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ment,[22–25] roughness gradient through 
varying the spacial roughness ratio,[8,26–30] 
or surface structural gradient.[2,3,31–37] It 
has also been shown that spontaneous 
motion can be achieved between non-
parallel[38–40] or flexible plates.[41] Besides, 
Chen et  al.[42] demonstrated the contin-
uous unidirectional liquid spreading on 
the peristome surface of Nepenthes alata, 
which inspired many surface designs for 
liquid transport.[43–45] Among these dif-
ferent approaches to induce spontaneous 
liquid motion, surfaces with wedge-shaped 
pattern with width gradient turn out to be 
effective and relatively simple to manufac-
ture.[1,46–49] Motion on these wedge-shaped 

surfaces is driven by the interfacial tension due to the droplet 
confinement and deformation near the tip to drive the droplet, 
that is, a non-zero net capillary force acting along the three-
phase contact line of the droplet. From an energy perspective, 
the existence of a free Gibbs energy gradient leads to the self-
propelled motion of the droplet. Alheshibri et  al.[46] illustrated 
the unidirectional spreading phenomena of water droplets on 
heterogeneous hydrophobized Cu and hydrophilic Al surfaces 
and analyzed the criteria for liquid transport using the force 
balance. Through simulation and experiments, Tan et  al.[50] 
investigated the enhancement of water collection using wedge-
shaped gradient surfaces. Zheng et al.[48] developed a governing 
equation describing the droplet motion on wedge-shaped sur-
faces. However, there are still several challenges remaining, 
including the enhancement of velocity and/or distance of the 
transportation, and precise control of the movement.[35]

In this work, a theoretical model is developed to describe the 
droplet movement on surfaces with arbitrary wedge shapes. 
Different from previous works where the straight edges are 
considered,[46,48,50] the proposed model is applicable to wedges 
with edges described by a given profile function y = y(x). Experi-
ments were conducted to compare with model predictions. 
Then, based on the model, we make a quantitative comparison 
of liquid transport performance on surfaces with different 
shapes. Finally, through theoretical analysis, we identify the 
factors affecting the distance of the transportation and provide 
guidelines for wedge shape design for optimized spontaneous 
liquid transport.

2. Theoretical Model

The governing equation for droplet motion on the surface with 
curved-wedge pattern described by a known profile function 

Spontaneous liquid transport has a wide variety of applications, including 
fog harvesting, microfluidics, and water-oil separation. Understanding of 
the droplet movement dynamics on structured surfaces is essential for 
enhancing the transport performance. In this work, a theoretical model 
describing the movement process of droplets on surfaces with prescribed 
wedge shapes is developed. Agreement is observed between the predictions 
from the model and experimental results. Through theoretical analysis and 
quantitative comparison between the transport performance of different 
wedge shapes, the factors affecting the movement process are identified 
and guidelines for wedge shape optimization for spontaneous droplet  
transport are provided.
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1. Introduction

Spontaneous directional transport of liquid has many applica-
tions, such as fog harvesting,[1–9] water-oil separation,[10–12] and 
microfluidic devices.[13–16] One ubiquitous phenomenon of 
liquid transport without external energy input is the capillary 
rise driven by surface tension.[17–21] Efforts have been made to 
achieve spontaneous droplet motion by introducing a capillary 
pressure gradient on solid surfaces. This can be achieved by cre-
ating a wettability gradient through chemical or thermal treat-
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y = y(x), as shown in Figure 1, can be derived through Newton’s 
second law:

( )
2

2V
d x

dt
F F F Fc v h gρ = − + +  (1)

where Fc is the actuation force from the interfacial ten-
sion, acting along the edges as indicated by orange curves in 
Figure  1. Fv is the resisting force from viscous dissipation, Fh 
is the force due to the presence of contact angle hysteresis, and 
Fg represents the force from gravity. The driving capillary force, 
Fc, can be calculated through integrating the capillary pressure 
along the edges:

