
Powder Technology 351 (2019) 54–65

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec
Modeling the effective conductivity of the solid and the pore phase
in granular materials using resistor networks
Oleg Birkholz a,⁎, Yixiang Gan b, Marc Kamlah a

a Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
b The School of Civil Engineering, The University of Sydney, NSW 2006, Australia
⁎ Corresponding author.
E-mail addresses: oleg.birkholz@kit.edu (O. Birkholz),

(Y. Gan), marc.kamlah@kit.edu (M. Kamlah).

https://doi.org/10.1016/j.powtec.2019.04.005
0032-5910/© 2019 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 10 January 2019
Received in revised form 15 March 2019
Accepted 2 April 2019
Available online 06 April 2019
Tomodel the effective conductivity of the solid and the pore phase of a lithium-ion battery (LIB) wemake use of
the resistor network method (RN). We recall the scheme on how resistor networks can generally be set up and
numerically solved. Furthermore, we explain how this generalmethod can be applied to an assembly of spherical
particles where for the individual resistances between touching particles an analytical formula is being used. As a
new feature, we use the same scheme to setup resistor networks for the pore phase of an assembly of spherical
particles where we propose a simple geometric approach for the calculation of the individual resistances of pore
throats. For the validation of this methodwe created several random particle structureswith different size distri-
butions and calculated effective conductivities with both the RN and the finite element method (FEM). On the
one hand, the comparison between RN and FEM shows a very good performance of the RN because the mean
error lies within 4%. On the other hand, the RN results always lie within the well-known theoretical bounds for
the effective conductivity in porous media. As an important aspect, the RN has proven to be highly efficient
concerning the computation time and the resource costs.
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1. Introduction

The microstructural composition of granular media strongly influ-
ences the effective transport properties, including thermal and elec-
tronic conductivity as well as diffusivity. For instance, the performance
of granular-like structures, such as lithium-ion battery (LIB) electrodes,
among other factors, is governed by the effective conductivity. On the
one hand, the used material and its microstructure plays an important
role, see for example [1,2]. On the other hand, themechanical densifica-
tion processes, such as calendering of the electrode or sintering of the
particles, impact on the quality of the battery [3]. Throughout this
work, we use LIB electrode structures as an example of a certain
class of granularmediawhere the effective conductivity plays an impor-
tant role. The methods developed here can also be applied to other
granular-like structures.

We consider the cathode of a LIB to be a porousmicrostructure com-
posed of a solid and a pore phase. Usually, by densifying themicrostruc-
ture the conductivity of the solid phase and hence the electronic
conductivity can be enhanced. However, this also reduces the pore
space and thus the ionic conductivity, see [4]. Since there has to be the
adequate amount of electrons and lithium ions present for the reduction
yixiang.gan@sydney.edu.au
and oxidation reactions of lithium, the optimum balance between solid
and pore phase conductivity has to be found.

During the past years, there have been a couple of theoretically and
empirically driven theories to calculate the effective conductivity in po-
rous media like the effective medium theory (EMT) [5–7] or by using
empirical relations, e.g. [8]. Also, theoretical upper and lower bounds
for the actual effective conductivity have been derived, as in [9]. Usually,
the formulae take the form of functions of the porosity (or the packing
factor) and the conductivity of the contributing phases.

Most of the time, when porous structures are being investigated the
tortuosity parameter τ is taken into account. This parameter describes
the deviation of the conducting paths from being straight lines. In the
literature, the tortuosity parameter is sometimes treated differently, as
the review in [8] shows. Since τ can not be measured directly, a couple
of methods have been established. For example, in [10–12] the authors
used the FIB/SEM tomography to look inside the microstructure of LIBs.
The data was then reconstructed to be applicable to finite element
method (FEM) or extended finite element method (XFEM) simulations
to calculate the effective conductivity and hence the tortuosity of the
solid phase.

The approach in [13] used networks of particles and resistances to
calculate the effective thermal conductivity. For the calculation of the
individual resistances between two contacting spheres they derived a
fit-formula. Finally, they set up a system of linear equations for a
steady-state heat problem by requiring all heat flux entering or leaving
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a particle to be zero. Solving this system of linear equations lead to the
temperature gradient along the particle assembly and thus the effective
conductivity could be calculated.

Similar to [13] the authors in [14] used resistor networks for the
calculation of effective conductivity in solid oxide fuel cells (SOFC).
Moreover, in [15,16] the resistor network method is being used for the
calculation for the solid phase of both the SOFCs and LIBs. In the frame-
work of the discrete elementmethod (DEM), the effective thermal con-
ductivity of granular packings has been investigated in [17–20].

A statistical approach has been chosen in [21] where the effective
conductivity has been calculated by fit-function of volume fraction,
tortuosity and constrictivity. The latter is a quantity which resembles
the influence of bottlenecks inside the system. To this end, numerous
microstructures have been generated and the effective conductivity, cal-
culated by simulations using FEM, has been related to the fit-formula.
The authors in [22] used a spatial partitioning technique which is called
the Delaunay tessellation to discretize the pore phase. They converted
the tessellated structure into a network with weighted edges to finally
correlate its features, like the shortest paths, with permeability results
obtained by FEM simulations. In an 3D stochastic approach, the effective
thermal conductivity of porousmetal fiber sintered sheets (PMFSS) have
been modeled in [23]. Here, random fiber systems were generated and
the effective thermal conductivity has been investigated using computa-
tional fluid dynamics (CFD) simulations.

In [24,25], random networks of throat resistances on regular grids
were used to calculate effective conductivity. The individual resistances
have been set either low or high [24] or they have been set following a
certain distribution [25].

A system of linear equations has also been set up for the pore net-
work of the gas diffusion layer in a polymer electrolyte membrane fuel
cell in [26]. Here, a pore network has been modeled as a regular cubic
grid where the nodes are the pores and the interconnecting edges are
the throats. The throat sizes have been modeled following a truncated
Weibull cumulative distribution.

