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ABSTRACT

Immiscible fluid–fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery,
agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability, are commonly encountered
during displacement processes and somehow detrimental since such hydrodynamic instabilities can significantly reduce displacement
efficiency. In this study, we report a possible adjustment in pore geometry, which aims to suppress the capillary fingering in porous media
with hierarchical structures. Through pore-scale simulations and theoretical analysis, we demonstrate and quantify the combined effects of
wettability and hierarchical geometry on displacement patterns, showing a transition from fingering to compact mode. Our results suggest
that with a higher porosity of the second-order porous structure, the displacement can stay compact across a wider range of wettability con-
ditions. Combined with our previous work on viscous fingering in such media, we can provide a complete insight into the fluid-fluid dis-
placement control in hierarchical porous media, across a wide range of flow conditions from capillary- to viscous-dominated modes. The
conclusions of this work can benefit the design of microfluidic devices and tailoring porous media for better fluid displacement efficiency at
the field scale.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038634

I. INTRODUCTION

Immiscible fluid–fluid displacement in porous media has been
widely observed in various scenarios, such as CO2 sequestration,1–3

liquid drainage in polymer-based fuel cells,4 and enhanced oil/gas
recovery.5–7 With the displacement proceeding, fingering phenomena
induced by the interface instability may occur, leading to a significant
reduction of displacement efficiency and a ramified fluid morphology
compared with a compact displacement. Understanding what controls
the displacement pattern and furthermore to what extent the fingering
can be suppressed is beneficial to all these applications and also essen-
tial for estimating the post-displacement status. For instance, the pro-
duction of oil is directly related to the displacement efficiency and the
relative permeability of the residual oil impacts the secondary recovery
strategy.8,9

The interface instability is a result of combined effects of viscosity
and capillarity, which is suggested to be quantified using the capillary
number, Ca, and viscosity ratio, M. Various combinations lead to the
displacement pattern transition among viscous fingering, capillary fin-
gering, and compact displacement, as depicted in many phase
diagrams.10–14 Some studies also indicate that altering wettability

shows certain potential to suppress fingering phenomena since the
capillary effect is directly related to the contact angle,15 and specifically,
the compact mode covers a wider range of regimes when the solid sur-
face is more hydrophilic to the invading fluid.16–19 However, a recent
study by Zhao et al.20 pointed out that for the strong imbibition case, i.
e., the surface is of extreme affinity to the invading fluid, displacement
instability may be triggered due to the corner flows. Other possible
ways, including using non-Newtonian fluids21,22 or additional electri-
cal fields,23 can weaken the interface instability for some specific
situations.

The geometry of the porous matrix also plays a significant role in
the multiphase flow, especially on the pressure distribution and capil-
lary effects.24–27 For an ordered porous medium, the pore size gradient
along the flow direction has been proven an effective approach of sup-
pressing viscous fingering28 and capillary fingering.29 For a disordered
porous medium, recent studies30,31 suggested that the displacement
tends to be compact with reducing disorder. However, it is still unclear
for a given porous media with highly disordered topology that how
the displacement pattern is controlled by geometry and to what extent
the instability can be mitigated.
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Capillary fingering naturally occurs during a capillary force domi-
nated flow characterized typically by Ca � 1. Different from viscous
fingering, the invading morphology of capillary fingering highly
depends on the pore geometry32 especially for the imbibition situation
(i.e., the wetting phase invading the nonwetting one) since the interface
advances spontaneously along solid surfaces.33 In addition to different
dominating mechanisms in resulting flow patterns in both viscous and
capillary regimes, modeling capillary fingering may require much
more computational resources due to the significantly slower flow con-
ditions (Ca � 1). In our recent work,34 we have demonstrated that the
viscous fingering can be suppressed in a homogeneous porous medium
by adopting the hierarchical porous structure. Hence, in this work, we
investigate the displacement patterns through pore-scale simulations in
a capillary-dominated situation, as the complementary piece in under-
standing the complete flow behavior, with a special focus on adjusting
the hierarchical geometry as a possible way to control capillary flows in
disordered porous media. The transition from fingering mode to com-
pact mode is demonstrated as in a phase diagram showing the combi-
nation of wettability and hierarchical geometry. By analyzing the
evolution of related indices during the displacement, we discover the
mechanism dominating the fingering suppression and further quanti-
tatively characterize it using a dimensionless number, which incorpo-
rates the capillary suction as a driving force instead of the external
pressure in a viscous-dominated situation. The current work provides
a complete picture on tuning the fluid displacement mode in hierarchi-
cal porous media, by drastically extending the capillary number regime
by several orders of magnitudes.

