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Abstract
Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial
and geotechnical applications. In thiswork, amodified smoothed particle hydrodynamics (SPH)model is employed to simulate
surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated
in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified
by introducing a newly developed viscous force formulation at the liquid–solid interface to reproduce the rate-dependent
behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted
to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with
different magnitude on the contact angle dynamics is examined by empirical power-law correlations; the derived constants
suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results
are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be
associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified
SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic
multiphase flow simulations under dynamic conditions.
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1 Introduction

Complex interactions amongmultiple phases (e.g. gas, liquid
and solid) in porous media are of great significance in many
industrial applications, such as groundwater treatment [1],
oil recovery [2], carbon sequestration [3], unsaturated soil
mechanics [4–6] and porous catalysts [7]. These processes
usually involve dynamic wetting phenomena which are crit-
ical when describing the rate-dependent system properties,
and can thus further shed light on optimisation of engineer-
ing solutions. Dynamic wettability is generally characterised
by the dynamic contact angle. To access this property,
previous studies focussed on experimental characterisation
[8–10], theoretical modelling [11, 12] and various numerical
approaches [13–15]. Numerical methods have demonstrated
significant advantages in modelling multiphase flow [13,
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15–17], including time and cost efficiency, a wide range of
length scales, and broader ranges of material properties and
loading conditions. However, to model dynamic wettability,
most existing numerical approaches are either far from typi-
cal realistic time and length scales, e.g. molecular dynamics
(MD) [16], or established based on the introduction of addi-
tional artificial interfacial constraints, e.g. smoothed particle
dynamics (SPH) [15, 17].

Dynamic contact angles can be measured experimen-
tally at the liquid–solid–vapour triple-line region in different
ranges of the capillary number (Ca) [18, 19], a non-
dimensional parameter defined as the ratio of viscous to
interfacial forces:

Ca � ηvt

γ
, (1)

where vt is the triple-line region velocity, γ is the surface
tension, and η is the viscosity of the fluid. The behaviour
of the dynamic contact angle associated with motion of the
contact line of a spreading liquid can be described using
several theories, including hydrodynamic [11] or molecular-
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kinetics models [20], and their combination [21]. A number
of empirical relationships based on these theoretical models
for wetting have been discussed in literature, all of which
express the dynamic advancing (or receding) contact angle
θad (or θ rd) as a function of Ca and the corresponding quasi-
static contact angle θas (θ rs ) during the wetting (dewetting)
process. For water on a glass or polyethylene plate, Elliot
and Riddiford [22] found that the dynamic contact angle is
rate independent when Ca < 2 × 10−7, whereas Schwartz
and Tejeda [8] identified that the dynamic contact angle is
constant for Ca < 2 × 10−6. For 10−6 < Ca < 10−2, the
dynamic contact angle varies monotonically with Ca, where
the most commonly suggested relationship is [23–25]
∣
∣
∣cosθ

a/r
d − cosθa/rs

∣
∣
∣ � ACaB, (2)

where A and B are constants for the advancing/receding case.
Based on a similar empirical correlation, Jiang et al. [9],
Bracke et al. [10] and Seebergh and Berg [26] derived dif-
ferent constants for the proposed correlation, by introducing

the additional term 1/
(

1 + cosθa/rs

)

on the right-hand side

to minimise the deviation induced by fluid properties when
comparing the results for different fluids. It has also been
pointed out that the dependence of the contact angle on the
velocity of the moving contact line, i.e. the value of B, is
enhanced for rough surfaces [8, 26]. In addition, Kordilla
et al. [27] and Shigorina et al. [28] studied droplet flow on
smooth and rough surfaces under different flow conditions
using a pairwise force (PF)-SPH model, and the resulting
dynamic contact angles were validated against analytical and
empirical solutions.

However, complete understanding of the dynamic contact
angle associated with a moving contact line remains an open
topic due to the complex liquid–solid interactions and the
fundamental roles of the triple-line region in liquid spread-
ing. Experimental investigations on the dynamic contact
anglemay be strongly influenced by small-scale physical and
chemical heterogeneities, impurities adsorbed on the solid
surface, growth and dissolution of bubbles etc. [29]. There-
fore, considering the above-mentioned limitations and the
availability of experimental conditions and facilities, numer-
ical approaches, including MD [14, 16, 30, 31], the lattice
Boltzmannmethod (LBM) [13, 32–35] and SPH [15, 17, 28],
serve as powerful tools to study contact angle dynamics and
the fundamental underlyingmechanisms. At themicro-scale,
Koplik et al. [14] identified rate-dependent behaviour for the
dynamic receding angle using MD simulations of an immis-
cible two-fluid system.Meanwhile, Lukyanov and Likhtman
[16] applied MD simulations to explain the behaviour of
the dynamic contact angle from the perspective of the force