Concerning the modeling of the electrical conductivity for the pore
phase in porous media, the authors in [27] give a overview of the cur-
rently available methods.

In thiswork, however,we present the resistor networkmethod (RN)
for the calculation of effective conductivity for both the solid and the
pore phase of a cathode structure inside lithium-ion batteries. In the
first part of this work, in Section 2.1, we recall the resistor network
method for the calculation of the effective conductivity. Further on,
we show how we create such networks for the respective solid and
pore phase of a granular system. Finally, we provide a general solving
scheme for such resistor networks. In Section 2.2, the calculation of
the single resistances is presented. Here, we employ and verify an ana-
lytical formula for the calculation of the resistance of two overlapping
spheres. Also, we propose a spatial discretization method for the
estimation of the representative resistance of a pore throat. Later,
Section 3.1 contains the validation of the resistor network method, as
described in the former sections. To this end, we used finite element
methods on several randomly generated assemblies of spheres and
compared the results to the values provided by the resistor network
method. The resulting effective conductivities of both the FEM and RN
method are then compared in Section 3.2. In Section 4.1 we check the
validity of the calculated effective conductivities to the theories present
in the literature. Further, in Section 4.2we discuss the resource and time
consumption for all conducted simulations for both methods.

Finally, in Section 5 we briefly summarize and conclude this work.

2. Methods

2.1. Resistor network method

In this section we explain the general idea behind the resistor
network method (RN). The method, as used here, follows [28], where
the so-called node potential method is introduced. It is being used to
calculate electric circuits. We will illustrate the method first and will
further describe how we use the RN to calculate the corresponding
effective conductivity for both the solid and the pore phase of granular
systems.

2.1.1. Conservation law and transport modeling
Generally, one considers conservation under steady-state conditions

such that

∇ � F!¼ 0; ð1Þ

where F
!

is the related flux vector. For the case of conservation of en-
ergy, this becomes

∇ � Q!¼ 0; ð2Þ

where Q
!

is the heat flux vector, while for species conservation we have

∇ � J
!¼ 0; ð3Þ

in which J
!

is the species flux vector of diffusion. Furthermore, in the
case of conservation of charge, we get

∇ � I
!¼ 0; ð4Þ

with I
!

being the current vector.
In the case of thermal transport, the heat flux vector is usually re-

lated to the negative gradient − ∇ T of temperature T as the driving
force by Fourier's law

Q
!¼ −K th � ∇T ð5Þ

as the constitutive law. Here, the thermal conductivity tensor Kth char-
acterizes the material under consideration. For diffusion, one often as-
sumes Fick's first law

J
!¼ −D � ∇c ð6Þ

as constitutive law for the species flux in which D is the tensor of diffu-
sion coefficients and c is the species concentration. On the other hand
for, say, electronic transport, typically Ohm's law

I
!¼ −Gel � ∇φ; ð7Þ

is taken to be the constitutive assumption bywhich the current depends
on the negative gradient − ∇ φ of electric potential φ as the driving
force. Now, the electric conductivity tensor Gel represents the material
specific properties.

Irrespective of the underlyingphysicalmechanisms, it becomes clear
that themathematical problems of thermal and charge transport posses
the exact same structure. In the following, we exploit this analogy by
transferring relations for thermal resistor to charge resistor network
modeling.When focusing for the calculation of effective transport prop-
erties in porous materials on charge transport, may it be electronic or
ionic, it is understood in view of the above discussion that the method
presented here will also apply to diffusion which plays an important
role in the context of lithium ion batteries, as well.

2.1.2. Mathematical formulation of a resistor network
In the following, the general idea behind the resistor network

method is outlined. To this end, we consider the example network of
nodes and resistors sketched in Fig. 1.

The nodes NI, N J and the currents II, J between those nodes, respec-
tively, are indicated in Fig. 1a. An yet unknown effective current Ieff is



Fig. 1.General approach for the calculation of the effective conductivity on an exemplary electrical circuit using RN. a) Equivalent electrical circuit with nodes and edges with external and
internal currents. b) Equivalent electrical circuit with resistors and external circuit. c) The values provided by the RN represent the effective resistance or conductance.
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applied between the nodes N0 and N1 which results from a potential
drop between those nodes. Note that we have chosen N0 and N1 such
that all the other nodes lie between them. In otherwords,N0 andN1 rep-
resent the boundary nodes, i.e. the current collector nodes. At each node
NI, we combine Kirchhoff's current law

II ¼
Xnneigh
J

II; J ¼ 0; ð8Þ

accounting for the conservation of charge, and Ohm's law

II; J ¼ UI; J

RI; J ¼
φI−φ J

RI; J ; ð9Þ

representing the constitutive property of the resistors. Here, nneigh is the
number of neighbors of node NI and UI, J is the voltage between the
nodes, represented by a potential dropφI−φ J. As a result, we canwrite

II ¼
Xnneigh
J

II; J ¼
Xnneigh
J

φI−φ J

RI; J ¼
Xnneigh
J

φI−φ J� �
GI; J ¼ 0 ð10Þ

to formulate equations for each node. Note that the directions of the
currents in Fig. 1a can be chosen arbitrarily as long as the sign of each
current in Eq. (10) is treated consistently. One choicewould be that cur-
rent II, J pointing away from a node NI has a negative sign.

According to Fig. 1b, the unknownpotentialsφI,φ J correspond to the
respective nodesNI,NJ and RI, J is the resistance between thenodes. Also,
we use the conductance GI, J = 1RI, J as the reciprocal of the respective
resistance. Now, we are able to assemble a linear system of equations
for the given node resistor network.

In order to make the linear system of equations solvable, however,
we replace the unknown current Ieff by an arbitrarily chosen potential
drop U0, 1 = φ0 − φ1 between the boundaries, see Fig. 1c. After solving
the linear system of equations for the unknown potentials φI, the
unknown effective current Ieff and therefore the effective resistance
Reff = U0, 1/Ieff of the system can be calculated.

