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Abstract The morphological structure of granular mate-

rials can dominate their mechanical, hydraulic, electrical,

and thermal properties; thus, the formation of order and

disorder arrangement of particles is the key characteristic

to describe such micro-structures. During the packing

procedure, external energy input and perturbations, such as

dynamic cyclic load, and the particle size distribution were

mentioned by many previous works to be significant in

controlling the structure. This study explores order to dis-

order transition within 2D binary granular assemblies under

vibration. A numerical packing method combining particle

size growth and dynamic vibration is implemented and

verified against experiments to achieve desired packing

structure. The Bond orientation order number and pair

distribution function are used as indices for characterising

the morphological structure. Our packing simulation results

show a combination of appropriate vibration and a proper

particle size growth rate can facilitate the formation of

granular crystallisation. Additionally, for binary packing,

the size ratio, and the number fraction of small particles

can play a critical role in determining the morphological

transformation.

Keywords 2D packing � Bi-disperse particles � Vibration �
Size growth � Morphological structure � Crystallisation

1 Introduction

The morphological structure of granular materials is

dominant for the overall effective properties, such as

mechanical response to external load [1–3], hydraulic

permeability and cohesion [4, 5], thermal conductivity

[6, 7] and electrical conductivity [8–11]. The order and

disorder arrangement of particles can be used to charac-

terise the packing structure of overall assemblies. The

studies on packing structure of granular materials range

from observing jamming conditions [12–14], reaching

random close packing limits [15–19] and generating

granular crystallisation structures through different wall

conditions [15, 20–22]. The earlier work mainly utilised

the mono-sized spherical particles as the simplest granular

systems. An obvious question here is how to control the

resulting packing structure by mixing different sizes.

Recent studies have been focusing on characterising the

structure through packing fraction. In 2D conditions,

mono-disperse samples have a typical packing fraction

/ & 0.84 for random close packing [23], and with a much

lower value / & 0.64 in 3D condition [13, 23–26]. Whilst

bi-disperse particles typically raise the resulting / in 2D

[15, 25], further polydispersity can raise / to closely 1

when pore space between large particles can be fulfilled

hierarchically with smaller ones in the Apollonian setting

[27]. Due to the wall effect, the structure near the wall is

more likely to show ordered arrangement compared with

the bulk region [20, 21]. To further characterise the overall

morphological structure, the pair distribution function, g(r),

can be used. The g(r) function performs as a long-range
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fluctuation with high amplitude when structure is ordered

and short-ranged fluctuation with a low amplitude when

structure is disordered [28–30]. Bond orientation order

number,w, has been applied to quantitatively characterise

the order state with a percentage of crystallised particles

(grains), the grain size and grain orientation.

In granular materials, the particle size may not always

be constant and individual particles may experience

expansion or shrinkage under certain conditions, such as

heating or cooling [7, 31], wetting or drainage [32–34]. The

morphological structure can be crucially rearranged during

those processes mentioned above. External dynamic load-

ing also plays an important role. For example, granular

samples can experience raised inter-particle force during a

jammed condition under external dynamic loads [12]. A

continuing increased load may gradually lead samples to

elastic region, yielding and failure until the ultimate steady

state is reached [35–37]. The granular skeleton evolvement

during these processes have been studied both numerically

[20, 38] and experimentally [12, 21]. When it is not jam-

med, the dynamic vibration with certain intensity can

rearrange particles to a more ordered state with relatively

low potential [39].

In this study, to control the degree of order and disorder

in pseudo-2D granular assemblies, a combined procedure

of particle size growth and dynamic vibration is applied to

both mono-disperse and bi-disperse granular assemblies.

Simulations are established using discrete element method

(DEM) on the open-source platform LIGGGHTS. Firstly,

the effectiveness of size growth rate and dynamic vibration

is tested. By comparing the simulation with experiments,

the method is verified through observing the degree of

crystallisation and structure patterns. Secondly, the wall

effect is examined to eliminate the finite size effect.

Finally, the morphological structure evolvement of bi-dis-

perse cases is studied by varying the size ratio (g) and the

number fraction of small particles (Cs).