distribution and friction law. Furthermore, the atomic-scale
microscopic characteristics of the contact line can be cap-
tured in MD simulations considering actual inter-particle
potentials [36]. Nevertheless, MD simulations are mostly
established on atomic scale and usually require high com-
puting power. At the meso-scale (which usually refers to
length scales from hundreds of micrometres to a few mil-
limetres), researchers have also proposed and verified the
power-law correlation between Ca and the dynamic con-
tact angle for multiphase capillary flow using LBM and
SPH models that agree with experimental and theoretical
predictions [13, 15, 17, 32, 33]. Although the microscopic
characteristics of the contact line force effect are inevitably
oversimplified when using such coarse-grained approaches,
an attempt has been made to develop a theoretical model
to account for the surface tension and friction forces at the
atomic length scale using LBM [37]. However, to deal with
problems with moving boundaries, LBM algorithms must be
modified,whichworsens the accuracy of the standard scheme
[38]. Recently, pairwise functions have been successfully
introduced into SPH formulations to reproduce interfacial
phenomena, including the surface tension and contact angle
[39–41]. For the above-mentioned SPH models that were
successfully used to simulate the dynamic contact angle,
an additional term must be included, e.g. the contact line
force formulation [15] or applying pairwise interaction forces
with the dynamic Young–Laplace condition in the triple-line
region [17], and they all assume a no-slip boundary con-
dition, thus the effects of slip length on the contact angle
dynamics have not yet been considered. We propose herein
a modified SPH model to study the contact angle dynam-
ics at meso-scale with pore sizes of around a millimetre.
This SPH model adopts additional liquid–liquid and liq-
uid–solid interaction forces to generate surface tension and
wetting effects [42]. Moreover, to replicate realistic dynamic
behaviour of liquid–solid interactions, an interfacial viscous
force is introduced to capture viscous shearing, which was
omitted from the original SPH formulation. This newly intro-
duced interfacial force can recover the behaviour of a fluid on
a rough surface based on a physically measurable quantity,
i.e. the slip length, and the dependence of the resultant con-
tact angle hysteresis on the slip length is demonstrated and
verified. The advancing and receding contact angles are sim-
ulated in a capillary tube at various contact line speeds. By
analysing the correlations between the contact line velocity
and contact angle, empirical power-law correlationswith var-
ious constants are obtained. Furthermore, parametric studies
are conducted to demonstrate that these predicted dynamic
behaviours correlate with the proposed interfacial viscous
force model.
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2 SPHmodel

2.1 Governing equations

The motion of an incompressible fluid is governed by the
Navier–Stokes equations,which canbewritten inLagrangian
form as follows:

dρ

dt
� −ρ∇ · v, (3)

dv

dt
� −∇P

ρ
+ μ

∇2v

ρ
+ F, (4)

where ρ is the fluid density, v is the flow velocity, P is the
pressure, μ∇2v

ρ
is the viscous term, and F corresponds to

the total volumetric force acting on unit mass. In this study,
Young–Laplace boundary conditions are not included, as in
previous work [17, 27, 28].

We approximate the incompressibility of the fluid using a
weakly compressible approach, applying an equation of state
(EOS) in the form [43]

P � c2ρ0
χ

[(
ρ
ρ0

)χ − 1
]

, (5)

where c is an artificial speed of sound, ρ0 is a reference
density, and χ is an empirical parameter. In this work, we
choose the artificial speed of sound to be c > 10Vmax along
with χ � 7 [44, 45], where Vmax is the expected maximum
particle velocity.

2.2 SPH equations

The SPH method is based on the idea that a continuous field
A(r i ) at position r i can be smoothed by a convolution inte-
gral with a smoothing functionW

(

r i − r j , h
)

, which allows
the value of any function to be obtained at a given point as
[46]:

A(r i ) �
N∑

j�1

m j
ρ j

A
(

r j
)

W
(

r i − r j , h
)

, (6)

where the summation is over N neighbouring particles
around the specified particle r i , andm j , r j , ρ j are the mass,
position and local density of particle j , respectively, W
(

r i − r j , h
)

is the smoothing functionwith smoothing length
of h. The following Gaussian kernel is adopted for the pro-
posed SPHmodel, considering both calculation accuracy and
computational efficiency [47]:

W (r, h) � 1
h
√

π
e
−

(
r2

h2

)

. (7)

The density of a liquid particle i is evaluated as

ρi � ∑

j
m jW

(

r i − r j , h
)

. (8)

The pressure-driven part of themomentum equation is imple-
mented following the approach proposed byMonaghan [46],
where the pressure gradient is symmetrised by rewriting
∇P/ρ in Eq. (4) to ensure momentum conservation:

∇Pi � ρi
∑

j
m j

(

Pi
ρ2
i
+

Pj

ρ2
j

)

∇W
(

r i − r j , h
)

. (9)

A Monaghan-style artificial viscosity model [46] is applied
to stabilise the numerical algorithm. The artificial viscosity
is obtained by writing the momentum equation in the form