2.1.3. Application to the solid phase
In the approach followed here, every structure is approximated by

discrete elements of different shapes possessing overall properties
only, such as a uniform temperature, potential, or, as in he case of the
DEM, velocity, and so on, see [29]. In this context, the most simple and
therefore prominent shape is the sphere with only two parameters to
fully characterize its geometry, namely the radius and the position.

To construct the node resistor network for a solid phase, discretized
by spheres, conducting pathways have to be identified, in the first place.
The so called percolated paths, which are highlighted in Fig. 2a can be
found by first, identifying clusters of particles, see [30–32] and second,
those clusters have to be selected which are connecting the boundaries
on opposite sides.

As shown in the next Fig. 2b, the percolated clusters have to be con-
verted to equivalent networks by assigning nodes and potentials φI, φ J

to the centroids of the particles and resistors RsolidI, J to the edges between
those nodes. The latter can be achieved by certain geometric relations
which will be introduced in Section 2.2.1. Finally in Fig. 1c, additional
nodes have to be added tomodel the boundary nodeswhere the bound-
ary conditions are imposed on. The result of this process leads to a node
resistor network which is the basis for the calculation of the effective
conductivity according to the scheme presented in Section 2.1.5.

2.1.4. Application to the pore phase
While it is quite straight forward to discretize the solid phase with

discrete elements, it is not as obvious to discretize the pore phase in a
similar way, because of the relatively complex shapes of the pores and
throats. Here, we propose a way alternative to employing discrete par-
ticles to assign to the pore space and its throats nodes and edges with
a corresponding resistance.

First, we need to identify pores and throats connecting two pores
with each other. In previous publications, for example, a modified
Delaunay tessellation approach is used for that purpose, see [22].
Here, it is said that it remains ambiguous what counts as a pore or a
throat. As a workaround, the authors introduced an additional criterion
uponwhich the decision ismade. In the followingwe propose amethod
which overcomes this drawback.

To discretize the pore phase,wemake use of theVoronoi tessellation
method. In general, for isolated points in a domain,which happen in our
case to be the nodesNI, the Voronoi tessellationmethod assigns a spatial
cell to each such point. Each cell contains all points whose distance
to the associated cell node NI is less than or equal to any other node
NJ, I ≠ J. In 3D space, the so-called Voronoi cells take the form of convex
polyhedra. Using this method, the whole domain volume can be fully
discretized. All points, i.e. particles, can be wrapped in cells and the bor-
ders, i.e. edges, of the cells lie in an optimumdistance between particles.



Fig. 2. Resistor network for the calculation of the effective conductivity of the solid phase. a) Percolating, i.e. conducting, pathways. b) Equivalent electrical circuit. c) Resistor network
method (RN).
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We employ the open source Voronoi tessellation library Voro++ [33],
which additionally accounts for polydisperse particle sizes.

An exemplary Voronoi discretization can be seen in Fig. 3a.
The spherical particles are wrapped by Voronoi cells, faces, edges
and vertices. Conveniently, we choose each vertex as the centroid of a
pore and the corresponding edges as the pore throats. Consequently,
our network nodes correspond to the vertices where we assign the
potentials φI, φ J to and the edges will be related to resistances RporeI, J ,
see Fig. 3b.

Again, the boundary nodes have to be identified where the
boundary conditions can be applied to, see Fig. 3c. Finally, the resulting
node resistor network can be solved by the scheme described in
Section 2.1.5.

2.1.5. Solution scheme
In the following, a general scheme for solving resistor networks

according to Section 2.1.2 is presented. Due to the independence of
Fig. 3. Resistor network for the calculation of the effective conductivity of the pore phase. a) Vo
Voronoi tessellation. c) Resistor network method (RN).
the direction of the individual currents and therefore due to its general-
ity, thismethod described bellow iswell suited to be used in a computer
program, see [28].

1) Create the conductivity matrix G = Gij as
Gij ¼
∑nneigh

J GI; J if i ¼ j;

−GI; J otherwise

(
ð11Þ

and the current vector I
!¼ I j as

I j ¼
Ieff if j ¼ 0;
−Ieff if j ¼ 1;
0 otherwise;

8><>: ð12Þ

where i, j=0, 1,… , n, with n being the number of nodes. Furthermore,
nneigh is the number of neighbors of the individual node. As shown in
ronoi tessellation of the percolating pore phase. b) Discretization of the pore phase using a
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Fig. 1, Ieff is the current entering the network in node 0 and leaving the
network at node 1. The resulting system of linear equations can be set
up as

G00 G10 G20 ⋯ Gn0

G01 G11 G21 ⋯ Gn1

G02 G12 G22 ⋯ Gn2

⋮ ⋮ ⋮ ⋱ ⋮
G0n G1n G2n ⋯ Gnn

26666664

37777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G

φ0

φ1

φ2

⋮
φn

26666664

37777775
|fflfflffl{zfflfflffl}

φ!

¼

−Ieff
Ieff
0
⋮
0

26666664

37777775
|fflfflfflfflffl{zfflfflfflfflffl}

I
!

