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Abstract 
Fabric of a granular assembly represents the topology of the contact network. This paper investigates the evolution of contact 
anisotropy (fabric) and average coordination number for a granular assembly subjected to uniaxial compression through the 
Discrete Element Method (DEM). A monosize three-dimensional random close-packed granular assembly with periodic 
boundary conditions under uniaxial compression is considered in this work. The fabric evolution is studied by post-processing 
the output data of the DEM simulation. The influence of cyclic loading, strain rate, and Young’s modulus on the evolution 
of contact anisotropy and average coordination number is presented. The Young’s modulus of the particle shows a signifi-
cant influence on the particle contact creation during compression of the granular assembly with high strain rate. Effect of 
inertia on the contact anisotropy is observed to be significant during the compression of granular assemblies with different 
Young’s modulus under high strain rate. The paper concludes with a semi-empirical model to predict the evolution of contact 
anisotropy as a function of the macroscopic stress state of the assembly during quasi-static uniaxial compaction. The model 
also introduces two microscopic non-dimensional parameters that are independent of friction between the particles and can 
be used to relate the macroscopic stresses with the contact anisotropy.

Keywords Contact network · Discrete element modelling · Fabric · Contact anisotropy · Coordination number · Granular 
materials · Packed bed

1 Introduction

Granular systems are ubiquitous in nature from sand piles in 
deserts to the snow-clad surfaces in the poles. They are an 
integral part of our everyday life, starting from coffee beans, 
food grains, construction materials such as cement, gravel, 
soil, and fertilizers used in agriculture, to name a few. The 
behavior of the various granular systems described above 
is highly complex, primarily due to the discrete nature of 
the constituent particles in addition to the variety of multi-
body interactions. The design of various systems employing 
granular materials requires a thorough knowledge of their 
response (mechanical, thermal, and electrical) to the external 

stimulus. The mechanical and thermal response of a granular 
assembly of particles depends on various parameters such as 
the bulk mechanical and thermal properties of the particles, 
the nature of contact interactions between the particles, par-
ticle size distribution, and topology of the particle packing.

In a mechanically loaded granular assembly, the forces are 
transmitted through the contact points between each particle 
pair. The network depicting the contact normals across the 
entire granular assembly is called “fabric” or “contact net-
work”. The evolution of fabric in a sand pile during external 
loading was first reported by Oda [1–4]. The contact network 
represents the force chains when the system is subjected to an 
external load. The topology of the contact network is respon-
sible for the thermal and mechanical response of a granular 
assembly subjected to an external load. For example, two-
dimensional granular assembly, as shown in Fig. 1a, the polar 
plot (Fig. 1b) of the number of contacts with respect to their 
orientation represents the fabric of the granular assembly. The 
orientation data, i.e., the number of contacts and their cor-
responding orientations, is a measure of the degree of “con-
tact anisotropy” of the system. In the literature, the contact 
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anisotropy is also referred to as “fabric anisotropy”. The fab-
ric tensor, as proposed by Oda [5], describes the probability 
density function of the orientation data. Satake [6] used the 
fabric tensor concept for granular materials. Ken-Ichi [7] for-
mulated and used the concept of fabric tensors to describe 
the distribution of orientation data in a damaged material 
element. Madadi et al. [8] has studied about the state of fab-
ric tensor in isotropic, static, friction-less, two-dimensional, 
polydisperse granular materials. O’Sullivan [9] described the 
basic approaches to quantify the contact anisotropy with an 
emphasis on the probability density function approach and 
fabric tensor approach. In the present work, the fabric tensor 
approach is used to quantify the degree of contact anisotropy 
in a granular system with the help of orientation data due to its 
simple form. Shertzer [10] has explained the concept behind 
the fabric tensor approach and the associated approximations 
in defining such a tensor. Radjai et al. [11] has analyzed the 
geometrical states of granular materials through a fabric tensor 
involving the coordination number and fabric anisotropy along 
with its Mohr’s circle representation. They have formulated 
a model that gives the range of the fabric states accessible, 
using the limit values of coordination numbers. Kruyt [12] 
had studied the evolution of fabric for a dense and loosely 
packed two-dimensional polydisperse granular system using 
discrete element simulations. He had studied the influence of 
three mechanisms; contact reorientation, contact creation, and 
contact disruption; in the granular system under constant pres-
sure loading. Annabattula et al. [13] have studied the influence 
of various parameters such as initial packing fraction, radius 
ratio, and friction on the stress-strain response of binary and 
polydisperse granular assemblies. Elementary test like oedo-
metric (or uniaxial) compression on granular assemblies gives 
us a better understanding of the mechanical response of granu-
lar materials. Aspects pertaining to the evolution of anisot-
ropy during the uniaxial loading and unloading for a granular 
assembly has been addressed in Imole et al. [14]. In literature 

[15–17], studies regarding the evolution of fabric for granular 
assemblies under shear loading have also been reported.