μ
∇2υi

ρi
� −

∑

j

m jΠab∇W (r i − r j , h), (10)

where Πab is given by

Πi j �
⎧

⎨

⎩

−αc̄i jμi j+βμ2
i j

ρ̄i j
, vi j · r i j < 0,

0, vi j · r i j > 0
(11)

and

μi j � hvi j ·r i j
r2i j+0.01h2

, (12)

where α and β are constants, c̄i j � (

ci + c j
)

/2, and ρ̄i j �
(

ρi + ρ j
)

/2 are the values of the sound speed and the density
averaged between particles i and j . It was suggested byMon-
aghan [46] that values ofα andβ of 1 and 2, respectively, give
the best results. In this work, we adopt this value for α, but set
the value of β to 0, as the motion of the fluid flow in the sim-
ulation is relatively slow (ranging from 0.0002 to 20 mm/s).
Note that the implementation of this artificial viscosity could
lead to unphysically high shear viscous forces, because SPH
simulations are stabilised by the physical viscosity of the
fluid, and it is challenging to simulate low-viscosity flows
[48]. Therefore, our simulations are carried out with this
highly viscous setting.

For the weakly compressible SPH formulation, the time
step 
t in this work follows the Courant–Friedrichs–Lewy
(CFL) condition based on: (1) the maximum artificial sound
speed and the maximum flow speed, (2) the magnitude of the
particle acceleration fi and (3) the viscous condition [42].

2.3 Implementation of the inter-particle forcemodel
in SPH

Generally, two approaches are used to prescribe the surface
tension and contact angle in SPH models. The first approach
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is the continuum surface forcemethod proposed by Brackbill
et al. [49]. The second is the pairwise force model intro-
duced by Tartakovsky and Meakin [39], later extended to
different forms of pairwise forces [17]. In this work, an
inter-particle force formulation [41] adopted from dissipa-
tive particle dynamics (DPD) [40] is applied to reproduce
the surface tension and wetting effects. The pair potential
energy U (r) and inter-particle force Finter

i j are given as

U (r) � αi j
[

CW e(r , h1) − DW e(r , h2)
]

, h1, h2 ≤ 0.5 h, (13)

Finter
i j � −dU (r)

dr
r i−r j

‖r i−r j‖ , i �� j, (14)

where αi j is the inter-particle force strength parameter, C
and D are constants, and W e is the cubic spline function to
construct the potential energy function with the form

W e(r , h) �

⎧

⎪⎪⎨

⎪⎪⎩

1 − 3
2

( r
h

)2 + 3
4

( r
h

)3
, 0 < r

h ≤ 1,
1
4

(

2 − r
h

)3
, 1 < r

h ≤ 2,

0, otherwise.

(15)

This kernel function W e is normalised by 2
3h ,

10
7πh2

and 1
πh3

in one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) space, respectively. The inter-particle force
in Eq. (14) is added into the SPH momentum conservation
equation, and imposed on both liquid and solid particles to
generate multiphase interactions between different phases.
The parameter αi j is replaced by α1 (as the liquid–liquid
interaction force parameter) when particle j is a liquid parti-
cle and byα2 (liquid–solid interaction force parameter) when
particle j is a solid particle. Note that particle i is always
a liquid particle. By assigning different values for α1 and
α2, different values of the surface tension of a free surface
and the static contact angle on a solid surface can be repro-
duced in the simulation. In addition, to prevent unphysical
penetration of liquid particles into solid particles, additional
repulsive boundary forces are implemented, similar to those
implemented in Ref. [50].

2.4 Modified liquid–solid interfacemodel

In most SPH simulations, the boundaries of rigid bodies are
prescribed using different mechanisms such as ghost parti-
cles [51], normalising conditions [52] or boundary particle
forces [50], all of which are only appropriate for perfectly
smooth boundaries [53]. Considering the particle–particle
interaction force at a liquid–solid interface, the sum of the
short-range repulsive and longer-range attractive forces act-
ing on a liquid particle fluctuates around zero in the tangential
direction, which effectively makes the interface frictionless
and rate independent (Fig. 1b). In addition to the absence of

viscous shearing between the liquid and solid phases, as a
Monaghan-style artificial viscosity is used in this work, the
rate-dependent behaviour of a moving contact line is hardly
achieved in this circumstance.