4 sin
cos

sin( )
d2 edgeF Rc B∫γ β

θ
θ β

θ= −
−φ

π β+
 (2)

where γ is the interfacial tension between liquid and air, β is 
the half opening angle, RB is the base radius of the droplet, 
θedge is the contact angle along the edge due to the sharp edge 
effect,[51] which can be determined by individually depositing 
droplet on circular plates with a series of radii.[48] For a given 
wedge shape, the droplet volume must be large enough for 
the droplet to be in contact with the edges in order to initiate 
the movement. Therefore, given the local minimum wedge 
width 2ym and contact angle θ, in the limiting case of no con-
tact angle hysteresis, the base diameter of the droplet needs 
to be larger than the wedge width, that is, 2RB  > 2ym, where 

3 sin
(2 cos )(1 cos )23R

V
B

θ
θ θ π

=
+ −

, or, the droplet volume needs 

to satisfy 
(2 cos )(1 cos )

3sin
m
3 2

V
y θ θ π

θ
>

+ −
. It is assumed that the 

droplet shape remains approximately spherical during the 
motion. This is true when the size of the droplet is smaller 
than the capillary length, defined as /( )l gc γ ρ= ∆ , where γ 
is the interfacial tension, Δρ denotes the density difference, 
and g is the gravitational acceleration. For a water droplet 
placed on a silicon wafer at room temperature, lc ≈ 2.7 mm, 
which corresponds to droplet volumes being smaller than 
7 µL. For a spherical droplet placed on a large smooth sub-
strate, the value of static contact angle along the triple line 
is between the values of the advancing and receding contact 
angle. If the size of the substrate is gradually decreased, 
the apparent contact angle will increase due to sharp edge 

pinning effect,[51] eventually being larger than the advancing 
contact angle. Therefore, the value of θedge can be deter-
mined geometrically, which can be represented as a function 
of the volume of the droplet and the base radius RB (or the 
width of the wedge). Figure 2 shows cos θedge as a function 
of RB for droplets of volumes V = [3, 4, 5] µL with a contact 
angle of θ = 115° (on smooth surface without wedge), and the 
corresponding relationship can be linearly fitted: cos θedge  = 
a1RB + a2.

Then, using the linearly fitted expression for cos θedge, 
Equation (2) can be integrated and Fc can be expressed as

4 sin sin(2 )
sin(2 )
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with

( )/ 2 and min arcsin(
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For curved edges with given shape y(x), β varies with the loca-
tion of base circle:

arctan
( ) ( )y x y x

x x
F B

F B

β =
−
−





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 (5)

where xF and xB are the x coordinates of intersections between 
y(x) and base circle at the front and back, respectively (Figure 1). 
The resisting force due to the presence of the contact angle hys-
teresis, Fh, is calculated as:

( )cos ( )cosF k y x y xh B R F Aγ θ θ( )= −  (6)

where k is a parameter accounting on the geometrical effect of 
the droplet with a typical range of [1,π].[52] Here, a k value of 

Figure 1. Top view schematic for droplet motion on the wedges with 
the edge described by profile function y = y(x). The direction of droplet 
motion is indicated by the blue arrow.

Figure 2. The cosine of contact angle along the edge cos θedge as a func-
tion of RB for droplets with volumes V = [3, 4, 5] µL (crosses, squares, 
and circles, respectively) and their corresponding linear fitting (solid 
lines).
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1 will be used here for simplicity. The force due to viscous dis-
sipation is given by

,F A
v

d
v η=  (7)

where η is the liquid viscosity, d is the thickness of the thin 
boundary layer, and A is the contact area between the droplet 
and substrate (area enclosed by blue and orange lines in 
Figure  1.) Equation (7) indicates that the force due to vis-
cosity increases as the droplet moves along the wedge due to 
larger droplet-substrate contact area A, further slowing down 
the movement.[47,53] Finally, the force due to gravity with an 
inclination angle θincline is Fg  = ρVgsin θincline. Here, θincline is 
defined as the angle between the surface and horizontal direc-
tion. Although θincline = 0 in all our experiments, it is included 
here for generality. Therefore, given a wedge shape with profile 
function y = y(x), after obtaining all the forces, the description 
of droplet movement can be obtained by numerically solving 
Equation (1).