II. NUMERICAL METHOD

As proved by many studies,35,36 the volume of fluid (VOF)
method is a well-developed and practical numerical solution for multi-
phase flow problems at the pore scale. Here, we briefly introduce the
governing equations for impressible two-phase flows, i.e., the

continuity equation (1), the phase fraction equation (2), and the
momentum equation (3) as

r � u ¼ 0; (1)

@#

@t
þr � u � #ð Þ þ r � ur � # � 1� #ð Þ� �

¼ 0; (2)

@ q � uð Þ
@t

þr � q � u � uð Þ � r � l � ruð Þ � ruð Þ � rl

¼ �rpþ c � j � r#; (3)

where # is the phase fraction of two fluids, u is the weighted average of
the velocity field shared by two fluids, i.e., u ¼ # � uf 1 þ 1� #ð Þ � uf 2,
and ur is the relative velocity, i.e., ur ¼ uf 1 � uf 2, q and l represent
the weighted average of density and viscosity, respectively, i.e., q ¼
# � qf 1 þ 1� #ð Þ � qf 2 and l ¼ # � lf 1 þ 1� #ð Þ �lf 2, p is the pres-
sure, c is the surface tension, and j is the mean curvature of the inter-
face between two fluids. Equations (1)–(3) are solved using
OpenFoam, an open source CFD toolbox, and for more details regard-
ing the treatment of inlet-outlet boundaries and wetting conditions of
solid surfaces, one can refer to Refs. 37 and 38.

Our study is on a 2D domain initially saturated with the
defending phase and then displaced from the left (see Fig. 1). The left
side is a uniformly inlet boundary with a fixed flow rate, while the out-
let boundary on the right side is set with a total pressure value
pout ¼ 0 Pa; the top and bottom sides are no-slip walls with a contact
angle of 90�.

In this study, we focus on the capillary-dominated displacement
processes. The invading and defending fluids have the same viscosity
g ¼ 1 mPa�s, density q ¼ 1� 103 kg/m3, and surface tension between
two fluids, c ¼ 28:2mN/m; meanwhile, the inlet flow rate is limited as
a very small value, i.e., vin ¼ 1� 10�3 mm/s, so that the viscosity ratio
M ¼ 1 and capillary number Ca ¼ 3:55� 10�8. Note that modeling
the capillary-dominate regime is quite computationally intensive due

FIG. 1. (a) The numerical model with two-level hierarchical porous media, i.e., (b) first-order disordered and (c) second-order homogeneous porous structures.
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to the extreme slow flow rate and extensive simulation time.
According to the phase diagram of fluid–fluid displacement patterns,14

such a combination of M and Ca lies within the capillary fingering
regime. The stability of a fluid-fluid displacement also depends on the
topology of solid obstacles as suggested in Ref. 30, and specifically, the
displacement process tends to be instable with a larger disorder index
Iv . Thus, through the Mont Carlo iteration, we here generate a 2D
domain without out-of-plane flow or gradients, containing randomly
distributed round obstacles with radius R1 ¼ 0:8mmwith Iv ¼ 0:052,
as shown in Fig. 1, which can guarantee the capillary fingering to occur
during the weak imbibition (contact angle h > 30�). To shed light on
the effect of hierarchical structures on displacement patterns, each
obstacle has an identical homogeneous porous structure with the
second-order throat size (d2) equaling 0.06, 0.112, 0.144, and
0.160mm, and the corresponding geometry parameters, including the
particle radius (R2), porosity (/2), and permeability (k2), are listed in
Table I. Moreover, the simulations are performed with a group of con-
tact angles h measured within the invading phase, i.e., ranging from
30� to 90� to cover a wide range of wettability conditions. The interval
of contact angle is later refined in specific regions to illustrate the tran-
sition of displacement modes in Sec. III.