:
ð13Þ

2) Next, we eliminate the unknown current Ieff from the right-hand
side of Eq. (13). As a result, we create a modified system of linear
equations which is smaller by one degree of freedom. To this end,
we first make use of the equality φ0 = φ1 + U0, 1 and rewrite the
first row in Eq. (13) as

G00 G10 G20 ⋯ Gn0

G01 G11 G21 ⋯ Gn1

G02 G12 G22 ⋯ Gn2

⋮ ⋮ ⋮ ⋱ ⋮
G0n G1n G2n ⋯ Gnn

26666664

37777775
φ1 þ U0;1

φ1

φ2

⋮
φn

26666664

37777775 ¼

−Ieff
Ieff
0
⋮
0

26666664

37777775: ð14Þ

Secondly, we transfer the known voltage U0, 1 to the right-hand side
which leads to

G00 G10 G20 ⋯ Gn0

G01 G11 G21 ⋯ Gn1

G02 G12 G22 ⋯ Gn2

⋮ ⋮ ⋮ ⋱ ⋮
G0n G1n G2n ⋯ Gnn

26666664

37777775
φ1

φ1

φ2

⋮
φn

26666664

37777775 ¼

−Ieff−G00U
0;1

Ieff−G01U
0;1

−G02U
0;1

⋮
−G0nU

0;1

26666664

37777775: ð15Þ

Third, we eliminate the unknown Ieff from the right-hand side of the
second line by adding the first line. Further, we get rid of the redundant
first line such that

G01 þ G00 þ G11 þ G10 G21 þ G20 ⋯ Gn1 þ Gn0

G02 þ G12 G22 ⋯ Gn2

⋮ ⋮ ⋱ ⋮
G0n þ G1n G2n ⋯ Gnn

26664
37775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĝ

φ1

φ2

⋮
φn

26664
37775

|fflfflffl{zfflfflffl}b
φ!

¼

− G01 þ G00ð ÞU0;1

−G02U
0;1

⋮
−G0nU

0;1

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}b
I
!

ð16Þ

ð16Þ

becomes the modified system of linear equations, where Ĝ is the mod-

ified conductivity matrix, bφ! is the modified potential vector and
b
I
!

is
the modified current vector.

3) Now,

Ĝ bφ!¼ b
I
! ð17Þ

can be solved for the modified unknown potential vector φ̂ j.

4) In the next step, however, we need to adjust the potential values to
the given boundary conditions, that isφ0=0 andφ1=φ0−U0, 1, by
adding the offset potential φoff ¼ φ1−φ̂1 to all φjN0
φ j ¼
φ0 if j ¼ 0
φ̂ j þ φoff otherwise;

(
ð18Þ

for j = 0, … , nnodes and reassign potential values φj to φ J where the
value of the index j corresponds to node number J.

5) In the last step, the unknown current Ieff can be calculated as the sum
of all nneigh currents entering current collector node N0

Ieff ¼
Xnneigh
J

φ0−φ J

R0; J : ð19Þ

When the effective current Ieff is known, the effective resistance Reff
and therefore the effective conductance Geff or effective conductivity
κeff, respectively, can be calculated by

Reff ¼
U0;1

Ieff
or Geff ¼

1
Reff

: ð20Þ

Finally, as we are interested in the effective conductivity, we have to
take the domain dimensions into account. In the current work, we are
considering a rectangular domain of a cross section Adom and a length
Ldom in any given direction such that the effective conductivity can be
calculated as

κeff ¼ Geff
Ldom
Adom

¼ Ieff
U0;1

Ldom
Adom

S
m

� �
: ð21Þ

2.2. Calculation of the individual resistances

In Section 2.1 we introduced the resistor network method for the
calculation of the effective conductivity for both the solid and the pore
space, respectively. The crucial part of every resistor network, however,
is the determination of the representative resistance values of the edges,
where we only address geometrical throat effects.

For simplicity, we focus here on spherical particles. In addition
to that and as mentioned before, we make use of the analogy
between the mathematical form of thermal and charge transfer as
well as diffusion problems, such that the methods we introduce for
heat problems can directly be applied to charge transport and diffusion
phenomena.

2.2.1. Resistance of two overlapping solid spheres
Section 2.1.3 describes resistor networks for the solid phase in a gen-

eral way. For any given network, we now need to assign resistances to
the edges, which happen to be contacting, i.e. overlapping spheres.
There have been numerical and analytical investigations for the deriva-
tion of a formula where the resistance is a function of the geometric
properties of the particles.

For two equal-sized spheres of the same material, the approximate
resistance Rfit has been obtained by [16]. By analogy to [13] a fitting for-
mula of the form

Rfit ¼ α
rp
rc

Rcyl ð22Þ

has been proposed. Here, Rcyl is the resistance of a cylinder with the
radius rp and the height d. The particles' radius is rp and rc depicts
the contact radius between the two overlapping spheres. From a se-
ries of numerical finite element models, where the overlap was var-
ied by increasing the radii of both spheres simultaneously at a fixed
distance of their centers, the fitting constant α has been chosen as
0.952.
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As a more general model, the analytical formula Ranl has been de-
rived by [34] where the authors assume a steady state flow in a infinite
or semi-infinite medium through a circular aperture and formulate the
resistance as

Ranl ¼ 1=κ I þ 1=κ J

4rc
: ð23Þ

Here, κI and κJ are the bulk conductivities of the conductingmaterials
and rc is the radiuswhere the flux flows through. The contact radius rc is
obtained from the circle in the throat of the two overlapping spheres in
contact. If as a special case one sets the conductivity equal to κI = κJ =
κp, Eq. (23) reduces to the solution

Ranl ¼ 1
2rc κp

ð24Þ

given in [35].
Fig. 4a shows the comparison of the results of the two formulae to

each other. As a reference, we take results from FEM simulations that
we calculated by ABAQUS [36]. The finite element method gives us
the spatially resolved solution of the stationary boundary value
problem for two spheres in contact as shown in Fig. 4b. It consists
of the partial differential equation obtained from the balance rela-
tion, Eq. (2), and the constitutive equation, Eq. (5), on the one side
and of the boundary conditions on the other side. By sufficient
mesh refinement, the finite element solution can be considered to
be exact according to the needs.

