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Modeling the Influence of Particle Shape on Mechanical
Compression and Effective Transport Properties in

Granular Lithium-lon Battery Electrodes

Verena Becker,* Oleg Birkholz, Yixiang Gan, and Marc Kamlah

The calendering step during manufacturing of lithium-ion batteries is an essential
process in the production, as it significantly influences the microstructure of
electrodes and, therefore, the performance of the battery. Within this context, this
article investigates the influence of particle shapes on the micromechanical
responses during calendering and, in turn, their impact on the effective transport
properties of battery electrodes. The electrodes are modeled using discrete
elements. For this reason, a novel algorithm for the generation of random stress-
free particle assemblies consisting of superellipsoids is presented. The effective
conductivities of solid and pore phase are calculated with a resistor network
approach. In this context, a new analytical formula for calculating the individual
resistance between two mechanically deformed ellipsoidal particles is presented.
Furthermore, a geometrical approach is chosen for the pore phase for calculating
individual resistances of pore throats in superellipsoidal particle assemblies. With
the theoretical fundamentals, the effective conductivities of solid and pore phases
of uniaxially compressed ellipsoidal particle assemblies are investigated. The
mechanical response and its influence on the evolution of the effective con-
ductivities are discussed. The deeper insight into the interplay between the
calendering process and electrode microstructure can be a helpful information

Regarding the performance of LIBs, the
effective transport properties are of great
importance.

The microstructure of LIBs is typically
granular. The positive electrode, for
instance, consists of AM, binder, and con-
ductive agent. About 90% of the total mass
of the electrode is the AM, which is lithi-
ated and delithiated during charge and
discharge cycles. The remaining 10% are
shared between binder and conductive
agent, which often is carbon black (CB).
Liquid electrolyte surrounds the porous
solid skeleton, consisting of AM, CB, and
binder.!! The interplay between all elec-
trode components is quite complex.

The microstructure as a result of the proc-
essing of a battery strongly influences the
effective transport properties and, thus,
the performance of a cell*® Significant
changes in the electrode microstructure
may occur during manufacturing as a result

regarding a specific electrode design.

1. Introduction

Lithium-ion batteries (LIBs) are presently one of the most
favorable energy storage technologies. Due to high energy den-
sities, good performance, and durability, the applications range
from the automotive sector to consumer electronics.™ Especially
for hybrid and electric vehicles, new active materials (AMs)
are needed for high-capacity and high-power batteries.**
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of mechanical compaction, such as the

calendering step. It has been proved that

calendering plays a fundamental role, as

the process significantly increases the num-
ber of particle-to-particle and particle-to-current collector contacts,
which improves the electrical and thermal conductivities.”]
Furthermore, the thickness is reduced while the volume of the
AM is constant, which results in an increase in the volumetric
energy density. At the same time, however, the porosity of the
structure shrinks, which results in an increase in the electrode
tortuosity and, thus, leads to a lower ionic conductivity of the elec-
trode. To efficiently enhance the cell performance, it is important
to find the optimal level of compaction.%#1%

For this reason, understanding the underlying physics of gran-
ular media is of strong interest. As experimental measurements
of 3D granular structures are complicated and difficult to ana-
lyze, computational techniques to test and to predict the behavior
of granular materials have been frequently applied. In particular,
the discrete element method (DEM) is a favorable modeling tech-
nique, as it can provide the relation between the macroscopic and
the microscopic behavior of granular (particulate) assemblies.
Furthermore, it allows to model nonspherical particle shapes,
which are more realistic, concerning the natural grain shape
of granular media. It has been widely recognized that the particle
shape strongly influences the dynamics of granular systems,
which, in turn, have an impact on physical properties.!!
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Several publications investigated the relationship between
microstructure and effective transport properties in granular
media making use of DEM. Ott et al. present a method based
on discrete elements to model solid oxide fuel cells (SOFCs)
and LIBs.®! In their approach, the system consists of a binary
mixture representing the AM and the CB phase. A fit formula
for the estimation of the resistance between two mechanically
deformed spherical particles is presented. Particle assemblies
are densified dependent on the different manufacturing pro-
cesses either by mechanical compression (LIB) or by geometrical
adaption of the particle size to represent the sintering in SOFC.
Furthermore, the volume change during operation in LIBs
caused by intercalation and deintercalation of lithium into and
out of the AM is modeled as a geometric increase or decrease
in the particle radius. The authors present a resistor network
(RN) approach for the estimation of the effective transport prop-
erties, which can be applied to uncompressed or compressed,
and unlithiated or lithiated particle assemblies. For LIBs, they
show that the conductivity generally increases during intercala-
tion. A positive influence of calendering on the percolation
threshold of particles in an assembly is found, as well.
However, particles are assumed to be perfectly spherical, only.

Birkholz et al. present a similar approach to investigate the
effective transport through the solid and the pore phase of
LIBs.'"”l In their work, they consider sintered structures for
which the sintering process is simulated as in the previous
study.®® The pore phase is assumed to be shared by CB and elec-
trolyte. Due to this assumption, not only a method to determine
the effective solid phase conductivity is presented but also an
approach to calculate the effective transport property of the pore
phase. The pore phase is disassembled into pores and pore
throats using a Voronoi tessellation. The individual resistance
of a pore throat is then calculated based on a geometrical
approach. The resistance formulas for the solid and the pore
phase are used together with a RN method to determine the
effective transport properties of the single phase.l'”

Concerning the simulation of the mechanics of LIBs with the
help of DEM, Giménez et al. investigate the influence of the cal-
endering step on the mechanical properties of LIB electrodes.™*!
They propose a DEM approach, which comprises the reproduc-
tion of real electrode structures as random spherical particle
assemblies and their mechanical compression to simulate the
calendering step during manufacturing. In this context, a contact
model is presented, which combines the well-known elastic
Hertzian model and a bond model to capture the viscous behav-
ior of the binder. In the previous study,* they add an elastoplas-
tic contact law to their modeling approach, which follows the
theory of Thornton and Ning,™® to better capture the mechanical
properties of a lithium-nickel-manganese—cobalt oxide (NMC)
AM. The calibration and validation are shown by comparison
with nanoindentation tests on single NMC particle and nanoin-
dentation measurements on whole electrode structures. In the
previous study,'® Giménez et al. consider the effective transport
behavior in LIBs. They establish key correlations between the
microstructure of an electrode with its specific properties and
the effective ionic and electronic transport properties of an elec-
trode by comparing simulations and real experiments. For the
electronic conductivity, the parameters in the key relation are
the solid fraction of the representative volume element (RVE),
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the coordination number meaning the number of contacts
per AM particle, the fabric tensor component based on the inter-
particle contacts in the direction of compression, and the ratio of
the contact radius to the particle radius and the conductivity of a
single NMC particle. In case of the ionic conductivity, the key
relation includes the specific free surface area, the ratio of the
coordination number in direction of compression to the direc-
tion perpendicular to it, and the bulk conductivity of the electro-
lyte. In addition, both formulas include proportionality factors to
fit them to real experimental results.

Stershic et al. follow the idea to relate the electronic conduc-
tivity to structural quantities, too.'”) In their paper, they propose
a fabric tensor formalism based on the interparticle contacts to
describe the structure of a LIB and its evolution in case of
mechanical loading. The fabric tensor analysis is applied to
experimental data sets obtained by X-ray tomography and to
DEM simulations of electrode microstructures. For the latter,
the open source DEM code LIGGGHTS is used to create and
to compress particle assemblies consisting of spherical particles
with a size distribution. While the authors do show that
fabric tensors capture the evolution of the interparticle contact
distribution in real electrodes well and may, for this reason, be a
good measure for the electronic transport within an electrode,
the findings from DEM do not represent the experimental
trend very well. Therefore, Stershic et al. draw the conclusion
that a spherical representation of particles in DEM simulation
is not sufficient to describe the mechanics of real electrode
structures.['”!

While the authors in the aforementioned publications make
use of microscopic quantities such as the contact radius between
particles in DEM or even on macroscopic properties of electro-
des such as the fabric tensor calculated based on the particle con-
tacts, Kespe et al. apply a spatially resolved 3D electrochemical
continuum model of a LIB half-cell. In contrast to the previously
mentioned publications, their method does not allow to simulate
the influence of the compression.['® For the calculation of the
influence of the electrode microstructure on the cell perfor-
mance, the approach comes along with an enormous computa-
tional effort. For this reason, small parts of LIB electrodes with a
maximum of ~100 particles may be considered, only, which
may not be perfectly representative for the behavior of a whole
electrode. This does not apply to the approaches by Ott et al.,
Birkholz et al., Giménez et al., or Stershic et al., where more
general quantities with less detailed spatial information are
used. In these cases, a large amount of several thousand par-
ticles can easily be analyzed.