3. Experiments and Results

Surfaces with different patterns were manufactured by cryo-
etching a silicon (Si) wafer using a standard photoresist to 
dig a 98 µm-deep frame featuring the borders of the wedges. 
The designed wedges can be described by the profile functions 
y  = 0.009775x2  + 0.01534x  − 0.03014 (in mm, will be referred 
as the curved wedge) and y  = tan (3°)x  + 0.2661 (in mm, the 
straight wedge). The shapes of the wedges are indicated by the 
red-solid lines (curved wedge) and blue-dashed lines (straight 
wedge) in Figure 3C, respectively. The Si wedges were coated 
by a self-assembled monolayer of octadecyltrichlorosilane 
(OTS) according to the method published by Brzoska et al.[54]. 
Si wafers were thoroughly cleaned by successive sonication in 
ethanol and acetone, then blown with dry high purity nitrogen, 

then exposed to CO2 snow jet to remove particulates, then 
plasma-treated in air for 30 s. Next, the cleaned Si wafers were 
immersed in OTS solutions in toluene (3 mm) for 15 min under 
dry conditions (RH < 10%). Finally, the coated surfaces were 
sonicated in pure toluene to remove physisorbed layers of OTS. 
The coated surfaces exhibited advancing angle θA and receding 
angle θR of 115° ± 1° and 97° ± 1° on a smooth surface meas-
ured by goniometer (KSV Cam 200), respectively. A photograph 
and a schematic showing the top view and side view of curve 
wedge are shown in Figures 3A and 3B, respectively. Droplets 
with volumes of 3, 4, and 5 µL were formed using a precise 
syringe and placed onto the structured surface with different 
initial locations. The movement of droplets were recorded with 
a time interval of 0.016 s, and subsequent data analysis was 
carried out in MATLAB. A 4-µm droplet moving on the curved 
wedge is shown in Figure 3D. Four videos showing the move-
ment of droplets of 3, 4, and 5 µL with three different starting 
locations for both curved and straight wedges are provided in 
Supporting Information.
Figure 4 shows the locations of droplets with volumes V = [3, 

4, 5] µL (with 0.8% relative error) as a function of time on curved 
wedge during the first 0.2 s. Points are the results from the 
experiments with initial droplet location x0 = [4.7, 5.6, 6.4] mm  
(±0.1 mm). For each experimental condition, point shapes rep-
resent results retrieved from three different repetitions. It is 
found that the droplets experience fast movement during the 
first 0.1 second. Similar values of final location xfinal can be 
observed for droplets with the same volume. The final location 
is further away with increasing droplet size. In order to check 
the validity of the model, the boundary thickness d needs to be 
determined experimentally. However, due to low viscosity of 
water and limited substrate size, it is difficult for droplets to 
reach constant speed on the surface at a certain tilting angles. 
Therefore, using one set of experimental data with droplet size 
of 3 µL and x0  = 4.7 mm, d can be fitted by minimizing the 
residuals between data from model and experiments, which are 
found to be 4× 10−6 m. This value was then used in the model to 

Figure 3. A) Photograph of the top view of the curved wedge. B) 3D schematic of a moving droplet on the curved wedge. C) Straight (blue-dashed line) 
and curved (red-solid line) wedges described by the profile function y = tan (3°)x + 0.2661 and y = 0.009775x2 + 0.01534x − 0.03014, respectively (x and 
y are in mm). D) Snapshots of a video during movement of a 4-µL droplet on the curved wedge. The color is added to show the droplet advancement 
at different times.
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produce the fits shown as solid lines in Figure 4, which shows 
good agreements between model prediction and experimental 
results. For 4- and 5-µL droplets, one can notice slight under-
estimation of droplet velocity, especially for small initial loca-
tion x0, and the underestimation is more significant in larger 
droplets. We attribute this phenomenon to the effect of inertia: 
upon detachment of droplet from the needle, it is observed in 
the experiments that the droplets are squeezed and bounce on 
impact with the surface, leading to larger contact line length 
along the wedge, and consequently larger driving force Fc. We 
anticipate the effect of bouncing is more significant 1) for larger 
droplets, 2) during early stage of droplet motion, and 3) for 
wedges with smaller opening angle, where Fc is more sensitive 
to the contact line length.