In Fig. 4b, two half-spheres with the radii rI and rJ and their bulk
conductivities κI and κJ, respectively, are shown. While, for simplic-
ity, radius and conductivity are taken as unity for one sphere, they
are chosen according to a prescribed ratio for the other. The half-
spheres are overlapping to form the contact radius rc. Next, a
temperature gradient ΔT is imposed on the middle surfaces of
the spheres such that a flux q! emerges. For simplicity, the tempera-
ture drop is chosen as unity. In order to calculate the resulting
resistance Rnum, the resulting total flux Qnum at the middle surface
of one of the spheres is used to finally obtain

Rnum ¼ ΔT
Qnum

: ð25Þ
Fig. 4. a) Comparison of numerical FEM results to the analytical formulae (22) and (23). b) Ske
spheres of different sizes and conductivities to evaluate the resulting heat flux.
A series of FEM simulations have been carried out, where not only
the radius ratios rI/rJ and the contact radius relative to the smaller
sphere rI/rc had been varied but also the bulk conductivity ratios kI/kJ.
In Fig. 4a, the dimensionless representation of the resistance

~R ¼ RrI

1=κ I þ 1=κ J
ð26Þ

is plotted versus the dimensionless contact radius rI/rc for three arbi-
trarily chosen cases but with relatively extreme ratios.

It can be seen that in the regime of a rather large relative contact
radius of rI/rc b 5, both formulae perform quite similar to each other
and to the FEM solution. However, if the relative contact radius in-
creases towards rI/rc = 20, which means that the contact radius is
merely 5% of the particles radius, only Ranl, according to Eq. (23), is in
a good agreement with the FEM reference solutionwhereas Rfit increas-
ingly overestimates the resistance. Furthermore, it has to be noted that
Eq. (23) even fits well with the FEM reference results when the radius
ratio rI/rJ has been varied from 1/1 to 1/100 and the conductivity ratio
κI/κJ has been varied from 1/1 to 1/300 and 300/1. Here, the analytical
formula underestimates the numerical solution by a mean error of
around e ¼ 4%.

In view of the above findings, we conclude that the formula accord-
ing to Eq. (23) has been successfully verified as a general model of the
resistance of two spheres in contact. Thus, in this work we have chosen
Eq. (23), according to [34], for the calculation of a single contact resis-
tance between two spheres because the variation of radius ratio as
well as a variation of conductivity ratio is intrinsically accounted for.

2.2.2. Resistance of a pore throat element
As a point of departure formodeling the resistance of the pore phase

in a granular assembly, we assume that transport is merely hindered by
the bottlenecks created by the solid particles. Tomodel such bottlenecks
or pore throat elements, we need to identify the pores and pore centers
first.

Fig. 5a exemplarily shows the first step, as we use the so-called
Voronoi tessellation according to [33], as explained in Section 2.1.4.
We recall that we partition the whole volume into cells containing
each particle and consisting of faces, edges and vertices. The region
of a cell outside its particle is its fraction of the pore phase. Conve-
niently, we choose the vertices to be the nodes NI, N J and therefore
tch of the FEMmodel where a temperature gradient is imposed on two overlapping half-



Fig. 5.Modeling pores and pore throat elements. a) Discretization of the pore phase into Voronoi cells. b) Voronoi edges and the correspoinding surrounding volume, i.e. throat elements,
connecting Voronoi vertices, i.e. pores. c) Partitioning of throat elements into wire resistances of incremental lengths.
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the centers of the pores where we assign the potentialsφI,φ J to. Con-
sequently, we consider the connecting edges as the pore throat ele-
ments weighted by certain resistances Rpore

I, J . In Fig. 5b, the gray
shaded area indicates the throat element enclosed by the nodes of
the edges and the centers of the corresponding particles, from
which we will calculate the representative resistance. Obviously, in
the 2D example of Fig. 5, the resistance between nodes NI and N J is
a parallel connection of two resistances, i.e. throat sub-elements,
constituted by two neighboring cells. Now, the resistance resulting
from one such sub-element is calculated as a sufficiently fine
discretized series connection of wire resistances.

To be specific,we divide each edge into sufficiently small increments
ΔLn and calculate the resistance ΔRmn of each segment by

R ¼ ρ
L
A

⇒ ΔRn
m ¼ ρ

ΔLn

An
mean

; ð27Þ

where ρ is the resistivity and Amean
n = 12(An + An+1) is the mean cross

section area for the n’th increment. For the geometric calculation of the
respective cross sections we make use of the well-known Boost and
CGAL library [37,38].

The resulting resistance RmI, J of one sub-element is then calculated as
a series connection of the incremental resistances as

RI; J
m ¼

Xnincr
n¼1

ΔRn
m ¼ ρ

Xnincr

n¼1

ΔLn

An
mean

; ð28Þ

where nincr is the number of increments used along I and J. Here, ΔL is
estimated individually for each sub-element. The size ofΔL is incremen-
tally reduced until the resulting resistance of the next increment doesn't
differ from the previous one by a certain small threshold, here within
5%. Finally, as mentioned above, we calculate the resulting resistance
Rpore
I, J of the edge, i.e. the throat element, connecting nodes NI, N J, i.e.

the pores, as a parallel connection of the resistances RmI, J of all mselmn

sub-elements containing this edge by

RI; J
pore ¼ ∑

mselmn

m¼1

1

RI; J
m

 !−1

: ð29Þ

Thus, we have derived a model for the throat element resistances in
the resistor networkmethodwhenmodeling the pore phase. Validation
of the method, solid phase and pore phase, is now the subject of the
next section.
3. Results

3.1. FE-model for the validation of the resistor network method

In the following, the validation of the resistor network method, as
used here, is explained. To this end, we compared the RN results for the
effective conductivity of both the pore and the solid phase to finite ele-
ment results using ABAQUS [36].We generated random spherical assem-
blies and used the exact same geometry for both of the methods, see
Fig. 6. As far as thefinite element simulations are concerned, the geometry
is spatially resolved and the boundary value problem of the partial differ-
ential equation of the stationary transport obtained from the balance rela-
tion, Eq. (2), and the constitutive equation, Eq. (5), is solved. Because of
the absence of fully analytical formulae for random spherical particle as-
semblies, we thus consider, as before, the FEM results to be the exact so-
lution of the transport properties. With that said, the finite element
results serve as benchmark for findings by the resistor network method.