2 Method

2.1 Discrete element method

The discrete element method (DEM) is adopted as the

computational technique, which was firstly proposed by

Cundall and Strack [40], and further improved by Walton

[41] and Luding [42]. To simulate dynamic responses of

granular assemblies, the model is established on the open-

source platform LIGGGHTS [43]. The dynamic motion of

particles and contact relation are governed by Newton’s

second law given by:

Fn ¼ kndn � bnvn
Ft ¼ ktdt � btvt

�
ð1Þ

where F is the contact force, k is the contact stiffness, d is

the overlap distance between the pair of particles in con-

tact, b is the damping ratio, and v is the relative velocity of

a contact pair, subscripts n and t represent normal and

tangential effect, respectively. The frictional force, Ft,

adopts the Coulomb friction criteria that Ftj j � l Fnj j,
where l is the friction coefficient. Since friction impedes

and slows down the transition from disorder to order under

the dynamic load [20], the frictionless cases are considered

here to have a relatively fast simulation to reach the final

stages. The parameters used in this study are listed in

Table 1.

2.2 Simulation conditions

The modelling process is described below. A group of non-

contact particles are created with random positions in a 2D

square container domain, and the initial particle size is

controlled such that /initial\ 0.5. The particle assembly is

then settled under the gravitational acceleration, g ¼
9.81 m/s2, as shown in Fig. 1a. After the kinetic energy,

Ekinetic, is dissipated and is much smaller than the potential

energy, e.g. Ekinetic\Epotential� 10–10 [42], the overall

structure can be considered as a ‘‘steady state’’, and the

hydraulic pressure remains constant. Particles then gradu-

ally grow to fill up the whole container, with a size growth

rate setting as _c ¼ Dd=d ¼ 0.01/s determined by a series of

parametric studies which will be further discussed in

Sect. 3. To make sure the contact duration in the dynamic

process to be physically meaningful and steady for simu-

lation, the parameters are controlled by checking the time

scale Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=Eds

p
� _c�1 [44], where m is the single

particle mass, E is the young’s modulus. Here, the time

step is selected as 5 9 10–7 s. To minimise the unneces-

sary artificial viscosity, the coefficient of restitution is

selected as 0.6 [20, 42].

A sinusoidal format vibration is applied to initiate and

accelerate the transition of overall morphology from dis-

order to order (i.e. crystallisation) [20]. The direction of

vibration is set to perpendicular to that of gravitational

acceleration, g, illustrated in Fig. 1b. The horizontal

shaking is controlled by the vibration intensity,

C ¼ A 2pfð Þ2=g, where A is the vibration amplitude, f is the

frequency, g is the gravitational acceleration. The magni-

tude for C is controlled by varying the amplitude, and its

effects will be further discussed in Sect. 3. The square

container size is set to be consistent with that of the

experiment 100 mm (Fig. 1b). To be noted, the vibration

and size growth are adopted simultaneously (Fig. 1). A
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target mean stress, rmean, is then set to stop the vibration

and size growth. The target rmean is determined by the

comparable simulation the same as experiments. A period

of relaxation is set for the system to reach the steady state.

It is also checked that the drop of the rmean is not larger

than 4%.

Two main structural indices are adopted in this study to

distinguish the order and disorder structure, and quantita-

tively describe the structure transition when varying binary

mixture via g and Cs. Firstly, the pair distribution function,

g(r), reveals the probability density of particles that can be

found in the shell area at a certain distance from the target

particle. Through g(r), a long-range fluctuation with rela-

tively large amplitude (representing order structure) or a

short-range fluctuation with relatively smaller amplitude

(representing disorder structure) can be used to characterise

the particle arrangement. The adopted g(r) can be shown in

the function below [45]:

g rð Þ ¼ 1

2pr Drð ÞqqðNt � 1
�X

j 6¼k

dðr � r!jk

�� ���; ð2Þ

where r is the distance between the centre of targe particle

and the midline of the shell, Dr is the shell thickness, qq is
the particle number density of the whole system, Nt is the

total particle number, the summation of Dirac Delta func-

tion dðr � r!jk

�� ��Þ indicate a scanning of all particles except

target particles j and extract those located within the shell

area. When applying g(r), the Dr is chosen to be smaller

than dm, where dm ¼ ðdsNs þ d1N1Þ=Nt, which can facili-

tate the capture of sharp fluctuation. Here, Dr is set to be

0:1� dm. We represent the pair distribution function, g(r),

by normalising r with dm.

To further quantitatively characterising the extent of

order and disorder, the bond orientation number [20, 46],

w, is used and showed by equation below:

w ¼ 1

Nj;k

X6
k¼0

e6ihjk

�����
�����; ð3Þ

where Nj;k is the neighbour number of target particle j, the

summation traverses over the nearest neighbours with a

cut-off distance calculated by radii of particles, as Rj? Rk?