Even though the previously mentioned works helped to give
an insight into the calendering step and the calculation of effec-
tive transport properties, they almost exclusively concentrate on
spherical particle shapes. In real electrode structures, however,
particle shapes may strongly deviate from a sphere.!*! The trans-
fer of findings from spherical to nonspherical particle systems is
subject to doubts. Thus, the influence of particle shapes on the
micromechanical responses during calendering and the impact
on effective transport properties of battery electrodes are investi-
gated in this work. We present a method to generate superellip-
soidal particle assemblies at first. The particle assemblies
represent RVEs inside of a real electrode. The calendering of
an electrode is simulated as mechanical compression of the
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assemblies. Extending the approach given in the previous
study,*? a new method for calculating the effective conductivity
of the solid particle phase and the pore space in (super-) ellipsoi-
dal particle assemblies is shown, as well.

This article begins with the presentation of the methodological
background including the particle shape description and all
relevant contact relations. A new algorithm to create initial struc-
tures of superellipsoidal particle assemblies is derived by extend-
ing the random close packing (RCP) algorithm for spheres.*”!
Next, the RN method for the calculation of the effective conduc-
tivity of solid and pore phases of cathode structures is reviewed.
The formula used for the calculation of the resistance between
two sintered spheres in the previous study!'? is taken and
adapted to calculate the resistance between mechanically com-
pressed ellipsoidal particles. A formula for the determination
of the resistance through a pore throat in a superellipsoidal
assembly is derived, generalizing the geometric approach in
the previous study."? These formulas are verified on the basis
of finite-element (FE) simulations. In addition, the validity is
checked with the help of theories presented in the literature.
Finally, random assemblies of spheroidal particles with different
aspect ratios are created and compressed, to discuss the mechan-
ical response and the resulting effective conductivity in view of
the influence of particle shape on the physical properties and the
impact on the performance of a cell.

2. Methodology for Calculation of Mechanical
Response and Transport Behavior

2.1. Definition of a Superellipsoid

Usually, spherical particles are used to simulate the behavior of
granular media by DEM due to simple contact laws and, as well,
a simple geometry-based contact point definition. However, in
reality, individual grains are not perfectly spherical. A more gen-
eral particle shape description, which not only covers spheres,
but also ellipsoids, cylinders, or boxes, is the superquadric
shape. By increasing the shape parameter from one in the
case of spherical particles, namely, the radius, to five for super-
quadrics, which are three half-axes a,b,c and two blockiness
parameter n, m, a lot more shapes can be easily defined;
see Figure 1.

The surface of superquadric particles is described by the
implicit equation of Barr, which is in local coordinates!*!

s =[5+ [T+ 2

n

-1, x=(xy2" nmeR
M

The variables a, b, and ¢ are the half-axes along the local main
coordinates x, y, and z of the superquadric, respectively. The
blockiness parameters n and m describe the sharpness of edges
of the shape. If n = m = 2.0, an ellipsoid is described. If further
a = b = ¢, the special case of a sphere follows. Convex and con-
cave particle shapes may be generated. Sometimes, the use of the
parametric representation of a superquadric is beneficial, where
a specific point x is defined as
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Figure 1. Superquadrics with blockiness parameters in the range of

n,m € [0.5,1.0,2.0,4.0, 6.0, 8.0, 10.0]. North-South exponent n increases
from top to bottom. East-West exponent m increases from right to left.

x = a(sin 6)%/"(cos p)*/™

y = b(sin 0)%/"(sin ¢)*/™

z = ¢(cos §)¥/" )
x=(x,5,2)T, n,meR

0e(0,z], ¢e€l0,2n)

For the trigonometric arguments in Equation (2) applies

P g o kP k>0
k" = sign(k)k {‘WP k<0 (3)

To avoid the presence of multiple contacts, the particle shapes
in this work are restricted to smooth and convex forms, so-called
superellipsoidal shapes, which means n,m € [2.0,00). If the
blockiness parameters in the exponents are n>>2.0 and
m = 2.0, a cylindrical particle is considered. Furthermore, for
n>> 2.0 and m > 2.0, box-like shapes result. The edginess of
the particle shape increases with increasing n and m beyond 2.0.

2.2. DEM for Mechanical Behavior of Granular Materials

In the so-called soft-sphere DEM, particles are individually iden-
tified based on their shape, the mass, and the physical and
mechanical properties.”” A contact between two particles is
characterized by a virtual overlap with respect to the undeformed
shape, which represents the local deformations in the contact
zone. Detection of the contact interactions between particles
and tracking the motion of each individual particle determines
the behavior of the whole assembly. An interaction depends
on the present contact model, which depends on the material
properties of a particle. The particle motion is described by
Newton’s second law of motion, as well as the Euler differential
equations. In this work, DEM is used to perform uniaxial com-
pression tests (UCTSs), which represent the calendering process
during manufacturing of LIB electrodes. In a UCT, one dimen-
sion is reduced while keeping the dimensions perpendicular to
the direction of reduction constant. A UCT is simulated for a
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particle assembly in a box domain, which characterizes an RVE
of a battery electrode, by applying a prescribed deformation to
one surface of the box in a series of load steps, which are sepa-
rated by time increments At. Artificial damping is used to grad-
ually remove all kinetic energy from the system, as quasi-static
conditions are of interest.”>** The load is applied first for each
increment, whereas for the relaxation process, the equations of
motion are solved numerically by an explicit time stepping
scheme to find an equilibrium state.!**!

2.2.1. Mechanical Contact Model

The contact force in normal direction for elastic material behav-
ior is well described by the widely known Hertzian model.*%%”!
The Hertzian theory applies only under the condition that two
contacting elastic solids have continuous surfaces, and the defor-
mation induced is significantly smaller than the dimensions of
each solid. Thus, the problem remains of localized nature, and
the deformed regions in the contact zone can be approximated as
quadratic curved surfaces, regardless of the overall shape of the
solids. In the general case, when loaded in normal direction, two
smooth convex solids will deform under compression and touch
each other over an elliptical region, having the two semiaxes a.
and b.; see Figure 2. Furthermore, we define the equivalent
radius ¢, = \/a.b. as the contact radius of a circle of the same
size as the area of the elliptical contact region. The contact prop-
erties are mainly influenced by the local geometries in the vicin-
ity of the contact point. These are well described by the principal
curvatures «!,x}, <, &, of the contacting particles and the corre-
sponding principal axes KI, KI, K{ Ké; see Figure 2. In general,
the principal axes of two surfaces do not have to coincide but may
be twisted by an inclination angle a. For details concerning the
calculation of the curvature, we refer to the previous studies.!**="

Given the principal curvatures and the angle of inclination,
two variables A and B can be calculated according to

A+B:%[K{+K£+K{ + )]
B A= [~ kb7 + (el - &)’ “
+ 2k} — x}) (k] — ) cos(Za)F

Figure 2. Contact ellipse with half-axes a., b, and main curvature
directions K%‘y’z.
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With the help of these variables, the effective contact radius
11

R.=-—— 5

“~2VaB ©)

the eccentricity

be 2~ A\ 4/3
e2:1—(;c> ~1—(§) (6)

and the major and minor semiaxes
a.=c(1—€)"V* and b.=c(1-e)V* (7)

follow. Dependent on Young’s modulus E¥ and Poisson’s ratio
*,k = I, ] of the material of each particle I and ], the effective
Young’s modulus can be defined as

1—0F 1=\ !
Fe= (T T ) ®
The Hertzian normal force follows as
4 _
Fo =3 Eev/Reby’f, " ©)

The variable f, is one of two correction factors f; and f, to cap-
ture the eccentricity of the contact area. The correction factors are
equal to unity for a circular contact. Although their expressions
are quite complex, as described in the previous study,””) approx-
imate equations are often sufficient in terms of precision for
practical purposes. Thus, the correction factor functions can
be approximated according to the previous study?®* as

A\ 0.06027 1.456 A\ 0.068471.531
~1-||(= , ~1-||=
e |G A G

The variable §,, describes the size of the virtual normal overlap,
which depends on the contact point definition and which is
described in Section 2.2.2.