Mathematically, the fabric tensor F , discussed above is 
defined as [12]

where Nc is the number of non-repeating contacts in the 
assembly, ni is the normal vector component in ith direction 
at contact ‘c’. Thornton [18] used the difference between 
the eigenvalues of fabric tensor as a measure of degree of 
contact anisotropy for a 2D granular assembly. It can be 
extended to 3D case (similar to [11]) where the difference is 
taken between maximum and minimum eigenvalues. Hence, 
the degree of contact anisotropy (A) is defined as

where F1 < F2 < F3 are the eigenvalues of the fabric tensor 
F . The average coordination number (Z) can be written in 
terms of the number of contacts ( Nc ) and the total number 
of particles in the assembly ( Np ) as

The average coordination number as defined above includes 
rattlers (particles with only one contact) and floaters (parti-
cles with no contact) [14, 18].

Most of the works presented in the literature address 
either the evolution of fabric [19, 20] in a random granular 
assembly or the correlation [21–23] of the fabric and its 
macroscopic response to explain the constitutive behavior 
under various loading conditions. However, the effect of the 
compression loading rate [24, 25] on the fabric evolution 
has been discussed very little in the literature to the best of 
author’s knowledge. Furthermore, the mechanisms behind 

(1)Fij =
1

Nc

Nc∑

c=1

nc
i
nc
j
,

(2)A = F3 − F1,

(3)Z =
2Nc

Np

.

Fig. 1  a Two-dimensional 
mono-size granular assembly. 
b Polar plot of the number of 
contacts in each direction of the 
two-dimensional assembly



Evolution of fabric in spherical granular assemblies under the influence of various loading…

1 3

Page 3 of 15    34 

the evolution of fabric under cyclic compression loading of 
a granular assembly have not been investigated thoroughly 
in the literature. The variation of contact anisotropy during 
the cyclic loading has the potential to alter the macroscopic 
properties, such as effective thermal/electrical conductivity. 
Several prediction models [26–29] correlating the macro-
scopic stress tensor and the fabric have been proposed in the 
literature. All the models presented in the literature provide 
a detailed formulation involving several parameters.

In view of the above research gaps in the literature, the 
manuscript focuses on the following three objectives: 

1. To demonstrate the effect of cyclic loading on the con-
tact anisotropy for a monosize random granular assem-
bly,

2. To consider the effect of loading rate on the contact ani-
sotropy, and

3. To develop a semi-empirical model to correlate fab-
ric tensor and stress tensor with a minimal number of 
parameters.

The evolution of fabric in a periodic granular assembly 
under uniaxial compression is studied in Sect. 2. The results 
of the simulations for the first loading cycle of the peri-
odic assembly are presented in Sect. 2.3.1. In Sect. 2.3.2, 
the evolution of contact anisotropy during cyclic loading 
of the granular assembly has been discussed. The influence 
of strain rate (or loading rate) of compression and Young’s 
modulus of the particle on the evolution of contact anisot-
ropy is discussed in Sects. 3 and 4, respectively. In Sect. 5, 
a semi-empirical model to establish a correlation between 
the stress tensor and fabric tensor is discussed. The paper 
completes with conclusions in Sect. 6.

2  Evolution of contact anisotropy 
in a periodic granular assembly 
under uniaxial compaction

In this section, the evolution of contact anisotropy for a ran-
dom granular assembly with periodic boundary conditions 
under uniaxial1 cyclic compression is presented. First, the 
details of the methodology of the generation of the initial 
configuration of particles are presented. It is then followed 
by the description of the DEM simulation set-up and the 
corresponding boundary conditions.

2.1  Generation of initial configurations of granular 
assemblies

The initial configuration of the granular assembly is gen-
erated using the Random Close Packing algorithm pro-
posed by Jodrey and Tory [30] for mono-sized spheres. The 
required number of spherical particles are generated in a 
cube. Initially, the particles are overlapped and their respec-
tive radii are set in such a way that the packing fraction is 
1. During each iteration of the procedure, two numerical 
mechanisms are concurrently followed in-order to arrive at 
the final configuration. One, the worst overlaps are removed 
by moving two particles away along the contact normal of 
the particles. Two, the radii of particles are reduced incre-
mentally for relaxation. Hence, the final configuration of the 
assembly will have a very less number of particles in contact 
while most of the particles are nearly touching each other. 
This structure resembles the state of the bulk region in a 
granular bed confined by the container boundaries. The final 
configuration can be scaled to any size as per the required 
particle size. It may be noted that the initial packing struc-
ture, obtained through this algorithm, is necessarily not in a 
jammed state. Every configuration used in the present work 
is characterized by the initial packing fraction ( � ), which 
is only the starting configuration of the simulation. Dur-
ing compression, the particles in the assembly rearrange 
and move from an unjammed state to a jammed state where 
the particle movements become negligible. Also, since the 
granular assembly is under uniaxial compression, the instan-
taneous packing fraction of the assembly is proportional to 
the instantaneous strain. Hence, strain is chosen as the inde-
pendent variable throughout the work.