Several approaches can be used in SPH to prescribe
the dynamic contact angle at a contact line, as previously
discussed. However, the above approaches assume no-slip
boundary conditions, thus the effects of the slip length on
the contact angle dynamics are not considered. It is also
feasible to implement the Navier–Stokes equations using a
Navier-slip boundary condition or an empirical law for the
contact angle dynamics, while the physical characteristics of
the solid–liquid interface, including the slip length and sur-
face roughness, can be omitted. In this work, we introduce
a new algorithm which imposes a viscous force Fvis

i j on the
liquid particles based on the actual shearing at the liquid—
solid interface, to reproduce the rate-dependent behaviour of
the moving contact line. In Refs. [17, 27, 28], the momen-
tumconservation equation is subjected to theYoung–Laplace
boundary condition at the interfacial region, thus reproducing
also the contact angle dynamics. Here, we focus on repro-
ducing the dynamic contact angle effects, considering the
slip length at the solid–liquid interface. For an ideal no-slip
condition, the tangential force between the solid and liquid
can be expressed as

Fvis
i j � −S · τ · t � −L0 · η · γ̇ · t � −L0 · η · 
vt

L0/2
, (16)

where S is the liquid–solid contact area (becoming for a
two-dimensional case the particle spacing L0), τ is the shear
stress, η is the viscosity of the bulk fluid, γ̇ is the shear rate,
t is the tangential unit vector, and 
vt is the relative tangen-
tial velocity between liquid and solid particles. The thickness
of shearing equals half the interface spacing L0, as shown in
Fig. 1a. This formulation is based on the assumptions of lam-
inar flow with a constant shear rate and a no-slip boundary
condition at the liquid–solid interface.

Experimental studies report a slip length ranging from
10 nm to 10 μm for various surfaces and liquids [54–57].
However, compared with predictions under no-slip boundary
conditions with the bulk fluid viscosity, the average bound-
ary fluid velocity and slip length of pressure-driven flow can
increase dramatically on certain surfaces, such as superhy-
drophobic and rough surfaces [58–61]. For example, the slip
length can reach hundreds of nanometres for hexadecane
flowing over a bare sapphire surface [58], up to 400 μm on
hydrophobic micro–macro structures [61] and even larger
than 1 mm for fluid flow through an aligned carbon nanotube
membrane [60]. In addition, MD simulations also suggest
that the slip length may increase for fluids at the triple-line
region [14].

To take the presence of the slip length into account, the
interfacial force formulation in Eq. (16) must be modified.
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Fig. 1 Schematics of the modified SPH approach (not to scale): a shearing between solid and liquid particles at liquid–solid interface; b force
balance of liquid particle; c geometry of capillary tube for dynamic contact angle simulation

Figure 2 illustrates the equivalent model for an effective
shear rate γ̇ ∗, considering a slip boundary condition with
slip length of Ls. The equivalent model should have the same
tangential force as the actual case with a slip condition, thus

Fvis
i j � −L0 · η∗ · 
vt

L0/2
� −L0 · η · 
vt

L0/2+Ls
, (17)

where η∗ is the equivalent viscosity, or apparent viscosity, at
the interface. Thus, we have

η∗ � η · L0
L0+2Ls

. (18)

Therefore, the bulk viscosity η at the interface is replaced by
a smaller value η∗ (Ls > 0) to reproduce the actual shear
profile at the liquid–solid interface. Finally, the interfacial
viscous force Fvis

i j is added to the inter-particle force formu-
lation in the form

Fvis
i j �

{

−L0 · η∗ · 
vt
L0/2

, ri j ≤ L0,

0 ri j > L0.
(19)

Mesh sensitivity studies suggest that the use of Eqs. (18)
and (19) is independent of the particle spacing L0. After this
modification with the inter-particle interaction force, Finter

i j ,

and interfacial viscous force, Fvis
i j , the SPH discretisation of

the governing equation now reads

(20)

dvi
dt

� −
∑

j

m j

[

Pi
ρ2
i

+
Pj

ρ2
j

+ Πab

]

∇W (r i − r j , h)

+ g +
∑

j

Finter
i j

mi
+

∑

j

Fvis
i j

mi
.

This SPH model is implemented in the PySPH open-source
framework [62]. The parameters used in this work are listed
in Table 1, unless otherwise mentioned.

Fig. 2 Velocity profiles and shear rate for slip condition (dashed line)
and equivalent no-slip condition (dotted line)

3 Results and discussion

3.1 Identification of model parameters

To examine the surface tension scheme used in this study, the
shape evolution of a 2D droplet with zero gravity in vacuum
is presented. The equilibrated average density of the droplet
is 997 kg/m3, based on the bulk region of the droplet. Fig-
ure 3a shows the shape transformation of the droplet from
a square to circle due to the surface tension effect. The sur-
face tension γ can be calculated using the Young–Laplace
equation, which relates the difference between the internal
and external pressure of the droplet 
P and its radius R
as

γ
(

1
R1

+ 1
R2

)

� 
P, (21)
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Table 1 Parameters for dynamic contact angle simulations

Parameter Symbol Value

Density (kg/m3) ρ0 997

Gravity (m/s2) g 9.8

Viscosity (Pa·s)a η 0.013, 0.04, 0.185

Interfacial viscosity (Pa·s) η∗ 0.0006–0.009

Slip length (μm)b Ls 100–1000

Surface tension (N/m)a 0.28

Particle mass (kg) m0 6.25×10−7

Particle spacing (m) L0 2.5×10−5

Smoothing length (m) h 7.5×10−5

Artificial sound speed (m/s) c 3.0

Time step (s) 
t 4.15×10−7

Liquid–liquid interaction force
parameter (J)