In tangential direction, we make use of the simplified
approach by Di Renzo and Di Maio.?***! The tangential force
is taken as minimum between shear force and friction

(10)

F, = —tmin(|uF,|, Fis) (11)

with the direction of the tangential displacement t. In this equa-
tion, F, is the tangential shear force, whose incremental change
in each step is defined as

16 1
AFys =5 Geie 1 86 (12)
with the effective shear modulus

2 2—\! E*
Go=|——+—— , Gr=—— k=1, 13

¢ ( e ) 2(1+1F) J (13)
the correction factor
Ac

¢=1+14log (F) (14)

to account for the ellipticity of the contact area and the incremen-
tal tangential overlap
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At

AS, = / vidt (15)

0

Finally, the total contact force, acting on a particle, can be
calculated according to

. :{Fn+1=t, if 5,>0

0, if 5,<0 (16)

2.2.2. Mathematical Contact Point Definition

The contact point definition of nonspherical shapes is, in con-
trast to spherical particle shapes, where the contact point is geo-
metrically defined along the connection between the two sphere’s
centers, not straightforward.'”! As the superquadric equation
defines the particle as a function in local frame, the contact detec-
tion algorithm chosen here follows the approach by Houlsby."**!
This algorithm makes use of the special definition of the super-
quadric equation, where the particle’s surface is described by
f(x) = 0 according to Equation (1). If f(x) < 0, the point x lies
inside of the particle. Furthermore, f(x) > 0 describes points,
which lie outside of the particle. Any surface must be strictly con-
vex, which is automatically satisfied if the blockiness parameter
of a superquadric is n > 2.0, m > 2.0, to assure to eliminate the
possibility of multiple contact points between particles. Another
necessary condition is that for any point x, not only the function
itself must be evaluable but also the first and second partial deriv-
atives. The surface of particles I and J can be expressed in a com-
mon global coordinate system X = (X,Y,Z)T in the form
FI(X) = 0 and F/(X) = 0. Considering two superellipsoidal par-
ticles with strictly convex shapes and their shape functions F(X)
and F/(X) in global coordinates, the contact point is defined as
point midway to both and at the same time closest to both, which
leads to the optimization problem

minimize[F/(X) + F/(X)], subjectedto F/(X) = F/(X)  (17)

This optimization problem can be solved by applying Lagrange
multipliers, leading to a system of four equations with four
unknowns, which can be solved by Newton’s method. Details
concerning the calculation of the contact point between two par-
ticles are given in the previous studies.***"!

Having the contact point X, found, the normal overlap direc-
tion is defined as

Iy "1 _ - __"2
e T R (18)

The contact point and the contact normal define the contact
line; see Figure 3. The normal overlap §, follows as distance
between the two intersection points X! and X/ of the contact line
with the particle’s surfaces. To find the intersection points, the
following nonlinear algebraic equations

FI(X]) =
F(x})

with X! =X, + &nl/,

0,
(19)
0, with X/ =X_+ ¢&n/!
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Figure 3. Contact zone with contact point X, contact points on the
particle’s surfaces XL, X., virtual total overlap &, prorated overlaps
8,8, and contact normal n'.

have to be solved with respect to the two scalars &/ and &. These
equations can easily be solved in local frame by Newton’s itera-
tion, which is described in the previous study.”*! Having the two
intersection points found, the normal overlap follows as
8, = XL —x].

2.2.3. Equations of Motions for Superellipsoids

The translational motion of each particle obeys Newton’s second
law of motion, which is

F. = mXc (20)

where m and X are the mass and the position of the particle
center, respectively. F. is the total force, acting on a particle
according to Equation (16). Due to contact forces, particles will
translationally move. At the same time, contact forces may cause
torques on particles, which lead to reorientation. The rotational
motion is described by the Euler equations.’® Referred to the
local body-fixed frame, they are defined as

I

. | il 11 I
Lyx @y + (lzz - lyy)wyw
ilo'+ o' xilo' =te( ol + (i, —il)olo

I
z
= (21)

I

z
IS | i1 i1 I 1
220z + (lyy - 1xx)wxwy =t

where @' is the angular velocity, i’ is the tensor of inertia, and t!
is the total torque acting on particle I in local frame. The repre-
sentation in local coordinates is beneficial in this case, because
the tensor of inertia in local frame contains nonzero entries in
the diagonal, only.

The solution of the equations of motion is done with a time
stepping scheme. The so-called Velocity—Verlet algorithm can be
used to integrate the translational movements, whereas a direct
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multiplication method serves to solve the rotational motion of a
particle. Details can be found in the previous studies.*”*"!

The transformation between global and local coordinate sys-
tem can be performed with a quaternion multiplication, which
is beneficial compared to the use of rotation matrixes in terms
of memory and computation time. An explanation for the trans-
formation with the help of quaternions is given in the previous
studies.>**!

2.3. RCP for Generation of Initial Overlap-Free Particle
Assemblies

For the simulation of the micromechanical behavior of LIB elec-
trodes, we want to investigate an RVE. In the easiest case, spher-
ical particle assemblies represent a periodic part of the real
electrode structure. For the generation of spherical initial struc-
tures, the so-called RCP algorithm, first proposed by Jodrey and
Tory, is a widely known algorithm >

As the generation of the RVE is an essential step, we present a
novel RCP, which is able to produce overlap-free, dense, and ran-
dom superellipsoidal particle assemblies. Monosized assemblies
or assemblies having a particle size distribution may be created
with the adapted algorithm, as well as structures consisting of
different particle types, e.g., cylinders and boxes.

The idea of the modified RCP is still to eliminate the overlap
5" between two contacting superellipsoidal particles I and | by
iterative size reduction and separation. In the initial state, N par-
ticles of k different types with fixed shapes are created in a virtual
box of size I3. Fixed shape means that the aspect ratios
af =a/b* and g =a¥c* and the blockiness parameters
n* and m* are constant during the whole procedure. Each posi-
tionx = [x, y, 2T of an individual particle is chosen at an arbitrary
position within the box 0 < x < L. Furthermore, each orienta-
tion, described by the Euler angles ¢ = [a,f,¢|T, is random
and within the range 0 < ¢ < 360°. The orientation follows
the x-convention of Euler, where the first rotation a takes place
around the z-axis, the second rotation  around the new x-axis,
and the third rotation ¢ around the new z-axis.''*%

The first crucial step is the definition of the so-called
outer and inner shape parameters s,y = [Gout» Pout> Cour] . and
Sin = [Gin, Pin, Cin] 7, as schematically shown in Figure 4. These
parameters are defined as follows: the outer shape parameters
characterize the overlapping state, whereas the inner shape
parameters represent the overlap-free situation, where particles
are just in touch in a single point but do not overlap. Decisive for
the inner shape parameters is the worst overlap between two par-
ticles. As the outer shape parameters are always larger than or
equal to the inner shape parameters, an outer packing factor 7,

Figure 4. Definition of the outer and inner shape parameters.
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S0 S, Vo]

Vbox

(22)

Nout =

can be calculated, defined as the ratio of the sum of all particles
having size s, divided by the box volume V., = 3. Calculating
this ratio with the size of the inner shape parameters s;, provides
the so-called inner packing factor n;,

S, Vi)
Vbox

Min = (23)

During the algorithm, the worst overlap has to be identified
and to be removed by iterative size reduction and separation
in each iteration step. Finally, when 74, = n;,, which is the case
for sy = s, for all particles, the assembly is free of overlaps, and
the configuration free of contact forces is reached, which can
serve as a start configuration for DEM simulations.

To get the very first size of the outer shape parameters at the
beginning of the RCP process, the half-axis a' of particles of type
1 is chosen to be the reference axis aR for all other half-axes of all
particle types defining the ratios

R R R
a a a
1 1 1
=210, e =2, = 24
a = b= | (24)
and
R R R
a a a
k k k
e , e =—, €= 25
a ak b bk c ol ( )

for particles of type k # 1. Initially, the outer packing factor is
chosen to be 77, = 1.0, which means that the sum of the volume
of all particles is the same as the box volume. This leads to the
condition

Mype NF Mype
. " kpk ck 1 2 1
Vi = ZZV ZSN (mk,W—Q-l)B(J—H,;

=1 i=1
(26)

where V¥ is the volume of particle i of type k, and N* is the num-
ber of particles of type k. B is the so-called beta function.*”
Reformulation with the use of Equation (24) and (25) leads to

e 1 1 1 2 1
Viox = ZNkS — Bl—,—+1]-B +1—
Eaé‘bec nymy mk my ny

(27)
Finally, solving Equation (27) gives the initial size
Mhype k ok ok
3 nmp€g € €c
aR = Vox :| (28)
2. wngr 2 0B 1D

of the leading axis a® by which all other outer shape parameters
can be calculated according to Equation (24) and (25).

Initially, many overlaps are in the system due to the initial
packing factor of 7., = 1.0. The worst one has to be identified
to get the values of the inner shape parameters. If the particles
have different sizes, the overlap has to be related to the mean
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particle radius of both particles to calculate how much percentage
the overlap occupies relative to the particle size. Thus, the abso-
lute largest overlap in the whole system does not have to be the
proportionally worst one. Keeping this in mind, the overlap of
two particles in contact with each other is not just simply taken
as the largest one. Instead, the overlap is weighted with the mean
bounding sphere radius rf_’[] of the two contact partners. This
gives the related weighted overlap 5"/
_ st

yJ:zg (29)

where r}/ is the mean bounding sphere radius, meaning the

mean of the minimum radii rl, and rl; of the surrounding
spheres that do touch the particles only in single points, but
do not intersect with them. The calculation of the bounding
sphere of a superellipsoid is given in the previous study.**

In each iteration step, all contacts are searched, and the
weighted overlaps are calculated. These are stored in a list among
their wickedness starting with the worst one. For all contacts and
belonging overlaps, is applies

m\ mi/m
+

The inner shape parameters are calculated as a function of the
worst overlap by searching for the size of the shape parameters
for which the contact point X of the worst contact lies exactly on
the surface of both contacting particles, which is the case
when f(X.) = 0. This leads to the condition for the inner shape
parameters s;,

n

X 4

k
Aout

Zo |™
k

out

Yo
Dot

‘S1<0  (30)