0.1 � min (Rk, Rj), hjk is the angle between the position

vector of particles j and k and the coordination system is

shown in Fig. 2a. A perfect hexagonal structure gives w ¼
1, and w approaches to 0 towards the extreme case of

structural disorder. The threshold of w for crystallisation in

this study is set to be w� 0.75 [20, 46]. The crystallised

clusters (grains) can be further characterised by the grain

orientation angle a as in Fig. 2b.

Fig. 1 Packing simulation: a A

2D granular assembly is created

within the container domain (D
� D). The smaller particles are

coloured in red, and the larger

particles in grey. The inseted

sketch in (a) containing two

circles and springs illustrate the

basic contact laws based on

Hertzian contact.

b Visualisation of a final

packing structure extracted from

one bi-disperse case. The arrows

at the bottom illustrate the

direction of vibration

Table 1 Parameters for simulations

Parameter Value

Young’s modulus, E (GPa) 110

Poisson ratio, m (–) 0.2

Mass density of particles, qp (kg/

m3)

4750

Friction coefficient, l (–) 0

Coefficient restitution (–) 0.6

Diameter of sphere, d (mono-

disperse), ds anddl (bi-disperse)
(mm)

4, 2.32, 1.6 (mono-disperse), ds
and dl are controlled through g
(bi-disperse)

Size ratio, g (–) dl=ds ¼ 1.03, 1.06, 1.1, 1.2, 1.3

Total particle number, Nt (–) 5000

Small particle number, Ns (–) 500, 1500, 2500, 3000, 3500,

4000, 4500

Number fraction of small

particles, Cs (–)

Ns=Nt ¼ 0.1, 0.3, 0.5, 0.6, 0.7,

0.8, 0.9

Container height/width (mm) 100/100

Gravitational acceleration, g (m/

s2)

9.81

Time step (s) 5� 10�7
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2.3 Confinement stress

The confinement stress state in 2D is obtained through the

function [38]:

r ¼ 1

2V

X
i6¼j

Fndij; ð4Þ

where the V is the volume of the container, Fn is the

normal force of each contact, dij is the centre-to-centre

distance of contact particle i and j. Since the above stress

term is used for calculating the pressure inside the

assembly, the tangential component does not contribute to

this formular, see [38]. Moreover, the friction coefficient in

these cases studied here is set to zero.

3 Packing simulation and validation

3.1 2D packing experiments

The 2D packing experiments are established using a square

prismatic container with aluminium spheres with the aim to

finally obtain a single layer of spheres with maximum

coverage. The container is slightly inclined to the hori-

zontal plane with the bottom edge, Fig. 4a, b being at the

lowest position. Initially, locally, several layers of spheres

are placed in the container. The container then is gently

shaken (knocked) to ease the movement of particles and to

obtain the maximum coverage. Individual spheres are filled

in by hand in empty spaces to ensure that all voids with

sufficiently large spaces are occupied. Experimental photos

are taken at the end to capture the packing patterns of the

single layer which are showed in Fig. 4a, b. The g for the

bi-disperse sample in the experiment is 1.06 (Fig. 4b).

The objective here is to develop a simulation method to

obtain desired packing structures comparable with experi-

ments. The experimental setup is slightly different from the

simulation described in Sect. 2.2, in terms of the ‘‘fill-in’’

and ‘‘knocking’’ processes. The experimental procedure

involves a sequential fill-in process of particles, modelling

of which can be computationally expensive. In simulations,

the randomly pre-generated particle experiencing size

growth can simplify and eliminate this time-consuming

process, whilst keeping the results representative. The

vibration is an effective method to accelerate simulations

of crystallisation [16, 20], though the amplitude of vibra-

tion should be chosen carefully to introduce adequate

perturbations to the system. Such a process is more effi-

cient as compared to ‘‘knocking’’, since ‘‘knocking’’ with

large time intervals is time-consuming and unnecessary in

simulation.

3.2 Validation of packing simulation

To quantitatively compare the simulation and experimental

results, the percentage of crystallised particles (PCP), i.e.

evaluated with w� 0.75, is adopted as the criteria. The

size growth rate, _c, and vibration intensity, C, are studied

parametrically. Here, the mono-disperse case, d ¼ 4 mm

and Nt ¼ 700 are selected as the benchmark to verify the

effectiveness of _c and C. To be consistent with the exper-

iment, the external loadings are terminated after the parti-

cle diameter reached 4 mm, followed by a period of

relaxation time. Note here the mean stress is not controlled

but considered as an output of the simulation.