2.2  Details of the simulation setup

Discrete element method (DEM) [31] is used to simulate the 
compression of a random granular assembly. DEM simula-
tions are carried out using the open source DEM software 
LIGGGHTS [32]. A granular assembly of 5000 monodis-
perse particles in a periodic cubic box as shown in Fig. 2 is 
taken as a representative volume element (RVE). The gran-
ular assembly is uniaxially compressed to a macroscopic 
strain of 1.5% unless mentioned otherwise. In the simula-
tions, the effect of gravity is not considered. The particles 
are assumed to be spherical with a Poisson’s ratio ( � ) of 0.25 
and an elastic modulus (E) of 90 GPa. The normal contact 
interaction between the particles is assumed to be elastic 
following Hertzian contact model. The tangential contact 
force is based on the tangential overlap and tangential rela-
tive velocity. The inter-particle contact force ( �ij ) between 
particles i and j can be written as [33],

1 Strictly speaking, the state of stress in the granular assembly with 
the present kind of loading is not uniaxial. However, in this work, 
we use uniaxial, referring to the loading which is applied only in one 
direction.
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In the above equations, � , E, G, e, R and m represents Pois-
son’s ratio, Young’s modulus, shear modulus, coefficient of 
restitution, particle radius and the mass of the particles i and 
j in contact, respectively. The terms �n

ij
 , �t

ij
 , �n

ij
 and �t

ij
 repre-

sents the normal overlap, tangential overlap, normal relative 
velocity and tangential relative velocity, respectively, 
between particles i and j in contact. The tangential overlap 
is truncated by limiting the maximum tangential force which 
can be stated by Coulomb’s law of friction as �t ≤ ��n . 
Hence, the tangential force can be expressed as,

(4)
�ij = (kn�

n
ij
− �n�

n
ij
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Normal force

+ (kt�
t
ij
− �t�

t
ij
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Tangential force

,

(5)
where,

kn =
4

3
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√
R∗�n; kt = 8G∗

√
R∗�n,

(6)
�n =2
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1
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,

(8)
1
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=
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+
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,

(9)
1

R∗
=
1

Ri

+
1

Rj

;
1

m∗
=

1

mi

+
1

mj

.

where, �t , � , and �n are the tangential force, coefficient of 
friction and the normal contact force, respectively while ks 
represents the coefficient (in the case of small tangential 
displacement) which is proportional to the sliding velocity. 
The coefficient of friction between the particles is assumed 
to be 0.1 if not mentioned otherwise. The possibility of par-
ticle breakage during loading is not considered in this work.

2.3  Results and discussion

The granular assembly shown in Fig. 2 is compressed uniaxi-
ally resulting in the particles movement and rearrangement 
leading to evolution of contact force network. With increase 
in compression, the particles come closer and hence approach 
a saturated or jammed state where no further rearrangement is 
possible. During the above process, the evolution of contact 
anisotropy depends on the boundary conditions and the nature 
of loading significantly. In the following section, we discuss 
the effect of uniaxial compression on the evolution of contact 
anisotropy and average coordination number. It is then fol-
lowed by a study of the evolution of contact anisotropy during 
cyclic loading of the system for 5 consecutive cycles.

2.3.1  Periodic granular assembly under uniaxial 
compression

Figure 3 shows the evolution of fabric characteristics dur-
ing the compression of a monosize granular assembly in 
negative Z direction. It can be inferred from Fig. 3a that 
the contact anisotropy of the granular assembly increases 
with increase in strain. Eigenvalues (Fig. 3b) of the fabric 
tensor are an equivalent representation of the contribution 
of the components of all the contact normals in the princi-
pal directions. Hence, studying the evolution of eigenvalues 
will provide a better insight to the mechanism behind the 
particle rearrangement taking place in the granular assem-
bly. From Fig. 3b, it can be inferred that the rate of increase 
of the number of contacts in the assembly is higher in one 
direction (aligned closely to Z-axis i.e. direction of loading) 
as compared to other directions (aligned closely to trans-
verse axes), thus leading to increase in the anisotropy of the 
assembly. Also note that the average coordination number 
of the assembly increases (result not shown) with increase in 
strain. However, the average coordination number saturates 
beyond a certain strain value corresponding to the jammed 
state of the assembly implying a sharp drop in the inten-
sity of particle rearrangement. A tightly packed system will 
attain saturated state faster than a loosely packed system due 
to the limited mobility of particles.