α1 5.42×10−4

Liquid–solid interaction force
parameter (J)

α2 5.69×10−4

aThese material properties are the results of other input parameters
bThe values here correspond to the interfacial viscosity used in the
simulations

where R1 and R2 are the principal radii of curvature of the
droplet. Since the air phase is not explicitly modelled due
to limited computational resources,
P here equals the pres-
sure inside the droplet and the mean radius equals the droplet
radius R. In this work, the total pressure of the droplet results
from the combined contributions of both the EOS and the
inter-particle force Finter

i j [41]. Due to the boundary defi-
ciency [63], we exclude the edge of the droplet and use the
bulk region for the pressure measurement. Seven tests are
conductedwith different values ofα1 ranging from2.0×10−5

to 5.5 × 10−4 J. The results suggest a linear relationship
between α1 and γ (Fig. 3b).

The liquid–solid interaction strength parameter α2 is cali-
brated by simulating six different equilibrium contact angles
for a droplet over a flat substrate, with thickness of 0.1mm, as
shown in Fig. 4a. The droplet has a volume of 2.5mm3, and it
is slowly brought into contactwith theflat surface by a gravity
force. After the droplet reaches equilibrium (after approxi-
mately 0.25 s), the curvature of the droplet at the triple-line
region is fitted using a circle. Then, a tangent line is drawn
at the intersection of the circle and substrate. The included
angle between the tangent line and substrate is measured
as the static contact angle. Figure 4 shows that different wet-
ting behaviours fromhydrophobicity to hydrophilicity can be
simulated by adjusting the liquid–solid interaction strength
parameter α2.

3.2 Dynamic contact angle

To simulate a moving contact line and the dynamic contact
angle, a 2D capillary tube with a shifting substrate is mod-
elled in vacuumwith the following geometry and parameters:
The size of the capillary tube is 4 mm×1.36 mm, contain-
ing fluid in a domain of 1.8 mm × 1.2 mm, as shown in
Fig. 1c. The surface tension and bulk viscosity of the simu-
lated fluid are fixed unless otherwise mentioned, and Ca is
only controlled by the triple-line velocity, vt , in this work.
To measure the dynamic contact angle, the simulation pro-
cess is recorded and snapshots of the simulation domain are
taken every 100 time steps after the wetting front becomes
stable. The first three layers of liquid particles adjacent to the
solid boundary are excluded from the contact angle measure-
ment, because the triple-line region becomes less resolvable
due to the weak compressibility, particle spacing and strong

Fig. 3 a Evolution of droplet shape. b Surface tension with different values of α1
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Fig. 4 a Static contact angles for different values of α2. b Relation between static contact angle and α2

solid–liquid interaction force that results in frequent recon-
struction of the liquid particles. Note that this boundary effect
could be overcome by simulations with sufficient resolution.
Then, the flowcurvature at the triple-line region is fitted using
a circle, followed by drawing a tangent line at the intersec-
tion of the solid boundary and the circle. The dynamic contact
angle θd is considered to be the included angle between the
solid boundary and the tangent of this fitted circle.

Prior to the simulations with different substrate moving
speeds, the capillary tube is in the same stable configura-
tion in terms of fluid curvature and static contact angle. In
all the simulations, the bottom substrate moves along the y-
direction for a distance of 1.2 mm to raise or withdraw the
fluid with various velocities to generate a moving contact
line. Figure 5 shows snapshots of the fluid movement and
curvature at different simulation time steps. The advancing
angle occurs when the fluid is pushed up, while the receding
angle is formed when the substrate withdraws the fluid. At
any given time, the resulting contact angle is recorded against
the instantaneous contact line speed.

Figure 5 shows five snapshots of the capillary tube with
the substrate moving at a velocity of 10 mm/s at simulation
times of 0 ms, 5 ms, 25 ms, 60 ms, and 80 ms. At the begin-
ning of the simulation, due to the weak compressibility and
low sound speed of the simulated fluid, it takes hundreds of
time steps for the substrate to transfer its speed to all the
liquid particles. Subsequently, the fluid curvature starts to
change and the advancing (or receding) angle keeps increas-
ing (or decreasing) from simulation time of 0 ms to 60 ms.
After 60 ms, the fluid curvature becomes stable, and the con-
tact angle measurement is conducted thereafter. Note that the
velocity of the substrate does not necessarily equal the veloc-
ity of the triple-line region, and the position and velocity of
the liquid particles are updated according to the smoothing
function at each time step, so the fitted contact angle and Ca

Fig. 5 Snapshots of dynamic contact angle simulations at various times
with the substrate moving at 10 mm/s: a advancing case; b receding
case

will vary during the simulation. Therefore, when the curva-
ture becomes stable, i.e. after simulation time of 60ms in this
case, hundreds of sets of contact line velocities and dynamic
contact angles are recorded for subsequent data processing
and analysis.