C,

Foul) =

x. |m Ve | my /g z. | M
fin(Xc):(_kC _kc ) + - —-1=0 (31)
Gin bin Cin
Introduction of the factor p gives
xc M Yo |\ e/ me z. |k _
(™ + | 2") s —1=0

{1}’"’« Xe|™ Z|"
» ak

ck

Ye

bk

e\ my/ng
+

e

k

(32)

Next, the two worst overlapping particles are moved away from
each other dependent on their amount &%,k = I, of the total
overlap 5/ = &' + 8/ along the normal direction of the contact
n'J; see Equation (18) and Figure 3. Subsequently, the outer
shape parameters of all particles are contracted according to

. i

i Gout
X =
i+1

P 1 J ﬁ ’ out i
o= 2) N’ J=-logAn]
AﬂL = ”i)ut - rlin

(33)

where i is the number of iterations, and Ay is the difference
between outer and inner packing factors calculated by
Equation (22) and (23) based on the current values of s, and
Sin- |+ represents the Gaussian brackets. Applying the Gaussian
brackets to a real number x, returns the largest integer, which is
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smaller or equal to x. The contraction of the particle’s outer shape
parameters gives the new values for the outer shape parameters
in the next iteration step. The parameter ¢, in Equation (33) is the
so-called contraction rate and an input parameter, which controls
how fast the outer radius is contracted during each iteration step.

As reported earlier, for example the previous study,?”! the
resulting packing factor can be roughly controlled by c,. To check
if this is still valid for the modified superellipsoidal RCP, spheri-
cal, ellipsoidal (spheroids), cylindrical, and box-like assemblies
with different aspect ratios a, = a/b = ; = a/c are created with
four different values of the contraction rate ¢,. The exact input
parameters are given in Table 1. Each assembly consists of
500 monosized particles, and three random cases are generated
for each geometry data set.

As a first result, it is shown in Figure 5a,c that the trend of an
increasing final packing factor with decreasing contraction rate is
still valid for ellipsoidal, cylindrical, and box-like assemblies.
Nevertheless, due to the more complex shapes, nonspherical
structures reach lower packing factors for the same values of
the contraction rate compared with spheres, which is shown
in Figure 5b. Here, the final packing factor for the contraction
rates ¢, = [0.01,0.1, 1.0] is plotted over the aspect ratio a, = f5,
for spheroidal shapes. It is evident that for an aspect ratio of
1.0, which represents a sphere, the final packing factor reaches
the highest values. For box-like and cylindrical shapes, this trend
is the same. Cylindrical and box-like structures with the same
length of all half-axis a = b = ¢ reach the highest packing factors,
whereas the packing factor with an increase in the aspect ratio of
the rotational symmetric structures decreases. In addition, the
maximum packing factor reached for spheroids with a =b=¢
at a fixed contraction rate is higher than for cylinders with
a = b = c. The packing factor for cylinders with a = b = ¢ is,
in turn, higher than for box-like particles with a =b=rc.
These observations occur, because the orientation of each indi-
vidual particle is chosen randomly and cannot change during the
algorithm. Furthermore, the higher the deviation from the spher-
ical shape is, the more complex the shape and the mutual inter-
ference of particles. Due to the fixed orientation, more iterations
and a slower contraction are necessary with increasing aspect
ratio and higher edginess of the particle shape, to reach as high
packing factors as in assemblies consisting of spherical particles.

On the other hand, we want to assure random orientation of
particles to have no texture in the initial structure prior to calen-
dering. The adapted RCP that fulfills this condition is shown in
Figure 6, where the probability of the shortest half-axis for an
oblate particle assembly (left) and the probability of the largest
half-axis for a prolate particle assembly (right) are plotted based
on the orientation of the considered half-axis for all particles in
the assembly. This can be done using a fabric tensor analysis.

Table 1. Input parameters for RCP.

Shape a, = f, ¢

Ellipsoid 0.5, 0.667, 0.8, 0.909 0.01, 0.1, 1.0, 10.0
1.0, 1.1, 1.25, 1.5, 2.0

Cylinder 0.667, 1.0, 1.5 0.01, 0.1, 1.0, 10.0

Box-like 0.667, 1.0, 1.5 0.01, 0.1, 1.0, 10.0
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Figure 5. RCP of a,b) spheroidal cylindrical, ¢,d) box-like particles. (a,c)
Final packing factor over contraction rate. Reached packing factor over
aspect ratio for (b) spheroidal particles and (d) cylindrical (hollow
markers) and box-like (filled markers) particles; contraction rate value
for points of the same color and shape increases from top to bottom.
Each point is the mean of three random assemblies with the same geom-
etry data according to Table 1.

o, =0.5

Figure 6. Moment tensor N of initial orientation of spheroids with
a, = 0.5 (left) and a, = 2.0 (right).

Fabric tensors are a numerical approximation of a real directional
data set in a multidimensional space.l**! There are three kinds of
fabric tensors, where the first is the weighted moment tensor
(called moment tensor) N, the second a least-square-based tensor
(called fabric tensor) F, and the third an orthogonal decomposi-
tion of the second (called deviatoric tensor) D. Fabric tensors,
which represent the directional distribution of unit vectors #,
are symmetric referred to the origin f (i) = f(—#). They sum
up to one on a unit surface [.f(#)dl" = 1, where I is a unit
sphere in 3D. Based on the true directional distribution of the

\%
directional data f (#), a kth order approximation f ¥ (#) can build
up, where the entries of the fabric tensor serve as coefficients for
a polynomial expansion.!"”) Making use of spherical coordinates
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in 3D, this approximation function can be illustrated. To analyze
the orientational distribution, we make use of the moment tensor
of the second rank, which can be calculated as

(34)

where k is the total number of unit vectors. As a unit sphere
represents the state of perfectly random distribution, the almost
perfectly spherical shapes in Figure 6 show that the individual
orientations of particles in the assemblies are distributed
randomly.

2.4. Calculation of Effective Transport Properties

2.4.1. Resistor Network Approach

In this work, we make use of the RN method to calculate the
effective conductivity, for both the solid and the pore phase of
a cathode structure inside a LIB. The general idea behind RN,
as used here, is the so-called node potential method.™ This
method is explained in-depth in the previous study? and, thus,
will be briefly summarized here as background information for
the extension to ellipsoidal and superellipsoidal particle struc-
tures, only.

The mathematical formulation for the node potential method
can be explained with the help of the exemplary network in
Figure 7. In this graph, any nodes I and ] are labeled with N’
and N/, whereas the current between them is I'J. Considering
the boundary nodes of the network, N° and N, between which
all other nodes lie, an unknown effective current I°T results
due to the potential drop between these boundary nodes. At each
single node in the network, Kirchhoft’s current law

Mneigh

II:ZIIJ:O
]

represents the conservation of charge. The variable n,g, is the
number of neighboring nodes of node N’. Furthermore,

(35)

0,4 Y
R/ ¥

(pl ¥ UO,l
Reff
S01 — 0 _ UO,l

]\/'2 ]2,3

Figure 7. Approach for the calculation of the effective conductivity on an
exemplary electrical circuit using RN.
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Ohm’s law
IIJ:U_”:wlfq’l (36)
RYJ RN

is valid, where R'J is the resistance of the resistor between two
nodes N’ and N/, and U'J is the voltage drop between them,
which can be expressed by the potential difference ¢! — ¢/.
Combining both formulas results in

Pneigh

Mieigh (/)1 _ §01
r=>"1=>%" =i (37)
J J

which gives one equation for each node. Formulation of this equa-
tion for each node results in a system of linear algebraic equations
(SLAE), which has to be solved to get the values of the unknown
node potentials ¢ and the unknown current I*f. To this end, an
arbitrary potential difference ¢° — @' = U%! between the two
boundaries is chosen. Having the SLAE solved and, thus, knowing
all potentials and the effective current, the effective resistance of
the system follows as

U0,1

Reff = (38)

Ieff

Finally, the dimensions of the considered domain have to be
considered to get the effective conductivity. In this work, rectan-
gular domains are considered with the cross-sectional area A%o™
and the domain length %™, Thus, the effective conductivity
follows as

1 Ldom

eff _
Re Adom

K (39)

For details concerning the solution of the SLAE, we refer to
Birkholz et al.'”}

2.4.2. Effective Transport Property of Solid Phase

We approximate the granular structures of LIB cathodes by dis-
crete elements, where for each element, overall properties are
known, only. Concerning the geometry, each discrete element
is clearly defined by the position of the particle center, the ori-
entation, and the particle shape. Now, regarding the effective
conductivity through particles of a certain phase, we present,
in this section, a formula for the resistance due to the bottleneck
effect along the contact area between two particles pressed
against each other.