(10)�t = −
�
t
ij

|� t
ij
|
min

(
��n, ks|� t

ij
|.�t

)
,

Fig. 2  RVE of a mono-size granular assembly with periodic bounda-
ries



Evolution of fabric in spherical granular assemblies under the influence of various loading…

1 3

Page 5 of 15    34 

2.3.2  Effect of cyclic loading on the fabric characteristics

In this section, the evolution of contact anisotropy under the 
action of cyclic loading/unloading is studied. The granu-
lar assembly is loaded to 1.5% strain followed by unload-
ing to a stress free state for 5 cycles. Figure 4a shows the 
evolution of contact anisotropy as a function of strain for 
five consecutive loading-unloading cycles. The solid lines 
indicate the loading step while the dashed lines indicate the 
unloading step. There is a point of minimum contact ani-
sotropy, referred to as a critical point in the following. In 
the first cycle of loading, the contact anisotropy increases 
continuously while during unloading to stress free state, the 
contact anisotropy decreases to a minimum value and then 
increases with steep slope. In other words, the anisotropy 
of the assembly is a multi-valued function of strain, i.e., 
the system shows the same anisotropy value at two differ-
ent strains during a given loading or unloading cycle. Each 
component of the fabric tensor indicates the contribution of 
all contact normals along that axis plus the projection of the 
remaining contact normals on to the axis. From Fig. 4b, it 
can be observed that the effective number of contact normals 

along Z axis (Z-directional contacts) decreases to a very low 
value as compared to X (and Y) directional contacts for each 
unloading cycle. The point where the three diagonal compo-
nents of fabric tensor becomes almost equal represents the 
critical point mentioned above. Thus, the critical point indi-
cates a state where the effective number of contact normals 
in all the three coordinate directions are the same. It also 
implies that an assembly, if pre-loaded appropriately, can 
attain a configuration with minimum anisotropy. Granular 
assemblies with minimum possible anisotropy could be of 
interest to obtain, for instance, systems with near-isotropic 
thermal conduction or force networks. However, with further 
unloading beyond the critical point, the difference between 
FZZ and FXX increases due to steep drop in FZZ . As a result, 
we observe an increase in anisotropy beyond the critical 
point during unloading as shown in Fig. 4a. Furthermore, 
after each loading-unloading cycle, the effective number 
of lateral (X and Y) contacts increases more than the con-
tacts in the loading direction (Z). Hence, we can observe 
a slight decrease in contact anisotropy with each cycle of 
loading (also observed for the load/unload triaxial tests by 
O’Sullivan and Cui [34]). This indicates that the uniaxial 

Fig. 3  a Evolution of contact 
anisotropy A and b eigenval-
ues of the fabric tensor during 
uniaxial compression of a 
mono-size granular assembly 
with initial packing fraction ( � ) 
of 0.607
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cyclic loading and unloading will lead to less anisotropic 
configurations of the granular assembly on contrary to the 
case of granular assemblies under cyclic constant volume 
loading (Soroush and Ferdowsi [35]).

From Fig. 5a, it can be observed that there is a hysteresis 
in the states of evolution of average coordination number 
during loading and unloading cycles. Such a behavior is 
also observed in the stress-strain response of the granular 
assemblies [13]. The hysteretic stress-strain response may 
be attributed to the hysteretic behavior of the Z-directional 
contacts as shown in Fig. 5b. Similar hysteretic behavior 
(inverted curve) is also present in the case of X and Y direc-
tional contacts (results not shown). Thus, the hysteresis 
curve of Z-directional contacts can be directly correlated 
with stress-strain hysteresis curve due to similar nature. 
Hence, the fabric characteristics of contacts can be used 
directly in the constitutive modelling (also shown for shear-
ing of granular assembly by Sun and Sundaresan [36]) of 
granular assemblies during compression.

3  Influence of strain rate on the evolution 
of contact anisotropy during compression 
of a periodic granular assembly

Note that the results presented in the previous sections 
(Sects. 2.3.1–2.3.2) correspond to the quasi-static compres-
sion of the granular assembly. In this section, the effect of 
strain rate on the evolution of anisotropy is studied dur-
ing the compression of a periodic granular assembly. All 
the system parameters used in the simulations remain the 
same as described in Sect. 2.2. A monosize particle assem-
bly (5000 particles) with periodic boundary conditions is 
loaded till 3% strain at different strain rates ( �̇� = 1500/s, 
150/s,15/s,0.15/s). A granular system can be classified to 
be in a quasi-static regime or in a dense flow regime or in a 
collisional dilute flow regime based on the inertial number 

(I) of the system. The inertial number is defined as the ratio 
of the inertial forces on the grains to the applied force. The 
inertial number2 for the granular assemblies loaded at differ-
ent strain rates as mentioned above is calculated following 
MiDi [37], where the shear strain rate is replaced by the 
compression strain rate ( �̇� ) as shown in Eq. 11

where d is the particle diameter, P is the compressive stress 
and � is the density of the material. Based on the value of 
I, the granular flow regimes are characterized according to 

I < 10−3  quasi-static flow regime,
10−3 < I < 10−1  dense flow regime,
I > 10−1  collisional dilute regime.