To examine the effect of the proposed interfacial viscous
force, we conducted two dynamic contact angle simulations,
implemented with and without the term Fvis

i (more specif-
ically, η∗ � 0.003 Pa·s and η∗ � 0 Pa·s, respectively); the
results in terms of the dynamic contact angle are compared
in Fig. 6. Both cases are simulated for 12 substrate moving
speeds ranging from 0.002 to 20 mm/s. The resulting Ca
ranges from 10−6 to 10−1.
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Fig. 6 Scatter plot of dynamic contact angle simulations with and with-
out interfacial viscous force, Fvis

i . Blue and pink circles represent
advancing and receding cases with Fvis

i , respectively; Black and red
squares represent advancing and receding cases without Fvis

i . Trend
lines serve as a guide to the eye

For Ca < 10−4, the dynamic contact angle simulation
results are independent of Fvis

i , with dynamic advancing
and receding angle of around 70° and 60°, respectively. For
10−4 < Ca < 10−3, slight differences can be observed
in the results. For the cases implemented with Fvis

i , the
dynamic advancing angle starts to increase and the reced-
ing angle starts to decrease, while the dynamic contact angle
remains unchanged in the case without Fvis

i . The major dif-
ference occurs in the large-Ca regime (Ca > 10−3): with
the increase of Ca, the dynamic advancing/receding contact
angle remains almost constant in the casewithout Fvis

i , which
suggests there is no rate-dependent behaviour of the dynamic
contact angle. This is because the Young–Laplace boundary
condition is not explicitly prescribed in this study, and the
applied Monaghan-style artificial viscosity does not repro-
duce viscous shearing between different phases. Meanwhile,
for the cases implemented with Fvis

i , the dynamic advancing
angle increases from 70° to around 90° while the dynamic
receding angle decreases from 60° to less than 40° as Ca
approaches 0.02.

These simulation results suggest that the interfacial vis-
cous force formulation is key for reproducing the dynamic
contact angle. According to Eq. (19), the interfacial viscous
force Fvis

i at the liquid–solid interface region increases with
the velocity of the liquid particles. Therefore, the Fvis

i for-
mulation will result in a different influence on the motion of
the moving contact line depending on the magnitude of the
triple-line velocity, vt . In the case where vt is relatively small
(Ca < 10−4), the magnitude of the interfacial viscous force
Fvis
i is also negligible and contact angle hysteresis is hardly

observed within the small-Ca regime. When vt becomes

larger, Fvis
i starts to influence the behaviour of the moving

contact line. In such a circumstance, the relative motion of
the contact line is restricted and slowed down along the flow
direction. Meanwhile, the bulk fluid in the middle region
of the capillary tube is not affected by the interfacial vis-
cous force. Hence, this part of the fluid moves quicker than
the fluid in the triple-line region, which creates a larger (or
smaller) contact angle for the advancing (or receding) case.
In summary, when adopting the newly introduced interfa-
cial viscous force formulation, the proposed SPH model can
successfully simulate the dynamic contact angle.

In the following, empirical power-law correlations are
used to examine the results, similar to the format of the “uni-
versal function” [26]. The above simulation results with the
inclusion of Fvis

i are replotted in Fig. 7 using a smoothed den-
sity histogram plot. Note that the legend bars represent the
relative probability densities; e.g. “1.0” refers to the highest
density. Then, the power-law correlation of Eq. (2) is used to
fit the results, and the constants are derived. From previous
studies, we know that the exponent B ranges from 0.2 to 1.0
based on various experimental findings and theoretical pre-
dictions [23]. In our simulation results with η∗ � 0.003 Pa·s,
B values of 0.531 and 0.406 are derived for the advancing
and receding cases, respectively. Later in Sect. 3.3, we fur-
ther examine the dependence of η∗ for both the exponent and
amplitude constants. Here, the quasi-static advancing and
receding contact angles (θas � 69.53◦ and θ rs � 59.82◦) are
obtained by raising or lowering the bottom substrate at an
extremely slow velocity of 2×10−5 mm/s.

3.3 Influence of�∗

This section presents a parametric study on the interfacial
viscous force Fvis

i formulation, i.e. η∗. Recall that η∗ is the
only parameter in the simulation for both the advancing and
receding loading paths, and the represented slip length (Ls)
is ameasurable quantity from physical experiments. To study
the correlation between the interfacial viscous force param-
eter η∗ and the resulting dynamic contact angle, six sets
of simulations with η∗ of 0, 0.0006, 0.0015, 0.003, 0.006
and 0.009 Pa·s are conducted. The receding case with η∗ �
0.009 Pa·s is not shown due to the strong adhesion between
the liquid and solid phase, which is explained later in this
section. Each set of simulations are conducted with different
substrate speeds, resulting inCa ranging from 10−6 to 10−2.