The generation of the assemblies was done in two steps. First, the
initial structurewas generated using an algorithmsimilar to the random
close packing algorithm (RCP) [39]. In general, the RCP produces a
randomly distributed, densely packed and overlap-free collection of
spheres. Following the approach of [17,40], the algorithm has been ex-
tended to account for any given size-distribution of the particles, i.e.
the radii of the spheres. The size-distribution of the spheres corresponds
to a normal distribution with a given mean radius rmean and standard
deviation rσ. Secondly, the initial structure was densified using an algo-
rithmwhichwe call numerical sintering [15,16]. During this process the
radii of the spheres inside the assembly are iteratively increased while
keeping the centroids fixed in space. It is important to note that during
the densification routine we neglect any sorts of mechanics, i.e. contact
forces and alike. After every iteration, a given threshold is checked
which indicates that the wished densification state is reached. In our
case, the threshold was defined in terms of the mean contact angle
θmean. Here, θmean is defined as themean of all contact angles of the con-
sidered assembly of spheres. A single contact angle of two overlapping
spheres is taken as the bigger of the two angles enclosing the contact
radius.

The geometrical data of the spheres were then imported into a box-
shaped simulation domain where the parts of the spheres outside of
the domain boundaries were cut off, as can be seen in Fig. 6b. In both,
the FEM and the RN analysis, we consider transport through two oppo-
site surfaces of our box-shaped simulation domain. Either the particle
phase, i.e. the solid phase, or the pore phase has been analysed.
Concerning the finite element simulations, for the phase of interest, all
nodes on one of these surfaces were set to the same temperature,



Fig. 6. Discrete element and finite element models of one of the polydisperse sphere packings. a) Temperature equivalent potential distribution along the z-direction of the solid phase
solved using the resistor network method. b) Temperature distribution along the z-direction of the solid phase solved using the finite element method. c) Temperature equivalent
potential distribution along the z-direction of the pore phase using the resistor network method. d) Temperature distribution along the z-direction of the pore phase using the finite
element method.
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while the temperature of the nodes on the opposite surface were
dropped by ΔT = 1 with respect to this temperature. The other four
surfaces of the box-shaped simulation domain were assumed to be in-
sulated, and thus, they are parallel to the direction of overall flux. The
steady-state heat transfer problem was solved exactly by FEM using
quadratic DC3D10 elements. The resulting heat fluxQFEM through either
the solid phase or the pore phase was obtained at one of the surfaces
with the applied temperature. By knowing the domain length Ldom
and cross section area Adom, in the corresponding directions, we were
able to calculate the effective conductivity of the phase of interest as

κeff
FEM ¼ QFEM

ΔT
Ldom
Adom

: ð30Þ



Table 1
Left: Structural parameters of the spherical packings for the validation models. Right:
Resulting parameters after the densification process.

Type nparticles rmean rσ θmean ϕsolid, mean ϕpore, mean rc, mean

1 200 1.00 0.00 20 0.68 0.32 0.34
2 200 1.00 0.10 20 0.66 0.34 0.32
3 200 1.00 0.25 20 0.65 0.35 0.30
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Concerning the resistor network method, on the other hand, the
generated assemblies of spheres can be imported without further
adjustments. Depending on the transport phase considered, the node
resistor networks were created following either the method in
Section 2.1.3 for the solid phase or the method in Section 2.1.4 for
the pore phase. Further, for the resulting networks a potential drop of
Δφ = 1 was imposed on the nodes of two opposing surfaces while for
the nodes of the other surfaces no boundary conditions were applied.
Again, by considering the domain length and cross section area the ef-
fective conductivity can be calculated via

κeff
RN ¼ Ieff

Δφ
Ldom
Adom

; ð31Þ

where the effective current Ieff was calculated using the resistor network
solving scheme according to Section 2.1.5.

In our approach, we calculate the influence of geometry of a granular
systemusing a unit value of the bulk transport property for thematerial.
All results shown, either FEM or RN, in this paper refer to such a unit
bulk property. Subsequently, these normalized values have to bemulti-
plied by the corresponding bulk transport property of the material
under consideration in order to obtain the effective transport property
of the related granular system.

Fig. 6 shows an example of a randomly generated sphere packing
with a polydisperse size-distribution according to assembly type 3 in
Table 1. In Fig. 6a the discrete element model of the solid phase is pre-
sented. Additionally, the temperature equivalent potential distribution
in the z-direction provided by the resistor network method is indicated
by the color. In Fig. 6b the finite element model of the solid phase is
shown. Here, the color refers to the spatially resolved temperature dis-
tribution in z-direction. The nodes and edges assigned to the pore phase
by our new RN method can be seen in Fig. 6c, and the temperature
equivalent potential distribution is indicated by the color of the nodes.
In Fig. 6d the FEM discretization of the pore phase is shown and once
Fig. 7. Comparison of FEM results with RN results for polydisperse particle assem
more the temperature distribution in z-direction is indicated by
the color.

In Table 1, the parameters for the conducted studies can be seen. Up
to five cases per assembly type have been generated. Here, the number
of particles is given by nparticles, while themean radius and the standard
deviation is described by rmean and rσ, respectively. The state of densifi-
cation is depicted by the mean contact radius of the solid phase θmean.
On the other hand, the resulting packing factor ϕsolid and the porosity
ϕpore= 1−ϕsolid aswell as themean contact radius rc, mean can be seen.
3.2. Evaluation of the results

Fig. 7 shows the comparison between resistor network and finite el-
ement results for each study with the results for the solid phase in
Fig. 7a, and the results for the pore phase in Fig. 7b. The effective con-
ductivity is normalized by the corresponding bulk conductivity. For
each case, the normalized effective conductivity of the RN results κ̂RN

is plotted over the normalized effective conductivity of the FEM solution
κ̂FEM. Thus, the bisecting solid 1:1 line indicates a perfectmatch between
both methods whereas a deviation above or below means an over- or
underestimation of the RN results compared to the FEM results, respec-
tively. Examining Fig. 7a and b, a couple of observations can be made.