Figure 6 shows the periodic granular assembly with the 
colors representing the coordination number when loaded at �̇�
=1500/s at three different stages during loading. Based on the 
value of inertial number ( I = 1.253 × 10−2 ), the assembly is 
under dense flow regime. It may be noted that at such a high 
strain rate, the coordination number for the particles near the 
boundaries is highest and minimum at the center at a given 
strain. However, with the increase in strain in the assembly, the 
coordination number increases towards the central region of 
the assembly. Figure 7 shows the granular assemblies at differ-
ent loading stages depicting their coordination numbers when 
loaded at a very low strain rate corresponding to quasi-static 
case with I = 1.324 × 10−6 . Figure 8 shows the evolution of 
A and Z as a function of strain for different strain rates. Note 
that the inertial numbers corresponding to each strain rate fall 

(11)I =
�̇� d

√
P∕𝜌

,

Fig. 5  a Evolution of average 
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ZZ
 during load-

ing-unloading cycles 1 and 5

Strain (%)

Z
0 0.5 1 1.5

4

4.5

5

5.5

Loa
ding

curv
es

Unlo
adin

g cu
rves

(a)
Strain (%)

F
Z
Z

0 0.5 1 1.50.28

0.3

0.32

0.34

0.36

Cycle 1 Loading
Cycle 5 Loading
Cycle 1 Unloading
Cycle 5 Unloading

Hysteresis

(b)

2 I is calculated by taking the maximum value of pressure developed 
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between quasi-static and dense flow regimes. In the case of 
quasi-static compression (Fig. 7) with �̇� = 0.15/s , the contact 
between particles evolve uniformly over the whole assembly at 
each loading stage. Hence, there is higher average coordination 
number (see Fig. 8b) for low strain rates as compared to high 
strain rate during the initial stage. In the case of high strain 
rate ( �̇� = 1500/s), the top and bottom layers will have more 
contacts in Z-direction as compared to X and Y (results not 
shown). Hence, the steep increase of Z-directional contacts 
will increase the anisotropy drastically at initial stage (Fig. 8a) 
which drops eventually due to increase of contacts in trans-
verse directions with increase in strain. Note that the coordi-
nation number and the contact anisotropy values approach the 
same value at higher strains irrespective of the strain rate of 
loading. This zone is a high stress zone, possibly in a jammed 
state, which will most likely lead to particle breakage. Thus, 

the effect of strain rate on the evolution of fabric characteristics 
can be considered only as a transient phenomenon.

4  Influence of Young’s modulus 
on the evolution of contact anisotropy 
during compression of a periodic granular 
assembly

In this section, the influence of the particle elastic modulus 
on the evolution of contact anisotropy during compression 
is studied. A monosize granular assembly of 5000 particles 
(Periodic Boundary Conditions as in Sect. 2.2) with different 
elastic modulus is loaded till 3% strain quasi-statically and 
with high strain rate.

Figure 9 shows the evolution of contact anisotropy and the 
coordination number as a function of strain for assemblies 

Fig. 6  Instantaneous coordination number distribution during compression ( �̇� =1500/s, I = 1.253 × 10−2 ) at a macroscopic strain (a) �
33

 = 0% 
(b) �

33
 = 0.375% and (c) �

33
 = 0.75%

Fig. 7  Instantaneous coordination number distribution during compression ( �̇� = 0.15/s, I = 1.324 × 10−6 ) at a macroscopic strain (a) �
33

 = 0% 
(b) �

33
 = 0.375% and (c) �

33
 = 0.75%
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the anisotropy for the systems with E ≥ 5 GPa is observed to 
be independent of the elastic modulus as the inertial number 
for E ≥ 5 GPa is close to quasi-static regime ( I ≤ 6 × 10−3 ). 
For the case of E = 5 and 50 MPa, the inertial numbers are 
close to collisional dilute regime ( I ≥ 0.09 ) explaining the 
dependence of the anisotropy on the elastic modulus.

5  Semi‑empirical prediction of contact 
anisotropy based on macroscopic stresses

In this section, a semi-empirical correlation connecting the 
fabric tensor and the macroscopic stress of a granular assem-
bly will be presented.

