit our attention
to situations where Saffman-Taylor instability, or viscous fingering, is not present by setting the
viscosity ratio M = 0.8.

IV. CONCLUSION

We systematically study the impact of topological disorder and its coupling with wettability on
multiphase flow in porous media via fluid-fluid displacement simulation using lattice Boltzmann
method. It has been shown that the disorder of porous media and wettability play a significant
role on the fluid-fluid displacement patterns. In addition to the overall porosity of the medium, the
consideration of an appropriate “disorder index” is required to capture the effects of microstructure
on fluid displacement. The modified disorder index Iv is able to characterize geometries with
different disorder by reflecting the degree of fluctuation of local porosity based on Voronoi
diagram. Our results show larger contact angle and increasing disorder promote fingering, leading
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to larger fluid-fluid interfacial area and lower displacement efficiency. To analytically investigate
how wettability and disorder collaboratively influence displacement, we calculate the maximum
allowable local capillary pressure Pc,max based on three pore-scale mechanisms during displacement:
burst, touch, and overlap. It is found that the standard deviation of ln(Pc,max) strongly correlates with
the displacement efficiency for all wettability conditions and disorder. We proposed a more general
power-law relation and defined the capillary index Ic, which offers a rigorous way to capture the
quantitative relation between L∗ and Sr for different disorder and wettability conditions.

While in current work we only consider obstacles of same size, for media with different sizes
of grains, modified Voronoi diagram can be adopted to generate the disorder index by taking the
varying radii into account. We provide qualitative and quantitative insight into how geometrical
features and wettability conditions collaboratively impact the fluid displacement, paving the way
for further study of disorder and wettability control on multiphase flow in porous media.
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