We select the simulations with bottom substrate speed
of 20 mm/s, 10 mm/s, 2 mm/s, 0.2 mm/s, 0.02 mm/s and
0.002 mm/s to study the correlation between the dynamic
contact angle andCawith different η∗ values. Figure 8 shows
that larger η∗ results in a larger advancing angle and smaller
receding angle, especially in the higher Ca region, which
means that the contact angle hysteresis is enhanced with the
increase of η∗. As Ca gets smaller, the dynamic advancing
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Fig. 7 Density histogram plots and power-law fitting for dynamic a advancing and b receding contact angle results; x and y correspond to Ca and
∣
∣
∣cosθ

a/r
d − cosθa/rs

∣
∣
∣, respectively. COR is the correlation coefficient of the fit

Fig. 8 Dynamic contact angle with different magnitudes of interfacial viscous force for a advancing and b receding cases

and receding angle converge to around 70° and 60°, respec-
tively.

The enhancement of the dynamic contact angle for larger
η∗ can be interpreted from the perspective of the slip length
and surface roughness, and this phenomenon is in good agree-
ment with experimental results. Existing analytical models
reveal that the real surface roughness is an important micro-
scopic parameter controlling the slip length at the interface
[64]. MD simulations report a significant reduction of the
effective slip length in the presence of periodic surface rough-
ness [65], and a general nonlinear relationship between the
slip length and the local shear rate has been identified at a
solid roughness surface [66]. Previous SPH simulations con-
sidered droplet movement on rough surfaces, although the
correlation between the slip length and roughness is not fully
revealed [27, 28]. In addition, rough surfaces were found to

Fig. 9 Dynamic receding angle simulations with η∗ � 0.006 Pa·s:
a presence of a thin water film for a substrate moving at 20 mm/s;
b no thin water film when the substrate moves at 2 mm/s
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Fig. 10 Density histogram plots and power-law fitting for dynamic contact angle results with different η∗ values (η∗ � 0.006, 0.0015 and 0 Pa·s);

x and y correspond to
∣
∣
∣cosθ

a/r
s − cosθa/rd

∣
∣
∣ and Ca, respectively

enhance the contact angle hysteresis in experimental study
of the spreading of polyethylene glycol on rough hydropho-
bic surfaces [67]. According to Eq. (18), the value of η∗
is inversely proportional to the slip length Ls in the model.
Therefore, the selection of a relatively large value of η∗ corre-
sponds to a small Ls, representing a rough surface, and such

a surface is observed to have relatively large contact angle
hysteresis, consistent with the experimental observations.

Nevertheless, in the receding case when η∗ is larger than
0.0015 Pa·s, the dynamic angles in the high-Ca regime are
less dependent on the actual value of η∗. The limited sim-
ulation resolution and number density as well as the strong
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Fig. 11 Comparison of power-law correlations obtained from simula-
tions with experimental data and empirical power-law correlations

liquid–solid particle interactions are considered to be respon-
sible for this existence of seemingly unrealistic liquid film,
albeit at a much lower scale, similar to the presence of a Lan-
dau–Levich film [68]. In scenarios with relatively large Fvis

i ,
a thin water film is formed and attached to the solid surface,
such that the gravity force can hardly drive it downwards
(Fig. 9a). In such a case, the dynamic receding angle is per-
ceived as the intersection between the water film and fluid
curvature, and the angles converge for η∗ � 0.0015, 0.003
and 0.006 Pa·s. When the velocity of the moving contact line
is lower, or Fvis

i is less significant, no water film forms on
the solid surface, as shown in Fig. 9b.

To obtain further understanding of how the parameter η∗
influences the dynamic contact angle, the simulation results
obtainedwithfivedifferent values ofη∗ arefittedwithEq. (2),
and the corresponding amplitude A and exponent B derived.
In Fig. 10, it is observed that A and B in the power-law fit

change with the value of η∗ (only limited cases are shown
due to space restrictions). For η∗ ≥ 0.0015 Pa·s, the slope

is quite obvious: the value of
∣
∣
∣cosθ

a/r
d − cosθa/rs

∣
∣
∣ increases

with the increase of Ca. For the case η∗ � 0, the slope is 0 as
expected, since there is no rate-dependent behaviour of the
contact angle.