III. RESULTS AND DISCUSSION

Generally, a fluid–fluid displacement process can be divided into
pre- and post-breakthrough stages, i.e., split by the moment when the
invading front reaches the outlet. The global channels for the invading
phase are built at the pre-breakthrough stage and remain mostly at the
post-breakthrough stage; only the local fluid distribution may be rear-
ranged due to the unbalance of capillary pressures, and such capillary
rearrangement can last for a relatively long time during the post-
breakthrough stage.39 The contrast between the durations of these two
time periods in viscous fingering can be notable, while in capillary fin-
gering, the global and local balance can be acquired in similar time
scales. Furthermore, considering that the major flow patterns can be
characterized at the early evolution, we only investigate the displace-
ment processes before the breakthrough in this study.

A. Phase diagram

Capillary-dominated displacement is generally regarded as a
percolation-like process,33 i.e., the slow invasion advances pore by
pore and prefers the pathway with the lowest entry capillary pressure.
The geometric disorder leads to nonuniformly distributed capillary
pressure and finally causes phase trapping and fingering. However, in
hierarchical porous media, such a macroscopic pathway-bias may be

balanced due to second-order porous structures. Specifically, under
the same flow condition, the displacement pattern may transit from
the fingering to compact mode by adjusting the second-order geome-
try. The effects of hierarchical geometry on a capillary-dominated dis-
placement under various wetting conditions from strong to neutral
imbibition are summarized as a phase diagram in Fig. 2. The displace-
ment pattern can transit from the compact to fingering mode with
increasing contact angle h;16 which agrees with the observation for
each geometry as shown in Fig. 2. However, with fixed wetting condi-
tions, cases with different second-order porous structures may present
evidently distinct displacement processes, especially within the regime
of weak and neutral imbibition (h ¼ 60� � 90�). In another word, the
mode transition for each geometry shows different sensitivities to the
wetting conditions though the crossover boundary mostly lies within
the weak imbibition regime (45� < h < 90�), and specifically, for
dense packing cases (/2 < 0:8) at the second-order porous structure,
the crossover boundary is at around h � 53�, while for loose packing
cases (/2 > 0:8), the critical contact angle h is > 60�, i.e., the fingering
mode can be suppressed within a larger range of the weak imbibition
regime for the loose packing cases. Correspondingly, even under the
same wetting conditions where the fingering mode occurs, the dis-
placement process demonstrates relatively high stability in cases with
loosely packed obstacles. Since the capillary number in this simulation
is small enough so that the capillary effects govern the whole displace-
ment, the dynamics of the fluid-fluid interface is mostly driven by the
capillary pressure, which is determined by the pore geometry and con-
tact angle. Before spontaneously infiltrating the pore space, the exter-
nal pressure should be larger than the entry capillary pressure at the
throat. For loose packing cases, the capillary effect is weaker, i.e., the
entry capillary pressure is lower, while the spontaneous driving pres-
sure is also lower than that in dense packing cases under fixed wetting
conditions. The competition between the entry capillary resistance and
spontaneous infiltrating leads to the transition between the above two
displacement modes. Notably, for the strong imbibition regime
(h � 30�), although the compact displacement occurs in all cases,
there exist certain noticeable differences among them, especially in the
case with /2 ¼ 0:47 and h ¼ 30�, as shown in Fig. 2(c), and more
defending fluid is trapped within first pore space along the top and
bottom walls during the displacement, while almost a perfect compact
displacement occurs in other cases under the same wetting conditions.
Since the negative capillary pressure is quite larger along the narrow
channels in the strong imbibition regime, the interface in the case with
/2 ¼ 0:47 moves so much faster through the second-order porous
structure than along the walls or through the first-order pore space
that defending phase is left behind and trapped finally. This phenome-
non is similar to the corner flow reported in Refs. 17 and 20, i.e., the
invading fluid advances preferentially along narrow corners due to the
intensive capillary effects resulting in local instability.