First of all, to make use of the RN method for the solid phase,
conducting pathways have to be searched in the particle assembly.
Such percolated paths are symbolized in Figure 8. To find all per-
colated paths, all clustering particles, which connect two opposite
boundaries of the structure with each other, have to be identified.
Subsequently, these paths are converted into a RN, where we take
the center of each particle I as a node N, to which we assign the
potential ¢!, whereas a resistor R is attributed to the edge
between any nodes I and J in mechanical contact. The resistance
between two individual particles can be determined dependent on
the mechanical deformation of the contact zone and the arising
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Figure 8. RN scheme for the solid phase of a granular particle assembly.

mechanical contact area between them. At particles in touch with
the boundary, additional nodes are modeled to impose the bound-
ary conditions there. This procedure results in a RN, which is
needed to calculate the effective solid conductivity according to
the scheme presented in Section 2.4.1.

The calculation of a single resistance between two individual
particles is based on the mechanical contact area, which arises
with increasing compression. The formation of the contact area,
in turn, depends on the material properties, e.g., elastic or pos-
sibly plastic material behavior.**! In the elastic case, for general
shapes, the contact area will be elliptical, as explained in
Section 2.2.1. In this context, the size of the contact area calcu-
lated by DEM is defined by Equation (4)—(7).

For the geometrical resistance between two sintered spheres,
the authors of the previous study!'? make use of the analytical
resistance formula presented in the previous study*®

1kl 1/

RU
4r,

(40)

Here, k' and «/ are the bulk conductivities of the conducting
materials, and r. is the contact radius of the two spheres.
This solution can be used in conjunction with the equivalent
radius of the mechanical elliptical contact area according to
Section 2.2.1, which gives r. = ¢, to describe the elliptical situa-
tion. Thus, the solid resistance formula between two mechani-
cally compressed ellipsoids follows as

1k 1/
e,

R (41)

2.4.3. Verification of Resistor Network Method for Solid Phase

To verify the solid resistance formula, taking advantage of the
mathematical equivalence between stationary charge and ther-
mal transport,'?) FE analyses (FEAs) are taken as a reference
solution. The FEA provides the spatially resolved solution of
the stationary boundary value problem. If the mesh refinement
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Figure 9. Mechanical FE model for the compression of two ellipsoidal
bodies with half-axes a, b, ¢ and compressing displacements &' on particle
I 'and & on particle J.

is sufficient, the solution can be considered to be exact. The FEAs
are calculated with the software Abaqus.[*”]

In the first step of the FEA, two elastic ellipsoidal bodies, as
shown in Figure 9, are compressed displacement driven in
x-direction. The contacting particles are either spheroids or tri-
axial ellipsoids with aspect ratios in the range of a, = 0.5..2.0 and
Br = 0.5..2.0, where a, = a/b and §, = a/c. The half-axis a points
in the polar direction, whereas b, ¢ are the half-axes in the equa-
torial plane. For prolate spheroids, it applies a > b = ¢, and thus,
a; > 1and 8, = a,, whereas for oblate spheroids, the aspect ratio
is a, < 1 and B, = a,, and thus, a < b = c. A sphere is defined
through a, =, = 1 and a = b = c. Triaxial ellipsoids are char-
acterized by @, # 1.0 # f,. The considered spheroids are volume
consistent, and thus, for different aspect ratios, the half-axes
sizes vary, only, whereas the mean particle radius # = v/abc is
the same. For spheroids, four different contact configurations
are considered; see Figure 10. Three additional contact situations
with triaxial ellipsoids of different particle sizes are investigated,
as well. The contact configurations are chosen, such that symme-
try can be exploited. The geometry data and the material proper-
ties are listed in Table 2.

In the second step, the deformed ellipsoidal geometries
are imported, and a temperature gradient is imposed on the
xy-symmetry planes of both ellipsoids, which is shown in
Figure 11. The value of the temperature gradient is set to one
for simplicity. Thus, a flux through the mechanical contact area
emerges between both particles. To determine the resulting
resistance R/ between them, the resulting total heat flux
Qpra at the xy-symmetry plane of one of the two particles is eval-
uated, to finally obtain the resistance as

AT

RW = _——_
QFra

(42)

This value is then compared with the result according to the
analytical formula in Equation (41), which is plotted in Figure 12.
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equator-equator rotated

Figure 10. Considered contact configurations in case of spheriodal
particles.

Table 2. Geometry and material data of compressed ellipsoids.

Shape a, B 7 (pm)
Oblate 0.5, 0.667 a, 5
Prolate 1.5, 2.0 a, 5
Triaxial / 1.5, 1.25, 0.75 1.25,0.8, 0.8 55,45
Triaxial J 0.75, 0.75, 0.8 0.909, 0.8, 1.25 57,55

In the left graph, the verification for the contact between two
spheres, two oblates, touching as in case four of Figure 10,
and two prolates, touching as in case five of Figure 10 is shown.
As the calculated curves and points of all cases according to
Table 2 lie close to each other, these three cases are shown exem-
plarily here, only. The conductivity in all cases is k' = ¥/ = 1.0. In
the right part of Figure 12, the comparison between FEA and
analytical formula for the three triaxial cases is presented. In
these cases, the ratio of the conductivities of both contact part-
ners I and J varies between k' =&/ = 1.0 (hollow markers)
and «!/k¥/ = 1/10000 (filled markers). The average mean error
of all considered cases between FEA and analytical formulae
is below 5%. The good agreement between FEA and analytical
formulae approves the here chosen approach for the calculation
of the effective conductivity between two solid, mechanically
deformed ellipsoidal bodies.
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Figure 11. Temperature FE model for heat transfer between two deformed
ellipsoidal bodies with temperature boundary conditions T' and T/.
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Figure 12. Comparison of FEA results (points) to analytical prediction
according to Equation (42) (dashed lines).

From the computational point of view, a FEA for a FE model of
two contacting eighths ellipsoids with around 300 000 nodes for
the mechanical compression and the heat transfer analysis calcu-
lated with eight central processing units (CPUs) on the workstation
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz with 32 GB ram
specifications needed about 23 GB ram and around 86 400 s, while
the resistance calculated by Equation (41) is immediately there.

2.4.4. Effective Conductivity of Pore Phase

For the application of the RN method to the pore phase, we follow
the approach developed by Birkholz et al.'?! and extend it to
superellipsoidal particle shapes. The idea is to discretize the pore
phase by a Voronoi tessellation. In general, the Voronoi tessella-
tion assigns a spatial cell to an isolated point N? in a domain.
Each cell contains all points, whose distance is less or equal
to a neighboring cell node NJ. Thus, a Voronoi cell has, in
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3D, the shape of a convex polyhedron. For the pore phase, each
particle center is chosen to be the center of a Voronoi cell, which
is consequently build up around the related particle. In this way,
the whole domain can be discretized into cells. For this discre-
tization process, the open source library Voro++ is used.*®!

Figure 13 shows a Voronoi tessellation. The part of a Voronoi
cell, which is not covered by the particle, is part of the pore space.
Each Voronoi vertex is the center of a pore, whereas the corre-
sponding edges represent pore throats. Hence, network nodes
NT are set to the pore centers, where a potential ¢! is assigned,
whereas a resistance R/ is related to an edge connecting to pore
center NJ. Furthermore, all boundary cells have to be identified
to apply the boundary conditions there. This procedure results in
a RN according to Section 2.4.1.

The crucial part is the calculation of the individual resistances
of pore throats, where we use a geometrical approach similar to
the previous study."? Each pore throat element is subdivided
into m subpore elements along the considered edge; see
Figure 13. Furthermore, each subpore element is divided into
n sufficiently small increments AL, where for each segment,
the resistance can be calculated according to

AL*

n
Amean

AR =p (43)

Here, p is the resistivity, and A, = 0.5(A, + A, 1) is the
mean cross-sectional area for the nth increment; see Figure 14.
The cross-sectional area cannot simply be determined based on
the radius and the boundary nodes of the cross section, as it
can be done for spherical particles. Instead, all intersection points

< Ieff
n
- ., mean
voronoi edge *_DNI/ ':hl"’ /
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Figure 13. RN scheme for pore phase of a granular particle assembly.

m sub-pore element

AR

m

XO

Figure 14. Decomposition of subpore element (left) and calculation of
intersection points between particle surface and cross-sectional area

(right).
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of one cross-sectional element with the particle’s surface have to be
determined iteratively. Having in mind that for any point on the
surface of a superellipsoidal particle f(x) = 0 applies, the condi-
tion, which has to be solved, written in global frame, is
F¥(X¥) =0, with X¥=Xk+¢nb k=0,1,2,... .k (44)

In Equation (44), X* describes all points of the cross section,
which intersect with the particle’s surface. n* are normal vectors
along the “particle-free” edge of the considered cross-sectional
area and, as shown in the right part of Figure 14, which
point from the edge to the particle center. Equation (44) can
easily be solved in local frame by Newton’ iteration with respect
to &. If enough increments k are chosen, the intersection line
between particle and cross-sectional area can be determined pre-
cisely. When all intersection points are found, the respective cut
sections can be calculated using the Boost library."*”!