As can be observed in Fig. 3a, the optimum point for C
locates at 2.0 where the PCP not only matches with the

experiment but also the standard deviations of samples are

minimised. The reasons can be explained that the smaller

C & 0.4 is not effective to provide enough perturbation

energy input, which hinders the rearrangement of particles

into a low potential state. Conversely, the larger C = 4 and

8 can offer too much energy to keep the ordered arrange-

ment to be stable which is manifested as the larger error.

Regarding the size growth rate, _c, depicted in Fig. 3b,

the _c at 2 � 10–9 leads the simulated PCP to be consistent

with that of the experiment. The larger _c� 2 � 10–8 is not

able to provide enough time for the movement of particles

during the disorder to order transition. The corresponding

normalised stress, rmean=E, at each _c is showed by the

secondary y axis on the right side of Fig. 3(b). It can be

found that the higher the PCP is, the smaller stress is. Since

PCP indicates the probability density of crystallised parti-

cles within the sample, the solid structure with higher PCP

Fig. 2 The bond orientation order number w: a The angle of each

position vector jk
!

when taking the positive x-axis as the reference. b
The crystallised grain (i.e. hexagonal structure) orientation angle, a,
of each particle that is evaluated. Since the hexagonal structure is

symmetric, the angle ranges from 0� to 60�
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can occupy less space of the container with more com-

pacted arrangements. Thus, the overall rmean can be min-

imised, and the normalised stress is inversely related to the

PCP.

The normalised stress, rmean/E is monotonically related

to the size growth rate and has the opposite trend compared

to PCP. For the mono-disperse case, the optimum combi-

nation of size growth rate _c ¼ 2 � 10–9 and vibration

intensity C = 2 can lead to the target PCP comparable with

experiments, as shown in Fig. 3.

The simulation results exhibit quite similar patterns

when comparing with the experiments, as shown in Fig. 4.

The mono-disperse cases, Fig. 4a, c, both exhibit compo-

sition of hexagonal positioned particles with several dis-

ordered parts (marked by red boxes). The bi-disperse cases,

Fig. 4b, d, both exhibit dislocation boundaries, which

mostly originate from the wall region. All four cases show

zigzag pattern at the left and right boundary at the wall.

This may be caused by the direction of the gravitational

acceleration, g, which is vertically downwards in the sim-

ulation. This structural arrangement may be more

stable under gravity along this direction. Although g is

mostly out of the plane in the experiments, there is a small

g component pointing the direction similar with the simu-

lation can appear.

3.3 Wall effects

To illustrate the wall effects, a series of simulations with

different particle number, Nt, of mono-disperse particles

are conducted. While keeping the container size constant,

the ratio between container size and particle diameter, D=d,

is varied during the test. As shown in Fig. 5, PCP increases

sharply before D=d & 70 followed by a steady slow climb.

The particle at the zigzag boundary of crystallised grains

contact with the wall is not considered to belong to the

grains. They are mostly located near the wall region (ex-

plained through Fig. 4) due to the effect of downward g,

and normally it can be only one layer of particles. Besides,

the wall effect was proved to be dominant in a granular

system when a small distance, compared to the particle

size, between walls exists [20, 21, 47]. Thus, the investi-

gation of bi-disperse cases is then conducted using the

D=d & 70 with Nt ¼ 5000 particles in the 100 mm 9

100 mm container.

4 Order and disorder structure in bi-disperse
assemblies

The characterisation of morphological structure within the

bi-disperse granular assemblies will be analysed by g(r)

and w. The size ratio, g ¼ dl=ds, varies from 1.03 to 1.3

and small particle number fraction, Cs ¼ Ns=Nt, ranges

from 0.1 to 0.9.

In Fig. 6, four groups g(r) fluctuate with the ascending

r=dm. The gradient grey scales (from light to dark) indicate

the specific number fraction of small particles (Cs) rising

from 0.1 to 0.9. The trend of the fluctuation shifts from

long range with a large amplitude for g ¼ 1:06, to short-

Fig. 3 Mono-disperse packing: a The PCP versus vibration intensity

C. b The PCP versus Size growth rate _c. In both (a) and (b), each
point with errorbar indicates average results from 10 simulations

Fig. 4 a, b are experiments photos where (a) shows a mono-disperse

case with sphere size, d & 4 mm, and b is a bi-disperse case with

ds & 3 mm and dl & 3.2 mm. c, d are simulation results with the

identical dimensional parameters as the experiments. The red boxes

highlight the disordered clusters and dislocations within the sample
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range with a small amplitude for g ¼ 1.3. The mono-size

case with the optimum ordered condition, e.g.