On straight wedges, the model underestimates the velocity 
during the early stage of movement associated with droplet 
bouncing effect, and fails to provide satisfactory predictions 
for droplet motion. This may attribute to, as discussed previ-
ously, the smaller local opening angle on the straight wedge 
(constant 6°) compared with the curved wedge (varies from 
11° to 20° during droplet movement). However, as shown in 
Figure  5, good agreement on the final location xfinal can be 
observed for both curved and straight wedges, where the 
errorbars represent the standard deviation. A systematic 
study on the evaluation of gravitational effect on spontaneous 
droplet motion can be conducted through incorporating 
established theory,[55] which, however, is beyond the scope of 
current work.

4. Tailored Design for Droplet Transport

In this section, surfaces with different wedge shape designs 
are compared quantitatively based on the proposed model. 
Then, we analyze the droplet motion from an energy perspec-
tive, deriving the equation for calculating maximum traveled 
distance within a prescribed time and identifying factors that 
influence the movement process. Finally, we summarize the 
results and provide design guidelines for droplet transport on 
surfaces with wedge-shaped patterns.

Three distinct wedge shapes with profile functions y1  = 
0.0375x0.823 (concave), y2  = 0.075x1.00 (straight, opening angle 
α  = 8°), and y3  = 0.150x1.177 (convex), are shown in Figure 6A. 
The corresponding driving force Fc for droplets with volumes 3 
and 4 µL as a function of x are shown in Figure 6B. The previ-
ously determined d was used for the calculations. Although the 
wedge shapes are visually similar, it is observed that the forces 
due to capillary pressure are significantly different, where con-
cave wedge has the maximum initial Fc, whereas Fc of convex 
wedge decreases more slowly. We can also conclude that 
Fc increases with increasing droplet volume for a given wedge 
shape due to larger edge contact length. Figure  6C,D shows 

Figure 4. Motion of water droplets on the curved wedge during the first 0.2 s starting at different initial locations x0 = [4.7, 5.6, 6.4] mm for droplet 
volumes V = [3, 4, 5] µL. Points show the experimental results (three repeated experiments are marked with different symbols for each x0 location), and 
solid lines represent predictions from the model.

Figure 5. Final droplet location as a function of volumes for straight 
(blue-squares) and curved (red-circles) wedges. The final location is 
recorded after more than 10 s of initial droplet motion, where no further 
movement can be detected. Solid lines are predictions from the model. 
Error bars represent standard deviation.
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the corresponding location and velocity as a function of time. 
Note that during the experiments, it was found that there exists 
a minimum value for the initial location x0 depending on the 
droplet volume and width of the wedge, smaller than which the 
droplet cannot be placed stably onto the wedge. However, for 
simplicity, we assume the droplets can be placed at an initial 
location x0 = 2 mm. It can be seen that droplets on the convex 
wedge travel furthest. One can also notice that the terminal loca-
tion xf increases as the volume of droplets becomes larger, con-
sistent with the experiments.