Having all cut sections found, the resulting resistance of one
pore sub-element follows as series connection of the »n incremen-
tal resistances

ARy =3 ARy, (45)
1

The length AL of the nincrements is successively reduced dur-
ing the calculation process, until the subresistance value of the
next increment does not differ from the previously calculated one
by more than a certain threshold, which is chosen here to be 5%.
Finally, the total pore resistance follows as parallel connection of
all m subpore elements along one edge as

I o1 ]!
Rpgre = |:Z AR#,]:|

1

(40)

2.4.5. Verification of Resistor Network Method for Pore Phase

To verify the abovementioned formula for the pore throat resis-
tance of superellipsoidal particle systems, we again make use of
FEAs. Due to the absence of a fully analytical formula, the FEAs
are assumed to be the exact solution.

Three different types of particle assemblies are considered. First
of all, ellipsoidal systems with 200 particles are created by the RCP
presented in Section 2.3. Assemblies with different size distribu-
tions with the standard deviations of 6 = 0.0, 0.05, 0.1, 0.2 are con-
sidered. The geometry data is listed in Table 2.

In a second step, the overlap-free initial systems are artificially
densified, by increasing the particles half-axis about 1.0, 2.5, 5.0%
relative to their size, neglecting any mechanics. This leads to
overlaps in the structure, as they would occur in mechanically
compressed discrete element structures. For the verification,
we fall back to an artificial densification due to the computational
limitation of the FEA. Namely, the mechanical compression of
200 particles, spatially resolved with sufficient fine meshing
using Abaqus, is computationally not possible. In addition, as
particle deformation due to mechanical compression is limited
to local regions, only, and virtual overlaps are merely of a few
percent, the overlapped state can be assumed to be sufficiently
accurate to approximate the compressed deformed state of a
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particle assembly. For the simulation of the conductivity with
FEs, 200 particles are approximately the maximum number of
particles for which a solution can be gained in terms of compu-
tation time and memory. On the other hand, going back to
Section 2.4.3, when calculating the resistance for transport
through two particles in contact, it turned out that such a sim-
plification for that case is not admissible. Evaluating the resis-
tance in Equation (41) based on a contact area obtained by
growing the particles self-similarly gives no reasonable approxi-
mation for the resistance based on the Hertzian contact area.

For the FEA, the geometry data of the superellipsoidal struc-
tures generated with RCP and artificially densified are imported
into a box-shaped domain, where all parts of particles outside of
the domain boundaries are cut off. The complement of the parti-
cle phase is the pore phase of the structure in the box domain. As
we are interested in transport through opposite faces, all nodes of
the top surface are set to the same temperature. The temperature
assigned to all nodes of the opposite surface, the bottom surface,
is dropped by a temperature gradient of AT = 1.0, for simplicity.
The other four box faces are assumed to be insulated.

Finally, the resulting heat flux Qp, has to be evaluated at one
side of the box faces, where the temperature boundary condition
is applied, to get the effective conductivity of the FEA. Knowing
the domain length Ly, as well as the cross-sectional area Agop,,
the effective conductivity follows as

Keff _ QFEM Ldom
- AT Adom

(47)

For the calculation of the effective conductivity with the RN
method, a potential drop of Ag = 1.0 is imposed on the opposing
boundary faces, whereas no boundary condition is applied at the
nodes of the four other box faces. According to Equation (39), the
box dimensions have to be considered to calculate the effective
conductivity. It yields

Ieff Ldom

ff
K¢ A @ Adom

(48)

Note that the used bulk transport properties of the materials
are set to a unit value, so that all results, finite element method
(FEM) and RN, refer to unit bulk properties. Multiplying these
normalized values with the corresponding real material bulk
property gives the effective transport property of the considered
granular material.

The pore phase conductivity of ellipsoidal particle assemblies
according to Table 3 is presented in Figure 15. The black solid
line represents a perfect match, whereas the blue dashed line
demonstrates the mean deviation between FEM and RN. Each
case represents a geometry data set according to Table 3 for
which four different calculations have been performed. In gen-
eral, for all 48 simulations, the RN method overestimates the
FEM solution by about 0.37%. The absolute error between both
methods is 2.22%, which leads to the conclusion that the FEM
and RN are in very good agreement.

To verify the pore phase conductivity of superellipsoidal par-
ticle assemblies according to Table 4, the comparison of FEM
and RN for cylindrical and box-like structures is presented in
Figure 15. Again, the black solid line represents a perfect match,
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Table 3. Geometry data of ellipsoidal particle assemblies.

Case Shape a, B

1-9 Spheroidal 0.5, 0.667, 0.8, 0.909, a,
1.0, 1.1, 1.25, 1.5, 2.0
0.667 1.5

1 Triaxial 0.8 1.25

10 Triaxial

12 Triaxial 0.909 1.1

case 1
0-45 7 case 2
case 3
0.40 4 case 4
case 5
case 6

case 7

0.35 o

4 AVOP>OOoO

case 8

&3 case 9

0.30 4 ® case 10

®  casell
case 12

0254 & e £=0.37T%

RN/ Sm—1 —

T
0.25 0.30 0.35 0.40 0.45
AFEM /Sl
Figure 15. Comparison of FEA results and RN results for the effective con-

ductivity of the pore phase for polydisperse ellipsoidal particle assemblies.
Mean deviation & = +0.37%. Geometry data according to Table 3.

Table 4. Geometry data of cylindrical and box-like superellipsoidal particle
assemblies.

Case Shape a B
1-5 Cylindrical 0.667, 0.8, 1.0, 1.25, 1.5 a,
6-8 Box-like 0.667, 1.0, 1.5 1.0
9 Box-like 0.909 1.1
10 Box-like 0.8 1.25
1A Box-like 0.75 1.33

whereas the blue dashed line demonstrates the mean deviation
between FEM and RN. Here, according to the 44 simulations, the
RN method underestimates the FEM by about 0.42%. The abso-
lute error between both methods is 1.81%, which is a good match
again.

Due to the overall good agreement between FEM and analyti-
cal prediction, the RN method is successfully verified for the cal-
culation of the effective pore phase conductivity in nonspherical
superellipsoidal particle assemblies (Figure 16).

2.4.6. Discussion of Derived Resistance Formulas for Solid and
Pore Phases

For the pore space of an assembly of particles, a verification could
be achieved by FEAs. However, other than a two-particle contact,
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Figure 16. Comparison of FEA results and RN results for the effective
conductivity of the pore phase for polydisperse cylindrical (filled points)
and box-like (not filled points) particle assemblies. Mean deviation
& = —0.42%. Geometry data according to Table 4.

FEA of mechanical compression of a whole particle assembly is
not feasible. Thus, so far, the resistance for transport through two
particles in mechanical contact could be verified, only. To check
the validity of the effective conductivities calculated with the RN
method, the results are compared with well-known theories in
the literature. An upper and lower bound can be calculated
according to the definition of Hashin and Shtrikman (HSh).*%
These well-known bounds are defined as

- 2(Ksulid - Kpore)(f)pore
2Ksolid + Kpore — (Ksolid - Kpore)¢pore

Keﬂc _ 2Ksolid + Kpore
hs1 —

Ksolid»

(49)
eff __ 2KPOYE + Ksolid — 2(Kpore - Ksolid)¢solid

hs2 —
s 2Kpore ~+ Ksolid — (Kpore - Ksolid)(/)solid

K ore

Furthermore, the result of
Kggt =0.25 {(3¢pore - 1)Kpore(3{1 - ¢pore} - 1)

+ \/(3¢pore - 1)Kp0re + (3{1 - ¢pore} - 1)K§olid (50)

+ 8Kpore Ksolid]

the effective medium theory (EMT) divides the area between the
two boundaries by HSh into an upper and a lower part. The
upper part belongs to materials, which have an inner porosity
such as the structure of a sponge, which applies to the pore phase
of a LIB electrode. On the contrary, structures having an external
porosity, such as the solid phase of battery cathodes, can be found
in the lower part.”"

The effective conductivity for the solid phase, as well as the
pore phase, of all particle assemblies according to Table 3
and 4, is plotted in Figure 17 together with the theoretical
bounds. In the left graph, the comparison of the effective solid
conductivity, provided by the RN method, is shown. In this case,
the pore phase does not contribute to the transport, and thus, it is
Kpore = 0. AS Kyolig > Kpore, the lower bound is described by the
second equation of Equation (49). The solid phase should be
located, as explained before, between the lower bound of
Hashin—Shtrikman and the bound calculated based on EMT,

© 2021 The Authors. Energy Technology published by Wiley-VCH GmbH


http://www.advancedsciencenews.com
http://www.entechnol.de

ADVANCED
SCIENCE NEWS

Energy Technology

Conversion, Storage, Distribution

www.advancedsciencenews.com

0.6 \\
\\
\\\
~
T T 0.4+
= ~ o
5 2
< <
5 0.2- 5 0.2
< <
% ~
’ emt
o S,
0.0 - commta-eeeeeneennnen 0.0
T T
0.5 0.6 0.7 0.5 0.6 0.7
Gsolid [ - — Gsolid [/ - —

Figure 17. Comparison of RN results with theoretical boundaries of effec-
tive conductivity for porous media. Effective conductivity of solid phase of
ellipsoidal particle assemblies (left) and of pore phase of ellipsoidal parti-
cle assemblies and of superellipsoidal particle assemblies (right).
Geometry data according to Table 3 and 4.

which applies. Furthermore, the pore phase represents the case
of a sponge-like structure, wherefore its effective conductivity val-
ues are expected to be found between the EMT and the upper
HSh bound. Now, we assume that the solid phase does not con-
tribute to the transport process through the pore phase, which
means that ky,;q = 0. The interchange of the upper and lower
bound in case of ki < Kpore Must be considered. Thus, the
upper bound is described by the second equation of
Equation (49) for the pore phase, again. The comparison in
the middle and right graphs of Figure 17 supports the expecta-
tion that the results of the RN method lie between EMT and
upper HSh bound. Consequently, from this point of view, the
RN method provides reasonable results. The solid phase conduc-
tivity decreases with increasing porosity, whereas the pore phase
conductivity increases, which is in accordance with the theories.
Finally, we conclude that for the considered particle assemblies,
particle shapes, and aspect ratios, the RN method provides good
results, for both the pore and the solid phase of granular
structures.