In summary, during a capillary-dominated displacement process,
the strong capillary effects may lead to instability, and specifically, the
global fingering pattern occurs in the weak and neutral imbibition
regime, while the local instability like trapping of the defending phase
arises in the strong imbibition regime. In particular, for hierarchical
porous media, the transition of displacement modes can be controlled
by adjusting the second-order geometry, and the fingering mode can
be suppressed within a large range of wetting conditions for cases with
loosely packed obstacles.

TABLE I. Geometry parameters for the second-order pore structures, with
/1 ¼ 0.64 and R1 ¼ 0.8 mm.

d2 (mm) R2 (mm) /2 k2 (mm2)a

0.060 0.105 0.47 2.34� 10–4

0.112 0.079 0.70 1.27� 10–3

0.144 0.0626 0.81 2.62� 10–3

0.160 0.0556 0.85 3.60� 10–3

aPermeability k2 is a function of d2 and /2; and its calculation can be referred in Ref. 34.
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B. Temporal evolutions

To quantitatively characterize the fluid-fluid displacement pro-
cesses in hierarchical porous media and demonstrate the different dis-
placement modes, a set of indexes are extracted from each time frame
and demonstrated in Fig. 3.

(I) The relative fluid–fluid interface length (Li), i.e., the total
interface length normalized by the domain width, is a good
indicator to distinguish two displacement modes.
Specifically, Li should be around unity for compact dis-
placement since the invading front is almost parallel to the
short side of the domain, while it becomes much larger
once dendrites are formed and grow. On the other hand, Li
can also reflect the local instability since it is much sensitive
to the fluid trapping, e.g., as shown in Fig. 3(a), for the com-
pact displacement, Li in the case with /2 ¼ 0:47 increases
faster with respect to the injecting time than that in other
cases because of the trapped defending ganglia marked in
Fig. 2(c). Considering that Li presents a linear relationship
with the injecting time for each case, the growth rate
kint ¼ dLi=dt is extracted here to characterize the process.

(II) Fractal dimension Df , measured using the box counting
algorithm,40 can estimate the overall compactness of
invading fluid distribution, i.e., that Df is close to 2 suggests

that the domain is being filled with the invading phase uni-
formly; on the contrary, the fluid trapping or dendrite
growth may occur with Df of smaller values. For each case
with the displacement evolving, Df tends to reach a con-
stant level ~Df after 10 000 s, as shown in Fig. 3(b). The
crossover boundary marked in Figs. 2(a) and 2(b) corre-
sponds to a stable level of ~Df � 1:95.

(III) Evolution of degrees of saturation for the invading fluid in
the second-order (S2) and first-order (S1) pore space
describes to what extend the invading fluid infiltrates the
second-order pore space when the fluid advances through
the main channels in the first-order porous structure.
Considering that the secondary channels in the wetted
second-order pore space can connect the neighboring main
channels in the first-order pore space, the second-order sat-
uration, S2, in effect contributes to the relative permeability
of the invading fluid, and furthermore with higher values of
S2, the disorder-induced nonuniform distribution of capil-
lary pressure can be mitigated and the instability be sup-
pressed as a result. As shown in Fig. 3(c), S2 is almost
linearly proportional to S1 for each case, and the slope ksat
is used here to measure the involvement of second-order
porous structures during the displacement process. The
simulation results suggest that when ksat is larger than 0.9,

FIG. 2. Phase diagrams (a) and (b) of displacement mode transition between the compact mode (red squares) and the fingering mode (blue squares) in hierarchical porous
media with various second-order geometry designs and different wetting conditions, and the yellow line indicates the position of the crossover boundary. (c) A zoom-in view of
trapped defending fluid in the case with /2 ¼ 0:47 and h ¼ 30�.
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the displacement tends to be compact, while the porous
obstacle behaves like solid one when ksat is smaller than 0.4
so that the fingering may occur.