In order for a droplet to move “spontaneously”, it needs to 
be placed at an initial state with high free Gibbs energy Ginitial. 
After the motion, G decreases by ΔG, ending at Gfinal. The 
amount of change in Gibbs energy ΔG is the total available 
actuation energy for droplet movement, which is the energy 
input Einput as

input initial finalE G G G= ∆ = −  (8)

The Gibbs free energy G from the interfacial energetic terms 
can be calculated by

G A A ASL SL SG SG LG LGγ γ γ= + +  (9)

where the subscripts, LS, LG, and SG, stand for liquid-solid, 
liquid-gas, and solid-gas, respectively. γ is the interfacial  
tension. With the total surface area of the droplet 

Adrop = ALS + ALG and the total surface area of wedge, Awedge = 
ASL + ASG, by applying Young’s equation:

(1 cos )*G G ALG LSγ θ= − +  (10)

where G* = AwedgeγSG + γLGAdrop, and θ is the equilibrium contact 
angle. If we assume the total surface area of the droplet, Adrop, 
remains constant during the movement, then G* can be treated 
as a constant, and the total energy input Einput can be simplified as

( )(1 cos )input ,final ,initialE A ALG LS LSγ θ= − +  (11)

where ALS, final and ALS, initial are the final and initial contact area 
between droplet and the substrate, respectively, indicated by 
the area enclosed by blue and orange lines in Figure  1. Equa-
tion  (11) implies that in order to increase the available Einput, 
apart from choosing liquids with larger surface tension, we can 
decrease ALS, initial by placing the droplet near the wedge tip or 
reducing the initial local opening angle, and increase ALS, final 
by increasing the final local opening angle.

During the movement process from initial position x0 to 
final position xf, Einput is dissipated due to viscosity, forces from 
contact angle hysteresis, or converted into gravitational energy. 
Therefore, the energy budget can be written as

( , ) ( ) dinput
0

E F x
dx

dt
F x F xv h g

x

x f

∫= + +





 (12)

Figure 6. A) Shapes of convex (black), straight (blue), and concave (red) wedge shapes and their corresponding profile functions. B) The corresponding 
driving force Fc as a function of location on different surfaces. Solid and dashed lines represent the forces for 3 and 4 µL droplets, respectively. C,D) 
Location and velocity as a function of time.
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Equation  (12) shows that the energies dissipated due to 
contact angle hysteresis and gravity (for θincline ⩾ 0) increases 
monotonically with total traveled distance Δx, independent of 
the movement velocity. Therefore, in order to more “efficiently” 
use the available energy and achieve further traveled distance 
within a prescribed time t0, the term Ev needs to be mini-
mized. As the viscous force is a linear function of velocity v, 
the optimal movement strategy is to keep a constant speed v = 
L/t0 (see Appendix). Thus, the theoretical maximum traveled 
distance max, 0L t  can be calculated by solving

(1 cos )( )
max,t

input ,final ,initial
0x

E

F F F

A A

F F Fv h g

LS LS

v h g

γ θ
∆ =

+ +
=

+ −
+ +

 (13)

In the case of unlimited time, or t0 → ∞, the wedge should have 
a shape, based on Equation (3), such that the Fc is slightly larger 
than Fh  + Fg, so the droplet moves with infinitesimal velocity, 
minimizing Ev  ≈ 0 and achieving maximum traveled distance. 
Equation (13) also explains why a convex wedge is better in terms 
of droplet transportation as shown in Figure  6C. On the one 
hand, a convex wedge geometrically has smaller ALS, initial and 
larger ALS, final, resulting in larger Einput. A smaller local opening 
angle near the tip (where both the droplet-edge contact length 
and the contact angles are large) and larger local opening angle 
further away suit the need for maintaining a constant velocity.
Figure  7 shows the comparison of the performances of 

straight wedges with different opening angles (α ∈ [3°, 12°]) and 
convex wedge with a profile function y = 0.15x1.2 for total traveled 
distance Δx. The droplet has a volume of 4 μL with an initial loca-
tion x0 = 1 mm and wedge width of 0.3 mm for all cases. It is 
observed that there is a non-monotonic relationship between 
the opening angle and Δx. The driving force Fc for a straight 
wedge with α = 3° is so small and the droplet stops early. As α 
increases, Fc increases, resulting in larger Δx, reaching a max-
imum at around α = 7°, after which Δx decreases due to smaller 

contact length between droplet and edge. The black-dashed line 
in Figure 7 indicates that the Δx for the convex wedge is greater 
than all straight wedge shapes, showing a clear improvement due 
to the change of wedge geometry. The inset in Figure 7 shows the 
comparison of shapes of convex wedge (black-dashed line) and 
straight wedges (blue-solid lines) with α = [5°, 8°]. It should be 
pointed out that the optimum shape of wedge does not neces-
sarily satisfy a power law profile function, and the exact profile 
needs to be determined by solving Equations (13) and (3) with 
consideration of all resisting forces, especially the wedge-shape-
dependent force from contact angle hysteresis.