PCP & 0.91, is plotted using a red line as a reference to

compare against all binary cases. The structure pattern of

this reference line can be referred to Fig. 5, and

D=d & 70. Thus, the smaller size contrast, g ¼ 1.06 rep-

resents a more ordered structure, because a certain number

of particles are more likely to be found at the specific

distance from a target particle. In comparison, the larger

size contrast, g ¼ 1.3, exemplifies disordered structures.

The probability density, g(r), is small, which depicts low

amplitude and short-range fluctuation. The high Cs ¼ 0.9

and low Cs ¼ 0.1 both have less noticeable effects on

disturbing the ordered structure. The Cs in the range from

0.5 to 0.7 shows a clear transition to disorder structures,

and under these conditions, the relatively smoother curve

can be found in each g group. To clarify, since the g(r) is

observed regarding the mean diameter dm, the first peak

can be found to deviate from r=dm ¼ 1. The increase in Cs

lead to the smaller fluctuation representing order to disor-

der transition. A bounce back with larger fluctuation when

Cs further increases to 0.9 can be observed.

Crystallisation is a type of typical order structure with

the hexagonal arrangement in 2D condition. The crys-

tallisation within a mono-sized sphere assembly can be

formed and observed when the granular sample is sub-

jected to external loadings such as vibration [20, 22, 29],

shear [48, 49] and compression [50]. Here, the morpho-

logical structure with order and disorder particle arrange-

ments can be characterised by the PCP variation and

crystallised grain orientation (Fig. 2). In Fig. 7, for g ¼
1.06, the PCP firstly decreases when Cs arise from 0.1 until

reaching the minimum at roughly 0.5, then followed by a

gradually rise. The PCP value at the bottom of each valley

slightly shifts corresponding to the Cs. The PCP for g ¼
1.06 and g ¼ 1.1 reach the minimum when Cs & 0.5,

whilst the cases g ¼ 1.2 and g ¼ 1.3 reach the minimum

roughly at 0.7. This shift is consistent with several previous

works reflected in the packing fraction [25, 51].

In Fig. 8, crystallised grains formed by ordered particles

are depicted through a heat map. The inserted crystallised

grain orientation plots show grain orientation angles from

0� to 60�. It can be observed that mono-sized or nearly

mono-sized case are highly likely to form a single crys-

talline grain, such cases can be found in Fig. 4a, c and

Fig. 8 when g ¼ 1.06, Cs ¼ 0.9. On the contrary, the bi-

disperse case tends to form disordered or polycrystalline

grains, such cases can be found in Fig. 4b, d and Fig. 8

when g ¼ 1.2, Cs ¼ 0.9. As portrayed in the crystallised

grain orientation plots in Fig. 8, when varying the combi-

nation of g and Cs, it is apparent that the morphological

structure also differs. When the size ratio is raised to 1.06,

independent of number fraction,Cs, the packing starting to

transfer from order to disorder and polycrystalline structure

start to form. Either raising Cs from 0.1 or decreasing Cs

from 0.9 can further suppress the formation of polycrys-

talline towards large-size grains, taking g ¼ 1.3, Cs ¼ 0.9

and g ¼ 1.3, Cs ¼ 0.7 as examples. The later exhibits only

sparse small grains. The rising g can subdivide initially

connected grains into several small parts with diverse grain

angles. This phenomenon can be the evidence of the fluc-

tuation for g(r) in Fig. 6.

Regarding the polycrystalline grain structure, the ori-

entation of each grain can be different from each other.

Depicted by grain orientation plots in Fig. 8, both g and Cs

can be crucial to the diversity of resulting grain orientation.

This diversity of grain orientation angles is portrayed by

the degree of colourfulness, e.g. a polycrystalline case with

a diversity of grain angle can be found when g = 1.2 and Cs

= 0.7, while an almost single-crystalline case is showed

when g = 1.06 and Cs = 0.9 (Fig. 8).