3. DEM Simulation of Representative
NMC-Cathode Volume Element

In this study, we investigate the influence of the particle shape on
the mechanics and on the effective transport properties of battery
electrode microstructures. Therefore, RVEs consisting of 1800
monosized ellipsoidal particles are created with the modified
RCP presented in Section 2.3. The ellipsoids have either oblate
or prolate shapes with the aspect ratios of a,=pf, =
0.667,0.769,0.714,0.833,0.909,1.0,1.1,1.2,1.3,1.4, 1.5, respec-
tively. For each aspect ratio, five random cases are created.
The RVEs have periodic boundaries and represent a small part
inside the electrode. The initial packing density of all systems is
around ¢,; &~ 55.0 £ 0.03%, which is visualized in Figure 18.
Here, each point represents the mean value of five cases per
aspect ratio with the standard deviation shown as error bars.
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Figure 18. Initial packing factor ¢, of particle assemblies with 1800
monosized spheroidal particles versus aspect ratio a, = f,.

As mechanical DEM is very sensitive to the initial packing factor,
it is important to have an almost constant initial packing factor to
be able to compare the different assemblies and their properties
with each other.

First, we analyze the initial configurations in terms of their
effective transport properties. In a second analysis, the UCTs
are performed to simulate the calendering step during
manufacturing of a battery electrode. Therefore, the particle
assemblies are subjected to a uniform uniaxial strain field in
z-direction, while keeping the dimensions perpendicular to
the direction of reduction constant. The prescribed compression
is applied to the upper box surface in z-direction in a series of
load steps, which are separated by time increments At.
Furthermore, a strain-rate tensor ¢&; is specified to control the
deformation of the periodic cell.*? Dependent on this strain-rate
tensor and the position x; of a particle in the cell, the centers of all
particles are moved, as if they would be points in a continuum by
Axi = nylAt, l,_] = ]., 2, 3 (51)

The total reduction is 20% of the box length in the compressed
direction. For each converged step, the average stress & in the
system, which can be obtained by

_ 1 1J A, 1j o, .
Gy = Vi (Z&c]fn]n,vnj + Zécjftjnitj), ,j=1,2,3 (52)

<] I<J

is analyzed.*! The variables, f, and f, are the magnitudes of
the normal and tangential contact forces applied from particle
Jon I, 6. denotes the distance of the particle’s centers, and n;, t;
are the normal and tangential unit vectors, respectively.? The
orientation change of the particles is characterized by a fabric
tensor analysis to see if any texture forms in the assemblies as a
result of compression. As indicated in Section 2.3, fabric ten-
sors are a numerical approximation of a real directional data
set in a multidimensional space. Here, we make use of the
weighted moment tensor N, see Section 2.3 and the previous
study,™” to analyze the orientation of particles, and of the fabric
tensor F, see the previous study,'”) to characterize the contact
normal of the arising contacts with increasing compression.
The fabric tensors F of the second and fourth ranks, respec-
tively, can be calculated as
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and may be visualized by a rose diagram or a polar plot that indi-
cates the likelihood of distribution as a radius length for the given
direction. In the last step of the analysis, the effective conductivi-
ties for the solid and the pore phase of each assembly are calcu-
lated for different compression states according to Section 2.4.1.

The particles are assumed to be elastic and to have the
properties of lithium-NMC according to the previous study.™®
Thus, Poisson’s ratio of »=0.25, Young's modulus of
E = 142000 MPa, and a mean radius of 5um are chosen.

At this point, it has to be remarked that a unit value of the bulk
transport property for the material of the considered phases is
assumed for all results shown here. These normalized values
have to be multiplied by the corresponding bulk transport prop-
erty of the material of interest to obtain the real effective trans-
port properties of a granular system.

Starting with the analysis of the initial configurations, the
effective conductivities of the solid and the pore phase are of
interest. Due to the definition of the RCP, there are no overlaps
in the system yet, and thus, no mechanical contact areas are pres-
ent, which is synonymous with no transport through the solid
phase. Nevertheless, transport through the pore phase is possible
and can be analyzed with the formulas presented in Section 2.4.4.
In Figure 19, the effective conductivity is plotted over the aspect
ratios of the monosized ellipsoids. As the initial orientation of the
particles is random, see Figure 6, the effective conductivities in
the x-, y-, and z-directions are in the same range, and thus, the
average effective conductivity R = 1/3(kggr, + kggr, + Kkggr o) is

_pore

analyzed. Each point in Figure 19 represents the mean &z =
1/5% 5, kb, of the average effective conductivity of all five cases
per aspect ratio with the standard deviation shown as error bars.

It is obvious that the effective conductivity for the different
aspect ratios strongly differs. Taking the sphere solution
a, = B, = 1.0 as areference, there is a slight increase in the effec-
tive conductivity for prolate shapes, before k% - linearly drops for
aspect ratios larger than a, = f, = 1.4. The effective conductivity

4u
0.350 «®' >
< A
[ ] v o o o a
>
0.325 -
f <
< 0.300
< 0.275 1 Y
0.250
0.225 T T T T
0.5 1.0 15 2.0

ar:ﬂr/“)

Figure 19. Effective conductivity &% of pore phase of particle assemblies

with 1800 monosized spheroidal particles versus aspect ratio a, = .
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reaches its maximum value for oblate shapes for
a; = B, = 0.615. In general, higher effective conductivities com-
pared with the sphere solution are found for oblate spheroids and
the considered aspect ratios. To understand these observations,
the pore phase structure is analyzed. We recall that for the cal-
culation of transport through the pore phase, the latter is disas-
sembled into Voronoi cells. Each Voronoi cell contains several
subpore elements, which belong to a certain pore throat. To
get the resistances of the different pore throats, the mean
cross-sectional areas A .., of each subpore element are of inter-
est; see Section 2.4.4 and Figure 14. As a result of this, the pore
structure can be characterized by the sizes of the mean cross-
sectional areas. In this context, it is important to keep in mind
that a certain increment length AL belongs to each mean cross-
sectional area, and that the sizes of the increment lengths may
not be the same. Thus, we sum up the sizes of all p mean cross-
sectional areas of all cases >, Aneanp and weight the result by
the sum of the total increment length } °, AL, This gives the size
of the overall average mean cross-sectional area A, =
> p Ameanp/ D_p AL, in the pore space of all considered initial
cases and aspect ratios. Then, for each case and aspect ratio,
the distribution of the mean cross-sectional areas is discretized
into 100 segments and weighted by the size of the overall average
mean cross-sectional area. The relative frequency for each seg-
ment cannot be simply gained by summing up the amount of
cross-sectional areas per segment. As the increment length of
each cross-sectional area may not be the same, the size of the
increment length must be considered. Thus, the sizes of all
belonging increment lengths of the cross-sectional areas in
one segment are summed up and weighted by the mean incre-
ment length to get the relative frequency of one segment. This is
visualized in Figure 20 and 21. Again, each curve represents the
average of the five considered cases per aspect ratio.

Spheres have a clear maximum at a certain size of the mean
cross-sectional area. For oblate ellipsoids, Figure 20, this maxi-
mum decreases and shifts toward almost infinitesimal small
areas, so that for the case of a, = #, = 0.5, a continuously drop
in the relative frequency with increasing mean cross-sectional

—o— «, = 3, =05
0.04 1 —a— a, = B, =0615
—< a, = f, =0.769
T —— a, =3, =10
. 0.03 1
~
£ 0027
=
g
S 001
IS
0.00

0.0 0.5 1.0
Amean/Amean / - —>

Figure 20. Relative frequency p(Amean/Amean) of weighted average mean
cross-sectional areas Apean/Amean Of pore phase of particle assemblies
with 1800 monosized oblate ellipsoids.
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Figure 21. Relative frequency p(Amean/Amean) Of weighted average mean
cross-sectional areas Amean/Amean Of pore phase of particle assemblies
with 1800 monosized prolate ellipsoids.

area size is found. For prolate ellipsoids, Figure 21, two maxima
evolve with increasing aspect ratio, where the first and higher
maximum lies again at the position of almost infinitesimal small
areas, whereas the second maximum forms at a certain segment
size of the mean cross-sectional areas; see Figure 21. Comparing
this observation with the results for the effective conductivities
for the pore phase in Figure 19 leads to the conclusion that a pore
structure with one mid-size peak, in the optimum case close to
the one obtained here for an aspect ratio of a, = f, = 0.615,
seems to be beneficial. On the contrary, the formation of two dif-
ferent maxima results in a strong deterioration of the effective
conductivity.