C. Dimensionless analysis

Based on the observation of Fig. 2 and analysis on characteriza-
tion of the displacement patterns, the mode transition is determined
by two factors: one is the interaction time, which connects the first-
order and second-order flows in hierarchical porous media, and the
other is the capillary competition between entry resistance and sponta-
neous driving force.

1. Interaction time

The mechanism for fingering suppressing is that the infiltrated
secondary channels in second-order pore space enhance the global
permeability of the invading phase by connecting the main channels
in first-order pore space, resulting in the mitigation of distribution
nonuniformity of capillary pressure. So, the displacement pattern is
controlled by how much invading fluid can infiltrate the second-order
pore space when the front advances through the first-order channels.
To exactly reflect such effects, we use a characterized timescale
ratio RT of similar expression with our previous work,34 i.e., the time
(T1st) for invading the front advancing a certain characteristic distance

FIG. 3. The evolutions of displacement indexes: (a) the relative fluid–fluid interface length Li vs injecting time; (b) the fractal dimension Df vs injecting time, and the dashed
line (– – –) indicates that the fractal dimension almost keeps a steady level after the marked moment; and (c) saturation in second-order pore space S2 vs in 1st-order pore
space S1; and the dashed line (– – –) indicates S2 ¼ S1. Circle: h ¼ 30�, five-pointed star: h ¼ 45�, triangle: h ¼ 60�, cross:
h ¼ 65�, square: h ¼ 70�, six-pointed star: h ¼ 75�, asterisk: h ¼ 90�, and solid line: fitting line.
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(e.g., R1) in first-order pore space and that (T2nd) for capillary-driven
infiltration in second-order pore space as

T1st ¼ R1

vin
; (4)

T2nd ¼ g/2R1

2k2P	
c
; (5)

where P	
c is the characteristic capillary pressure estimated by

P	
c ¼

Ð p=2
�p=2 Pc að Þda

p
; and (6)

Pc ¼ c
d2

cos h� að Þ
1þ 2R2=d2 1� cos að Þð Þ : (7)

The calculation model for capillary pressure as a function of filling
angle a in Eq. (7) is that the interface advances through two cylinders
with radius R2 and gap distance d2, and more details can be referred to
Ref. 34 Notably, the expression of P	

c adopted here is different from
the one in Ref. 34. The previous expression is more sensitive to the
wettability, especially for the case with a smaller second-order porosity
when h is close to 90� because the contribution of negative capillary
pressure is truncated by a reduced range of integration. Unlike the pre-
vious study in which the capillary effect only dominates the flow in the
second-order pore space, in this study, the flow in both the first and
second-order pore space is dominated by such effects. Thus, the cur-
rent expression can provide a more reasonable estimation for the
capillary effect. Finally, the time ratio, RT , can be expressed as

RT ¼ T1st

T2nd
¼ 2 k2P	

c

/2vingR1
: (8)

According to Eq. (8), RT describes the interaction between two charac-
teristic scales by combining the forced flow in the first-order porous
structure and spontaneous flow in second-order pore space. With a
larger RT , more secondary channels are expected to be filled with the
invading fluid, spontaneously leading to a more compact displace-
ment. However, the capillary effect in Eq. (8) is just roughly estimated.
By considering that the entry capillary pressure also controls the spon-
taneous infiltration of the invading fluid, RT should be further
modified.

2. Capillary competition

When the invading fluid enter a pore body through a narrow
throat, the negative capillary pressure acting as a resistance at the entry
should be conquered first; when the pressure difference is larger than
such threshold capillary pressure, the meniscus moves along the pore
throat driven by the capillary pressure, and a possible capillary event, i.e.,
burst, touch, or overlap, occurs when entering the pore body.41 Thus, we
propose another pressure ratio, Rc, to describe the competition between
capillary resistance and spontaneous driving, i.e.,

Rc ¼ Pmax
c

Pmin
c

; (9)

where Pmax
c and Pmin

c are the maximum and minimum capillary pres-
sures in Eq. (7), respectively. Combining RT and Rc, we obtain a com-
plete description of effects on capillary-dominated fluid-fluid

displacement in hierarchical porous media, and a so-called “hierarchi-
cal number” is expressed as