Therefore, for given set material properties, that is, contact 
angles, liquid viscosity, contact angle hysteresis, the transport 
distance of spontaneous droplet motion on structured surfaces 
can be enhanced through increasing both the available actua-
tion energy (Equation (11)) and efficiency of energy usage (Equa-
tions (12) and (13)). On the other hand, if one aims for achieving 
a high transport velocity during a short distance, it has been 
demonstrated that droplet movements with larger wedge local 
opening angle (concentrated energy release) and smaller size of 
droplet (more relatively significant contributions from the capil-
lary force) are faster.[34,46,48] Note that all these material param-
eters can be identified from experimental data, as demonstrated 
in this work. In addition, other methods targeting the improve-
ment of material properties can be used to further enhance the 
liquid transport, in particular, reducing the contact angle hyster-
esis by surface coating.

5. Conclusion

A theoretical model for the description of spontaneous direc-
tional droplet motion on structured surfaces is developed, 
which is applicable for surfaces with arbitrary wedge shapes. 
Experiments have also been conducted for validation purposes. 
Good agreements are observed between the predictions from 
the model and experimental results. Through quantitative com-
parison of droplet motion on surfaces with different shapes and 
theoretical analysis, we found wedges with convex shapes have 
the potential of performing significantly better than straight ones 
in terms of total traveled distance due to larger energy input and 
more efficient energy usage. The theoretical framework devel-
oped here enables a tailored design for achieving targeted modes 
of droplet motion. Our work deepens the understanding of spon-
taneous liquid transport on surfaces with wedge-shaped gradient 
and provides insights on surface design to enhance the effective 
transport distance. Further optimized designs are warranted 
based on the proposed theoretical analyses.

Appendix

Minimization of Linearly Velocity-Dependent Energy Dissipation

To travel a distance L within time t0, assume the resistance 
force f = kv where k is a constant. The total energy dissipation

d d
0 0

E f x k v x
L L

∫ ∫= =  (A.1)

Figure 7. Total traveled distance Δx for straight (blue-dot line) as a func-
tion of opening angle α. The Δx for the convex wedge (black-dashed line) 
is added for comparison. The inset shows the wedge shapes for curved 
(black-dashed line) and straight wedges for α = [5°, 8°]. The solid-red line 
marks the initial location of the droplet.
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Case 1: 
0

v
L

t
v= = , the total dissipated energy

1E kvL=  (A.2)

Case 2: ( )*v v v t= + , where v*(t) is the velocity deviation from 
v . Since the total traveled distance is still L:

d ( )d d
0

*

0

*

0

0 0 0

L v t v v t L v t
t t t

∫ ∫ ∫= = + = +  (A.3)

we have

d 0*

0

0

v t
t

∫ =  (A.4)

Consider d d ( )d*x v t v v t= = + , the dissipated energy

d [ ( ) ]d

d ( ) d

2
0

* * 2

0

*

0

* 2

0

0

0 0

E k v x kvL k vv v t

kvL kv v t k v t

L t

t t

∫ ∫
∫ ∫

= = + +

= + +
 (A.5)

From Equation  (A.4), the second term on the right hand side 
becomes zero. Thus,

( )2
* 2

0
1

0

E kvL k v dt kvL E
t

∫= + ≥ =  (A.6)

The above equation indicates velocity function for case 2 cannot 
be more efficient than case 1, and the equal sign holds only if 
v* = 0.
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