5.1  Simplified form of the stress tensor

The tensor form of average macroscopic stress of a granular 
assembly is given by

Fig. 8  Evolution of a contact 
anisotropy (A) and b aver-
age coordination number 
(Z) for a mono-size granular 
assembly with different strain 
rates. Inertial numbers of the 
system are 1.325 × 10−6 ( �̇� = 
0.15/s), 1.287 × 10−4 ( �̇� = 15/s), 
1.281 × 10−3 ( �̇� = 150/s) and 
1.253 × 10−2 ( �̇� = 1500/s)
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Fig. 9  Evolution of a contact 
anisotropy (A) and b average 
coordination number (Z) for a 
mono-size granular assembly 
with different elastic modulus 
during quasi-static compression
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with different elastic modulus. It can be observed that there 
are no significant changes in the evolution of anisotropy and 
the coordination number during quasi-static compression. It 
is also worth noticing how the case of E= 90 GPa, time step 
T = 10−8 s matches closely with the case of E= 0.01 GPa, 
T = 10−5 s. Note that all the above simulations with different 
values of E were conducted at a strain rate �̇�=15/s and the 
inertia number3 for the four different E values correspond 
to quasi-static loading ( I ≤ 10−3 ). Hence, the inertia doesn’t 
seem to influence the anisotropy evolution for different val-
ues of E.

During compression of soft particles with high strain rate, 
the average particle interpenetration will be high as compared 
to that of hard particles. Also, for soft particles, due to reduced 
elastic modulus the inter-particle forces generated will be very 
less. Due to lesser forces between soft particles, the process of 
contact creation between particles will be slow as compared to 
hard particles as shown in Fig. 10. Such contact creations give 
rise to higher anisotropy as seen in Fig. 11. Note that in Fig. 11, 

3 The inertial number I is calculated by replacing P with E in Eq. 11.
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where �(I,J) is the inter-particle center distance, ni and ti are 
the component of unit normal contact vector and unit tan-
gential vector in the ith direction between the contacting 
particles as shown in Fig. 12.

During the uniaxial compression of granular assemblies, 
contribution of tangential forces ( �t ) is negligible compared 

(12)𝜎ij =
1

V

∑

I<J

(
𝛿(I,J)� (I,J)

n
ninj + 𝛿(I,J)�

(I,J)
t nitj

)
,

to normal forces ( �n ). Figure 13 shows the relative deviation 
of stress values caused by neglecting the tangential force 
terms to be always less than ±6% for the systems under con-
sideration. Hence, neglecting the second term in Eq. 12, we 
can rewrite,4

4 The assumption of neglecting the tangential term is to simplify the 
stress tensor calculation only.

Fig. 10  Instantaneous coordination number distribution during compression with high strain rate ( �̇� = 150/s) of particles with elastic modulus 50 
MPa (a, b, c) and 50 GPa (d, e, f) at strain of 0.3% (a, d), 0.75% (b, e) and 1.5% (c, f)

Fig. 11  Evolution of a contact 
anisotropy (A) and b average 
interpenetration ( � ) between 
particle pairs for a mono-size 
granular assembly with different 
elastic modulus during com-
pression with high strain rate
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For mono-size particle assembly, the separation variable 
�(I,J) = dp − �(I,J) where �(I,J) is the contact overlap between 
the particles I and J while dp is the diameter of the particle. 
Since the normal force is a function of the inter-penetration 
[38] between the particles, it is reasonable to neglect the 
terms of O(�2 ) for small overlapping contacts. Hence, the 
macroscopic stress �ij can be further simplified to

(13)𝜎ij =
1

V

∑

I<J

𝛿(I,J)� (I,J)
n

ninj.

Equation 14 can be written in terms of instantaneous pack-
ing fraction ( �f  ), average coordination number (Z) and num-
ber of contacts ( Nc ) as,

Normal force term ( �n ) can be expressed in terms of contact 
radius ‘a’ [39] which can be rewritten as

where � =
4�f Z

�d2
p

E∗

R∗
 . Note that, �f  and Z are the instantaneous 

packing fraction and the average coordination number, 
respectively while E∗ and R∗ represent the effective Young’s 
modulus and the reduced radius for a contact pair.

5.2  Redefining the contact anisotropy

Alternative measure of contact anisotropy was presented 
by [40] which is the ratio of the maximum and minimum 
eigenvalues instead of its difference. Hence, another form 
of contact anisotropy can be written as

Figure 14 suggests that both the measures works well to 
qualitatively capture the evolution of contact anisotropy. 
Hence, the new measure of anisotropy Ar is chosen over 
A for further investigations in this manuscript. It may be 
noted that the new definition is chosen only for simplifica-
tion purpose.

5.3  Assumptions

In addition to the above considerations, a few assumptions 
for the case of uniaxial compression of the granular assem-
bly are in order as described below. These assumptions will 
be used in later sections to simplify equations.

– Assumption 1
  During uniaxial compression of any granular assem-

bly in negative Z-direction (i.e. along 3rd direction), the 
values of transverse directional stresses i.e. �11 and �22 
are close to each other. The closeness will depend on 
the contact orientation along transverse directions. If we 
assume that the orientation of particle pair contact vec-
tors along both transverse direction is same (for example, 

(14)𝜎ij =
dp

V

∑

I<J

�
(I,J)
n

ninj.