Furthermore, we compare our numerical predictions using
η∗ � 0.009, 0.006 and 0.003 Pa·s with the empirical power-
law correlations proposed in Refs. [9, 10] and experimental
data extracted from Ref. [69] that include various combina-
tions of liquid and solid materials. Since all these previous
studies focussed on the dynamic advancing case for various
types of liquid, we use here the additional term

(

1 + cosθas
)

to unify the numerical and experimental data, as shown in
Fig. 11. Excellent agreement is observed between the sim-
ulation results with η∗ � 0.009 Pa·s and the experimental
data from Ref. [69]. In addition, the simulation results using
η∗ � 0.006 Pa·s and η∗ � 0.003 Pa·s are consistent with the
empirical correlations derived by Jiang et al. [9] and Bracke
et al. [10], respectively.Note that, instead of fitting the experi-
mental data using two-parameter power-law correlations, our
prediction only depends on the value of the interfacial vis-
cosity η∗, which has a physical meaning as shown in Eq. (18)
and can be identified independently from measurements of
the apparent slip length. This verification of our simulation
results demonstrates that not only can the model reproduce
the rate-dependent behaviour of a moving contact line but
also good agreement with existing experimental studies can
be achieved.

All the fitting results for A and B, viz. the amplitude and
exponent, respectively, for different magnitudes of η∗ are
plotted in Fig. 12. In general, the values of A and B increase
with η∗. The only exception is the dynamic receding angle
with η∗ � 0.006 Pa·s. The reason is again the formation
of a water film due to strong adhesion between liquid and

Fig. 12 Relationship between η∗ and power-law fitting constants: a amplitude and b exponent
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Fig. 13 Scatter plot of dynamic contact angles with different fluid viscosity and η∗/η � 0.075: a advancing angle; b receding angle

solid particles, as discussed with respect to Fig. 9. Therefore,
the receding case with η∗ >0.006 Pa·s is not considered in
the analysis of these results. It can be concluded from our
simulations that the values of the power-law fitting constants,
A and B, show a positive correlation with η∗. Note that, for
any given η∗, predictions can be made for both the advancing
and receding cases.

As stated in Sect. 3.2, to reproduce the dynamic contact
angle, the viscosity η at the liquid–solid interface is replaced
by the interfacial viscous force parameter η∗, which is related
to the slip length and surface roughness at the microscopic
scale. The above-mentioned simulations are conducted with
the same fluid viscosity, and different power-law fitting
parameters are derived depending on the value of η∗. How-
ever, for fluids with different viscosity, the prediction and
dependence of the dynamic contact angle results on different
values of η∗ are unknown. From Eq. (18), it is seen that the
ratio of the interfacial viscous force parameterη∗ and the bulk
viscosity η, i.e. η∗/η, dominates the power-law correlation
between the dynamic contact angle and Ca, and the same
value of η∗/η will reproduce similar results for fluids with
different viscosity. To examine the influence of η∗/η on the
dynamic contact angle simulation results, two additional sets
of simulationswith different bulk viscosity values (0.013Pa·s
and 0.185 Pa·s) are conducted, and the results compared with
the cases with η∗ � 0.003 Pa·s and η � 0.04 Pa·s discussed
in Sect. 5.3. All three of these cases have the same value of
η∗/η � 0.075.

The data cover the range of Ca from 10−6 to 10−1, and
the results are plotted in Fig. 12. The red line is the fitting
function derived from the reference case with η � 0.04 Pa·s
and η∗ � 0.003 Pa·s. The dynamic receding case with fluid
bulk viscosity of 0.185 Pa·s is excluded from this discussion,
as in this high-viscosity setting the interfacial viscous force

Fvis
i will be quite large for fixed ratioη∗/η, causing the strong

adhesion between liquid and solid particles discussed above,
making the determination of accurate contact angles difficult.

Figure 13 shows that the scattered data of the three cases
cover different ranges of Ca as the viscosity is varied.
Nonetheless, the data for the advancing and receding cases
with different bulk viscosity values can still be described by
the reference curve. This result demonstrates that, for flu-
ids with different viscosity, the same η∗/η ratio will lead
to similar dynamic contact angle as well as corresponding
power-law fitting results.

4 Conclusions

A modified SPH model with a newly introduced interfa-
cial viscous force formulation is presented to simulate the
rate-dependent behaviour of a moving contact line within
a coarse-grained modelling approach. The dynamic contact
angle is successfully reproduced using this implementation
of the interfacial viscous force. Correlations between the sim-
ulated dynamic contact angle and Ca are examined based on
empirical power-law functions, and the results are in good
agreement with experimental findings and theoretical anal-
yses. Furthermore, the parametric study demonstrates the
dependence of the contact angle hysteresis and power-law
fit on the magnitude of the interfacial viscosity, which can
be further related to measurable physical quantities, viz.
the slip length and microscopic surface roughness. Note
that the empirical power law derived in this study is the
result of model predictions instead of input information. This
modified SPH model provides a simple and robust numeri-
cal solution to problems involving dynamic contact angle
hysteresis, and can be applied for simulating multi-phase
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interactions at meso-scale, e.g. multiphase flow in complex
and deformable porous media. In addition, this approach is
particularly beneficialwhenmultiphase interactionswith het-
erogeneous interfaces (characterised by spatial variation of
the roughness and slip length) are considered in the sim-
ulation. The derived results can shed light on a variety of
industrial and geological applications where dynamic capil-
lary interactions play a key role.
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