Since rmean is kept constant for each case, e.g. at the end

of the relaxation stage, the structure evolution can also be

characterised by the variation of packing fraction / and the

mean diameter dm. In Fig. 9a, the dm of particles is linearly

related to the packing fraction. The more even the particles

sizes are, the larger dm is needed to form the packing with

the specific rmean. PCP can also be seen as linearly related

to / before reaching 0.87, and followed by an almost

constant trend showed in Fig. 9b. This result is consistent

with that of the 2D setup using circular discs mentioned by

Donev, Torquato [23].

To be clarified, it should be noted that there are limi-

tations when comparing the simulation with experiments in

this study. For bi-disperse samples in 2D simulations here,

centres of all particles are always in one plane, whilst it is

not the case in the experiments. In experiments, described

Fig. 5 Wall effects at varying ratios between container size, D, and
particle size, d. The PCP shows an asymptote when D/d over 70,

which indicates the wall effects are minimised. Three packing insets

illustrate the packing structure of different D/d, showing only the

crystallised particles
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in Sect. 3.1, the centre of small particles can be slightly

closer to the plate, which can result in larger and unnec-

essary overlaps between small and large particles when

observing from out of the plane. This discrepancy may

result in uncertainties for the final /. However, the g is

considerably small in the experiment described in

Sect. 3.1; thus, the uncertainties can be negligible here.

The poly-disperse cases can be extended by adding

particles with more varying sizes into the bi-disperse

assemblies. To achieve this, a certain extent of particle size

distribution, e.g. normal distribution, can be applied by

controlling the mean size and standard deviation. When the

sample size is limited, i.e. only three or five sizes to form

the distribution, the size and content of each particle type

can be crucial to the results [52].

The grain transformation of bi-disperse granular

assemblies can be helpful to explain the desiccation crack

within the extremely fine particle clusters, such as clay and

starch, caused by the drying out of the moisture. In these

materials, particles shape normally are uniform while the

size may vary slightly to form a slight poly-disperse or bi-

disperse assemblies, taking g ¼ 1.2 in this study as an

example. In this case, the polycrystalline structure can be

formed which, to some extent, results in grain orientation

diversity among grains, thus further influence the evapo-

ration and mechanical property of the whole structure.

5 Conclusion

To investigate order and disorder morphological structures

within bi-disperse particle assemblies in pseudo-2D con-

dition, a series of DEM packing simulations have been

conducted, alongside with a 2D packing experiments for

validation purposes. Mono-disperse and poly-disperse cir-

cular discs have been simulated in previous studies, while

the investigation here mainly focuses on the effect of size

ratio, g, and the number fraction of small particles, Cs, in

spherical particle samples.

Fig. 6 Radial distribution function g(r) with varying g and Cs. The

red line represents the mono-size case which can be a reference

compared with the bi-disperse cases. Blue particles (with diameter d)
can be identified that they all located in the grey shell (with thickness

Dr) at Euclidean distance r from the target particle. Particles with

different colour locate in the shell with different r. After normalising

the r using dm, the coloured particle can be represented by the

corresponding shaded range of r=dm. The right plot is a zoom-in

illustration for the case g= 1.1 for r=dm 2 1:4; 2:4½ 	. Note that g(r) of
all cases tends to converge at 1 when r=dm reaches 7

Fig. 7 Percentage of crystallised particles, PCP, vs the size ratio (g)
and number fraction of small particles (Cs). Error bars, i.e. standard

deviation, indicate that results of each point are based on five

simulations
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Firstly, the combined procedure of size growth and

dynamic vibration is proved to be effective to reproduce a

disorder to order transition within the mono-dispersed

granular assemblies. The mixture of bi-dispersed particles

with varying g and Cs can, to some extent, suppresses the

crystallisation when g is raised from 1.06. Meanwhile, Cs

converges from extreme values, e.g. 0.1 or 0.9, to the mid-

range values are also crucial to impede the ordered

structure. During these processes mentioned above, it can

be found that single crystalline structure can gradually

transition to the polycrystalline structure until the crys-

tallisation fully disappears. Some extent of diversity of

grain orientation can raise due to the different combination

of size ratio and bi-disperse number fraction.

The results can give clues on how the mixed binary

number fraction can have effects on the morphological

change for the granular sample. The 2D case may not be

able to capture all the phenomenon, especially compared

with the 3D case, but it can effectively evidence that how

the mixed binary number fraction affects the packing

fraction in 3D [21]. Further investigation on the roughness,

shape of particles and larger size ratio may be worthwhile

since the contact relation changed by those factors may

also be dominant for the order and disorder state.
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