(15)�ij =
3�f Z

�d2
p
Nc

Nc∑

1

�
(I,J)
n

ninj

(16)�ij =
�

Nc

Nc∑

1

a3ninj,

(17)Ar =
F3

F1

∆(I,J)

δ(I,J)

n

t

Fig. 12  A two-dimensional idealization of inter-particle interaction 
between particles ‘I’ and ‘J’. n and t  represents the direction of nor-
mal force and tangential force
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Fig. 13  Relative error in macroscopic stress caused by neglecting the 
tangential force term for an assembly with initial packing fraction 
� = 0.607 and 0.2 ≤ � ≤ 0.5 . In the colour map, the variable e
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 (i = 

1, 2 and 3) represents the relative error for �
ii
 component of stress 

tensor. The relative error is less than ±  6% (results not shown) for 
the assemblies with different initial packing fractions in the range 
0.594 ≤ � ≤ 0.64 for a range of friction coefficients ( 0.1 ≤ � ≤ 0.9)
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granular assembly can be approximated using the diago-
nal terms of the fabric tensor also. Hence, the anisotropy 
can be rewritten as, 

5.4  Correlating stress ratio and fabric ratio

Assume two non-dimensional variables stress ratio ( �r ) and 
fabric ratio ( �r ) which are defined as below.

Here, the symbol 
∑

 indicates the summation of the quan-
tity over the total number of contacts between particles in the 
assembly. Assume two non-dimensional quantities R� and R� 
where R� =

∑
a3

∑
a3n2

3

 and R� =
1

F33

 . Figure 16 shows the evolu-
tion of the non-dimensional quantities for different values of 

(20)Ar =
F3

F1

=
F33

F11

(assuming F11 is minimum)

(21)�r =
�33

�11 + �22
=

∑
a3n2

3∑
a3n2

1
+
∑

a3n2
2

(from Eq. 16)

(22)=

∑
a3n2

3∑
a3 −

∑
a3n2

3

=
1

∑
a3

∑
a3n2

3

− 1

(23)

�r =
F33

F11 + F22

=

∑
n2
3

Nc

∑
n2
1
+
∑

n2
2

Nc

=

∑
n2
3∑

n2
1
+
∑

n2
2

=

∑
n2
3∑

1 −
∑

n2
3

(24)=
1

∑
1

∑
n2
3

− 1
=

1
1

F33

− 1

Fig. 14  Comparison of meas-
ures of contact anisotropy (a) 
A (b) A

r
 for an assembly with � 
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i

see the closeness of eigenvalues in Fig. 3b), then it can 
be assumed that 

– Assumption 2
  During uniaxial compression of any granular assem-

bly, the contact chains align along the loading direction. 
Due to this the value of diagonal components of fabric 
tensor ( F33,F22 andF11 ) are very close to the eigen val-
ues of the fabric tensor. Fig. 15 shows the relative error 
or deviation of the diagonal components of fabric ten-
sor from its eigenvalues for an assembly with � of 0.607 
and � ranging from 0.2 to 0.5. The result is verified for 
assemblies with different initial packing fraction in the 
range 0.607 ≤ � ≤ 0.64 . Therefore, the anisotropy of the 

(18)F11 =F22

(19)also,F11 + F22 + F33 =1
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coefficient of friction. The nature of both parameters are 
similar with change in the coefficient of friction. Hence, these 
non-dimensional quantities can be correlated to each other 
for the uniaxial compression of mono-size periodic granular 
assemblies with different initial packing fraction ( � ) and coef-
ficient of friction ( � ). The relationship between these quanti-
ties can be plotted for different initial packing fractions in the 
range 0.594 ≤ � ≤ 0.64 for a range of friction coefficients 
( 0.1 ≤ � ≤ 0.9 ). Figure 17 shows that all the simulation data 
corresponding to R� and R� collapse on a line except for a 
lower ( 𝜇 < 0.1 ) coefficient of friction at higher initial packing 
fraction. However, coefficient of friction of most of the mate-
rials fall under the range 0.1 ≤ � ≤ 0.9 and hence the effect 
of friction on the relationship between quantities R� and R� 
can be considered negligible. For a given initial packing 

fraction, the relation between R� and R� can be assumed to 
be a linear fit5 with the value of coefficient of determination 
(R2 ) being more than 0.96 for all cases. The linear relation 
can be expressed as,

The slope of the line is observed to be dependent on the 
initial packing fraction. Parameters R� and R� are a form 
of manifestation of fabric and stress, respectively. It has 
been reported in the past [13] that the evolution of stress is 

(25)R� = c1R� + c2,
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Fig. 17  R� Vs R� for an initial packing fraction of a 0.607 and b 0.636 with different coefficient of friction during the uniaxial compression of 
periodic granular assemblies

5 It may be noted that the linear fit is obtained from the simulation 
data, as shown in Fig. 17. Hence, the omission of tangential compo-
nents from stress tensor equation does not affect the results in Fig. 17 
and Eq. 25.