First of all, concerning the results for the solid phase, the RN values
deviate from the FEM results by a mean error lower than e ¼ 4%. This
comes as no surprise, since every contact between two spheres, i.e. re-
sistance, inside the assembly is calculated by an analytically derived for-
mula, see details in Section 2.2.1, which is the exact solution. On the
other hand, the deviation of the results by the resistor network for the
pore phase also deviate by a relatively low mean error of around e ¼ 3
%. We consider this degree of agreement with our reference solution
as a successful verification of our simplifying RN approach for the
pore phase.

Another observation is the evolution of the effective conductivity be-
tween the different assembly types. With decreasing packing factor
from ϕsolid, mean

type1 = 0.68 to ϕsolid, mean
type3 = 0.65 going from assembly

type 1 to 3, the effective conductivity for the solid phase is decreasing.
The opposite behavior can be seen for the effective conductivity of the
pore phase. On the other hand, the resistor network method allows a
more detailed explanation, as will be discussed now.

For the solid phase, we showed in Section 2.2.1 that we calculate the
resistances of individual overlapping spheres using Eq. (23), which is a
function of the contact radius rc. Now, for constant mean contact angle
θmean and increased standard deviation for the radii, one can see in
blies. Effective conductivity of the (a) solid phase and (b) the pore phase.
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Table 1 that themean contact radius is decreasing from rc, mean
type1 =0.34 to

rc, mean
type3 = 0.30. This leads to higher individual resistances, as contact
radii appear in the denominator in the formula (23), and thus to
lower effective conductivities for the solid phase along with it.

For the pore phase, it is difficult to derive a similar explanation since
the formula for the resistance of a pore throat, as in Eq. (29), is more
complex, see Section 2.2.2. However, it is obvious to see that the individ-
ual resistance is inversely proportional to the incremental cross section
areas, i.e. the porosity of the assembly. In otherwords, an increasing po-
rosity leads to an increase in the average cross section area of the pore
throats and thus to a higher effective conductivity for the pore phase.

4. Discussion

In the following, we check the validity of the effective conductivities
provided by the resistor network method, as presented here, against
well-known theories found in literature. To this end, some of the theo-
ries are briefly recalled first and then compared to the results which
were provided in Section 3.2. Further explanation on the theories can
be found in [5]. Finally, we take a glance on the computational costs of
the simulations conducted in 3.2 of the RN and compare it to the FEM.

4.1. Comparison to theories in literature

First, a narrow bounds for the effective conductivity were presented
by Hashin and Shtrikman [9]. These well-known bounds were derived
by variational theorems for the effective magnetic permeability but
due to the mathematical analogy the results can also be applied to elec-
tric or thermal conductivity in which case they read as

κhs1
eff ¼ κsolid

2κsolid þ κpore−2 κsolid−κpore
� �

ϕpore

2κsolid þ κpore þ κsolid−κpore
� �

ϕpore

κhs2
eff ¼ κpore

2κpore þ κsolid−2 κpore−κsolid
� �

1−ϕpore

� �
2κpore þ κsolid þ κpore−κsolid

� �
1−ϕpore

� � :

ð32Þ

It should be noted, that for κsolid N κpore the equation with the super-
script hs1 becomes the upper bound and thus the equation with the
super-script hs2 becomes the lower bound. In case of κsolid b κpore the
upper and lower bounds are interchanged.
Fig. 8. Comparison of the RN results with theoretical bounds of the effective conductivity for
pore phase.
Next, in the framework of the effective medium theory (EMT)
Landauer presented in [41] by assuming a system of two randomly dis-
tributed phases the formula

κemt
eff ¼ 1=4 3ϕpore−1

� �
κpore

�
þ 3 1−ϕpore

� �
−1

h i
κsolid þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϕpore−1
� �

κpore

r
þ 3 1−ϕpore

n o
−1

� �
κ2
solid þ 8κsolidκpore


 ð33Þ

for the calculation of the effective conductivity.
In Fig. 8a, we see the comparison of the effective conductivity for the

solid phase provided by the resistor networkmethod to the theories ac-
cording to Eqs. (32) and (33). Since the pore phase in this case doesn't
contribute to the transport we set κpore = 0. Thus the lower bound κeffhs2

is zero for all ϕpore N 0.
Furthermore, in Fig. 8b we see the comparison of the effective con-

ductivity for the pore phase provided by the resistor network method
to the abovementioned theories. This time, the solid phase doesn't con-
tribute to the transport and therefore we set κsolid = 0 which results in
the lower bound κeffhs1 to be zero for ϕpore N 0.

It can be seen that for both cases, i.e. conducting solid or pore phase,
the results provided by the resistor networkmethod always lie between
the Hashin-Shtrikman bounds and therefore, form the viewpoint of
these theories, in a reasonable range. Further, it should be mentioned
that for the given cases the EMT yields different results compared to
the RN. As it is shown in Fig. 8a, the EMT overestimates the RN values.
On the other hand, the effective medium theory underestimates the ef-
fective conductivity of the pore phase calculated by the resistor network
method, as can be seen in Fig. 8b. Also, in accordance with both of the
theories, with increasing porosity the effective conductivity is either de-
creasing, see Fig. 8a, or increasing, see Fig. 8b.

Finally andmost important, we recall that for the considered particle
assemblies the RN results perform very well for both the pore and the
solid phase as compared to exact FEM simulations. Also, the RN is capa-
ble to predict the effective conductivity even for rather complex particle
assemblies, i.e. polydisperse and overlapping spheres, where theories
like the effectivemedium theorywould not be fully applicable anymore.
In any case, the results from the resistor network approach, as used
here, reside within the well-known Hashin-Shtrikman bounds.
porous media. a) Effective conductivity of the solid phase b) Effective conductivity of the



Table 2
Comparison of resource costs RN versus FEM for the solid phase calculations.