Hic ¼ RT �Rc: (10)

Compared to the hierarchical number proposed in our previous
work for viscous fingering,34 besides some similarities in constructing
both hierarchical numbers, Hic here shows certain variation on terms.
Specifically, the physical meaning of the pressure ratio becomes differ-
ent. For capillary fingering with a low capillary number, Pmin

c repre-
sents the entry capillary resistance, while Pmax

c is a characteristic value
of capillary-induced driving force, so the ratio Rc describes to what
extent the meniscus can move spontaneously, i.e., driven by capillary
pressure and specifically, with Rc increasing, the capillary resistance is
relatively weak, while the driving effect becomes stronger. However,
for viscous fingering with a high capillary number, the flow in the
first-order porous structure is mainly forced by the external pressure,
while capillary suction is present in the second-order porous struc-
tures, so its pressure ratio describes to what extent the barrier pressure
can be conquered by the external inject. For both viscous and capillary
fingering cases, with a larger hierarchical number, more connections
of invading fluid can be established during displacement so that
instability induced by the disorder of obstacle arrangement in the
capillary-dominated situation, or by viscosity variation in the viscous-
dominated situation, can be alleviated.

D. Correlation analysis

To further quantify the relationship between the proposed
hierarchical number and displacement patterns, the adopted
indexes in Sec. III B as a function of Hic are demonstrated in Fig. 4.
The crossover boundary shown in Fig. 2 corresponds to
Hic ¼ 6:5� 108. Overall, as shown in Fig. 4, all indexes present a
monotonous variation with Hic. Specifically, the growth rate of the
interface length, kint , is inversely proportional to Hic; the relation-
ship between Hic and stable fractal dimension ~Df or the second-
order saturation rise rate, ksat , is an S-shaped curve, which marks
the upper and lower bounds as two asymptotes corresponding to
the extreme values in compact and fingering modes, respectively.
Compared to the monotonically decreasing curve of kint , the upper
asymptote in S-shape curves suggests that ~Df and ksat cannot
reflect the slight difference induced by local instability like fluid
trapping presented in the strong imbibition regime.

IV. CONCLUSION

This work focuses on the capillary-dominated displacement pat-
tern in hierarchical porous media. Besides the effects of the wettability
and geometrical disorder, we mainly investigated the impacts of hier-
archical geometry on the transition of displacement modes through a
series of pore-scale simulations. Based on the simulation results, the
following conclusions can be reached:

(1) The displacement pattern can be classified into the compact
mode and fingering mode, and a phase diagram, demonstrating
the mode transition under combined conditions of wettability
and geometry features, suggests that weakening the capillary
effects by increasing the second-order porosity can enhance the
displacement stability.
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(2) The mechanism of fingering suppressing is clarified based on
the analysis regarding the displacement-related indexes, and
specifically, the wetted second-order porous space may bring in
extra connections within invading fluid, leading to a more uni-
form distribution of capillary pressure, so that the interface
advances in a stable and compact mode.

(3) Finally, a dimensionless number (Hic) is proposed here to
quantitatively estimate the involvement of second-order pore
space during the displacement by considering capillary-induced
resistance and driving force together.

Complimented with the work on viscous fingering, we can
provide a complete picture on the fluid–fluid displacement control,
and specifically, if fingering is expected to be suppressed in a
capillary-dominated situation, the capillary effects should be weak-
ened, e.g., by loosening the packing in second-order space;
inversely, if in a viscous-dominated situation, the capillary effects
should be enhanced, e.g., densifying the packing in second-order
space. Since the hierarchical porous structure is commonly
encountered in nature and applications,42–44 the mechanism of dis-
placement transition may contribute to linking the pore-scale
observation with the multiphase flow at the field scale. In addition,
this study has also potential to benefit the design of microfluidic
devices45–47 to have tailored flow patterns.

SUPPLEMENTARY MATERIAL

See the supplementary material for the animations for dynamic
processes of fluid-fluid displacement.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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