Fig. 16  Evolution of parameters 
(a) R� and (b) R� with different 
coefficient of friction during 
the uniaxial compression of 
periodic granular assemblies
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Fig. 18  Relative error of the 
predicted values of (a) F
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r
 ) for uni-

axial compression of a mono-
size periodic granular assembly 
with � of 0.607

Strain (%)

R
el
at
iv
e
E
rr
or

of
F

33
(%

)
0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

µ = 0.1
µ = 0.3
µ = 0.5

η = 0.607

(a)
Strain (%)

R
el
at
iv
e
E
rr
or

of
A

r(%
)

0 0.5 1 1.5 2 2.5 3

-4

-3

-2

-1

0

1

µ = 0.1
µ = 0.3
µ = 0.5

η = 0.607

(b)

dependent on the initial packing fraction. Hence, the coeffi-
cients ( c1 and c2 ) can be fitted as a function of initial packing 
fraction ( � ) given by

It may also be noted that the variables R� and R� are the 
function of the applied strain (or instantaneous packing frac-
tion) while c1 and c2 are function of initial packing fraction 
only. Using the assumptions from Sect. 5.3, contact anisot-
ropy Ar can be expressed as,

The model was tested for mono-size assemblies with the 
initial packing fraction ( � ) ranging from 0.594 to 0.64 with 
a coefficient of friction ranging from 0.1 to 0.9 under uni-
axial compression up-to 2% strain. For all the cases, the 
relative error (Figs. 18 and 19) was found to be within ± 4%. 

(26)c1 = 4.0311� − 2.1779 and c2 = −8.99� + 7.647

(27)

Ar =
F3

F1

=
F33

F11

=
F33

1

2
(F11 + F22)

= 2�r

=
2�r

(c1 + c2 − 1)�r + c1

Furthermore, based on the results discussed in Sect. 4, it can 
be inferred that the parameters c1 and c2 are independent of 
Young’s modulus. In summary, the semi-analytical model 
presented in this section helps to decipher the microscopic 
picture of a monosize granular assembly directly from the 
macroscopic stresses eliminating the dependency on other 
microscopic parameters like contact forces, average coordi-
nation number, and coefficient of friction, which cannot be 
measured readily through experiments.

6  Summary and conclusions

In this work, the evolution of contact anisotropy in a spheri-
cal granular assembly under uniaxial compression is investi-
gated. In particular, the effect of cyclic loading and the strain 
rate on the evolution of contact anisotropy and coordina-
tion number has been investigated. During cyclic loading, a 
packed granular assembly shows a minimum for the contact 
anisotropy. The knowledge of the point of minimum can be 
used to obtain a granular assembly with minimum contact 

Fig. 19  Relative error of the 
predicted values of (a) F
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contact anisotropy ( A
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axial compression of a mono-
size periodic granular assembly 
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anisotropy leading to more isotropic thermal/electrical 
conduction. The contact anisotropy was found to decrease 
during cyclic loading, eventually saturating to a finite value 
after a few cycles. The hysteretic nature of the average coor-
dination number versus strain during cyclic loading may be 
attributed to the persistent contact changes (creation and 
disruption) along the direction of compression.

For a granular assembly, subjected to high strain rate 
loading, the contact anisotropy shows a transient response 
(initial rise followed by a drop and then further increase) 
while for the quasi-static loading, the anisotropy increases 
continuously with the increase in strain. However, at large 
strains ( ≥ 1.5% macroscopic strain ), the contact anisotropy 
seems to be independent of the strain rate. The effect of 
Young’s modulus on the contact anisotropy was found to be 
negligible during quasi-static compression of the granular 
assembly. However, Young’s modulus profoundly affects the 
contact creation due to high strain rate compression, thereby 
influencing the contact anisotropy. Significant influence of 
inertia was found in case of high strain rate compaction 
of particles with different Young’s modulus while it was 
found to be negligible in case of quasi-static compression 
of the granular assembly. A semi-empirical model, corre-
lating macroscopic stresses and the contact anisotropy, has 
been presented in this work. The model explores the idea of 
relating two new microscopic non-dimensional parameters 
( R�,R� ), which exhibits a linear relationship. It is shown 
that coefficient of friction affects the evolution of param-
eters ( R�,R� ). However, the correlation between R� and 
R� is found to be independent of the coefficient of friction 
between the particles, average coordination number, contact 
forces, and the orientation data. The findings of this work 
are useful for manipulating the contact anisotropy of various 
granular assemblies generated through different methodolo-
gies. The ability to control the contact anisotropy of a gran-
ular assembly enables us to design systems with required 
macroscopic mechanical and thermal properties.
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