Method Mean number
of nodes

CPUS / Threads
used

Total RAM
(MB)

Simulation time
(mins)

RN ≈250 1 thread ≈100 ≈1
FEM ≈650,000 4 CPUs ≈8000 ≈73

Table 3
Comparison of resource costs RN versus FEM for the pore phase calculations.

Method Mean number
of nodes

CPUS / Threads
used

Total RAM
(MB)

Simulation time
(mins)

RN ≈1100 4 threads ≈2000 ≈3
FEM ≈300,000 4 CPUs ≈6000 ≈32
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4.2. Computational performance

From the computational perspective, the resistor network method
promises to be more efficient in terms of resource and time cost com-
pared to the finite element method. That is because for the RN method
the number of degrees of freedom (DoF) corresponds directly to the
number of particleswhereas for the FEM the spatially resolvedmesh in-
creases the number of DoF.

In the following, wewant to compare the actual facts concerning the
computation time and resource cost for the 3 studieswith 5 cases, that is
15 simulations, we have calculated in Section 3.1. We used a worksta-
tion with Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50 GHz with 32 GB
ram specifications. For the calculations of the resistor networks, we
used an partially parallelized in-house code kitGran written in C++
and based on the work by [17], where we made use of a couple of
open-source libraries. Here, the CGAL and Boost library [37,38] helped
to perform all sorts of three-dimensional geometry operations, the
Voronoi tessellation library Voro++ [33] delivered the Voronoi cells
for our RN method for the pore phase and the linear algebra library
Eigen [42] was used to set up and solve the sparse system of linear
equations.

Remarkably, the resistor network method performs extremely well
for the solid phase. Here, with just 250 nodes and negligibly low re-
source costs, see Table 2, it outperforms the computational performance
of the finite element method. Here, it takes the FEM 73min and 4 CPUs
whereas the RN method delivers the result with 1 thread within 1 min.
Moreover, the finite element method needed around 650,000 nodes to
discretize the model which is relatively large compared to 250 nodes
used for the resistor network method. This comparably large amount
of nodes can be explained by the fact that for slightly overlapping
spheres the contact areas become relatively small. In this cases, the ele-
ment sizes become small as well, thus resulting in an increase of node
numbers. Due to theway the resistances, i.e. overlaps of spheres, are cal-
culated for the resistor networks, see Section 2.2.1, we implicitly ac-
count for relatively small contact areas without the need for more
detailed discretization.

As can be seen in Table 3, for the pore phase the RN also performed
better compared to the FEM. Here, the FEM model needed around
300,000 nodes on average to discretize the pore phase. Furthermore, it
took 4 CPUs over 32 min and 6000 MB in total to calculate the results.
On the other hand, the RN method needed 1100 nodes on average to
capture the same problems and delivered results within 3 min while
using 2000 MB memory space.
5. Conclusion

In this work, we presented a resistor network method for the calcu-
lation of the effective transport properties for both the solid and pore
phase in porous media, e.g. a cathode of a lithium-ion battery. First,
we have shown how for both cases equivalent node and edge networks
can be constructed and second, how representative resistors can be cal-
culated for the edges. Further, the general setup and solution scheme for
the resistor networks has been presented. The method has been vali-
dated by finite element methods for different random assemblies of
spheres with increasing polydispersity.

With the resistor networkmethod being applicable for the solid and
pore phase and having significant computational efficiency, it has
proven to be a valuable asset for the fast estimation of the effective con-
ductivity of granular media. Therefore, it can be used for Monte Carlo
simulations to study the influence of themicrostructure on the effective
properties of porous media, e.g. cathodes in lithium-ion batteries. At a
much larger scale, the effective properties can be used for developing
microstructure-informed cell models.

It should bementioned thatwe focused on purely geometrical throat
effects here. Additional interface resistances can be included in a similar
framework, once the related physical information and material charac-
terization are available from either experiments or detailed modeling.

On the one hand, the calculation of the effective conductivity of non-
spherical particles in contact has already been investigated, see e.g. [20].
There, the particle to particle resistance has been described as a function
of the semi-axes of the contact ellipse. On the other hand, the calcula-
tion of the transport properties of the pore phase of non-spherical par-
ticles - in the framework used here - needs more investigation. In
particular, the used tessellation technique not only needs to account
for the particle size but also for the shape to properly discretize the
pore phase. In the view of the above findings, the resistor network
method for the calculation of the effective transport properties of both
the solid and the pore phase can be regarded as validated by spatially re-
solved finite elementmethods. Compared to the RN used in [13–16], the
calculation of the resistance of two overlapping spheres was enhanced
by using the more general formula, Eq. 23, which also was validated
using FEM. Moreover, the proposed method for the calculation of the
pore phase overcomes certain drawbacks of different networkmethods.
As described in Section 2.2.2 for example, no additional assumptions
have to be made to distinguish between pore and throat as is the case
in [22]. Also, the distribution of the throat resistances results directly
from the geometry of the solid phase. Thus, the influence of microstruc-
ture of the solid phase on the effective conductivity of the pore phase
can be investigated.

In the context of lithium-ion batteries, the resistor network method
developed here, when applied to the solid phase, can be used to calcu-
late the electronic conductivity of a multiphase system consisting of,
say, active material and conductive additives. On the other hand,
when applied to the pore phase, it can be used to calculate the effective
diffusion coefficient, as well as the effective ionic conductivity of the liq-
uid electrolyte phase. In each case, the effective transport properties can
be obtained by RN with respect to the geometry. The effective conduc-
tivity or diffusivity of the system, on the other hand, can then be directly
calculated using the respective bulk properties of the materials under
consideration.
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