In the next step, we analyze the compression tests of the pro-
late and oblate particle assemblies. The stress—strain relations for
prolate (left) and oblate (right) ellipsoids are shown in Figure 22.
Each curve represents the mean of the five considered cases per
aspect ratio. It is evident that the stress response at the same level
of compaction, for both prolate and oblate shapes, decreases with
increasing aspect ratio. This can be explained with observations

500 — ar =10 500  — «r =10
—_— oy = 1.1 a, = 0.909
—_— a, =12 — a, =0.833
4004 — ar =13 400 4 —— oy = 0.769
T — e = 1.4 T —_— ay =0.714
— — ap=1.5 — — a, = 0.667
S S
& 300 A 300+
= =
~ ~
£ 2004 3 200 +
) )
D-bN ObN
100 H 100 A
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T T
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Figure 22. Stress—strain relation for prolate (left) and oblate (right)
spheroids.
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made for the theoretically densest packing of spheres and ellip-
soids. The theoretical densest packing of spheres is the face-
centered cubic (fcc) packing with a maximum packing fraction
of Pgecsph = 0.7405.°* In contrast to spheres, ellipsoids have
three additional degrees of freedom and, thus, an orientation
in space. Dependent on the aspect ratios and the particle orien-
tations, higher packing densities than ¢y . are possible. Two
pronounced maxima of ¢ = 0.770732 can be observed for an
aspect ratio of a, =, = 1//3 (oblate ellipsoids) and @, = , =
/3 (prolate ellipsoids), when the number of in-plane neighbors
reaches six. This maximum packing density decreases for both
types of spheroids towards g qon With four in-plane neighbors,
when the spheroidal shapes get closer to the shape of a sphere;
see the previous study®" and Figure 24. In addition, a constant
maximum packing density has been found for ellipsoids with
a, > V3 and o, < 1/1/3.54

As the initial packing density of all considered cases is nearly
the same, ¢y, =~ 55.0 £ 0.03%, spheroids show a softer stress
response due to their higher theoretical packing density.
Furthermore, as the theoretical packing factor increases with
increasing aspect ratio, the stress response gets softer, the larger
the aspect ratio of a spheroid.

To check if any texture forms due to reorientation, we analyze
the orientation of the spheroids with a moment tensor, see
Section 2.3, for the initial state and at maximum compression.
In Figure 23, the moment tensor of the shorter half-axis in case
of oblate ellipsoids and the longer half-axis in case of prolate
ellipsoids is plotted before (top) and at maximum (bottom) com-
pression. Starting with a random initial orientation, which is rep-
resented by the spheres in the top line of Figure 19, it can be seen
that for oblate ellipsoids, the z-direction gets more favorable,
which means that the shorter half-axis tries to align along the
z-axis due to compression in z-direction. For prolate shapes,
the z-direction gets less favorable, which is synonymous with
a rotation of the longer half-axis toward the xy-plane. From a
mechanical point of view, this behavior is understandable. If
we compare the resulting texture with the theoretically favorable
texture according to Figure 24 and the previous study,”* one can
see that prolate ellipsoids move closer to their theoretically dens-
est configuration due to reorientation, in which the longest half-
axis in one layer is aligned along one direction, whereas this
direction is shifted by a certain angle in the next layer.

e, =0% e, =0% e, =0% e, =0%
Y

e, =20% e, =20% e, =20% e, =20%

o, = 0.667 o, = 0.769 o =1.3 o =1.5

Figure 23. Moment tensor of the second rank N for distribution of
shortest half-axis of oblate ellipsoids and longest half-axis of prolate ellip-
soids initially (top) and at maximum compression (bottom).
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Figure 24. Theoretically densest laminate crystal packing ¢, of ellipsoids
versus aspect ratio @, = f,. The fcc packing of spheres ¢ s = 0.7405,
when a, =, = 1.0. Maximum density ¢ = 0.770732 of ellipsoids for
a, = f, < 1/V/3 (oblate ellipsoids) and a, = 8, > /3 (prolate ellipsoids).
Graph based on the previous study.**!

Nevertheless, the axis of rotational symmetry being here the lon-
gest axis is always found in the xy-plane, which is shown in
Figure 24. This observation underlines the softer stress response
of prolate shapes. In the densest configuration of oblate ellip-
soids, the shortest half-axis of one layer is again aligned along
a certain direction, whereas the favorable direction is rotated
about a certain angle in the next layer. Again, the axis of rota-
tional symmetry, i.e., the shortest axis, in both layers is found
in the xy-plane. If we compare this favorable configuration with
the observed texture, we see that the reorientation of oblate sphe-
roids, where the shortest half-axis aligns along one axis, the z-axis
in this case, is not in accordance with the ideal densest packing
structure, where the favorable direction of the shortest axis
changes from layer to layer. This may explain why the stress
response of oblate ellipsoids, in particular for the aspect ratios
a, = B, = 0.769,0.714,0.667, is not as soft as for their prolate
equivalents a, = f, = 1.3,1.4,1.5.

In the next step, it is of interest weather and how the arising
texture during compression affects the effective transport prop-
erties of the assemblies. Therefore, the effective conductivities of
the pore and the solid phase are plotted over the compression in
Figure 25 for prolate and in Figure 26 for oblate spheroids.

First of all, as it is expected, the effective conductivity of
the pore phase reduces during compression, as the amount of
pore phase decreases. Although a texture is formed in the assem-
blies, we do not observe big differences for the effective conduc-
tivity of the pore phase in the x-, y-, and z-directions, and thus,
the average mean effective conductivity &5 is considered here.
However, the effective pore phase conductivity decreases faster
for an increasing aspect ratio with further compression. This
effect is more pronounced for prolate shapes. The analysis of
the pore phase structure in the way it has been done for
Figure 20 and 21 is visualized in Figure 27. To understand
the larger drop of the effective conductivity of the pore phase with
increasing aspect ratio, we compare the results in Figure 27 with
the initial states shown in Figure 20 and 21. Starting with the
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Figure 25. Effective conductivity of pore phase 7" (left) and solid phase
(right) &9 of prolate spheroids.
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Figure 26. Effective conductivity of pore phase & (left) and solid phase
(right) &9 of oblate spheroids.

sphere situation, no big differences between the initial state
and at maximum compression can be found. This fact applies
to the aspect ratios a, = 0.769 and «a, = 1.3, as well, for which
the decrease in the effective conductivity of the pore phase during
compression happens to the same extend than for spheres; see
left graphs of Figure 25 and 26. For the aspect ratio a, = 1.5, the
shape of the pore structure curve gets closer to the initial situa-
tion of @, = 2.0, which with its two peaks was found to be dis-
advantageous. Big changes occur for a, = 0.667, as well, where
the pore space structure changes toward a shape similar to the
initial state of a, = 0.5. This curve progression was found to be
not as bad as the shape with two maxima, but worse than one
maximum at a certain mean cross-sectional area size larger than
zero. Thus, the smaller drop for a, = 0.667 compared with
a, = 1.5 is in accordance with the observed changes of the effec-
tive conductivities for the different pore structures in Figure 19.

Concerning the effective conductivity of the solid phase, it is
visible that a certain threshold has to be passed before enough
contacts in the assemblies have been formed and the effective
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Figure 27. Relative frequency p(Amean/Amean) of weighted average mean
cross-sectional areas Apean/Amean Of pore phase at maximum compres-
sion &, = 20%.

conductivity increases. An interesting observation regarding the
effective conductivity of the solid phase is that the latter increases
faster with increasing aspect ratio. This effect is found for both
prolate and oblate ellipsoids. While, for example, the stress at max-
imum compression for a, = 1.3 is only one-fifth of the stress
reached by spheres, the effective conductivity of the solid phase
of a, = 1.3 is about three-fourth of the value of spheres. To under-
stand this trend, the mechanical contact areas and the related con-
tact forces, as well as the coordination number, which is defined as
the average number of contacts of a particle, are analyzed. The
result of the aspect ratios o, = 0.769,0.667,1.0, 1.3 is shown in
Figure 28, where the ratio of the total sum of the mechanical con-
tact areas of the ellipsoidal systems to the sphere assemblies is
plotted in the left graph, the ratio of the total sum of the normal
contact forces of the ellipsoidal systems to the sphere assemblies is
shown on the right-hand side, and the coordination number is
illustrated in the bottom graph.

It can be seen that the increase in the ratio of the contact areas
with increasing compression is steeper and larger than the
increase in the ratio of the contact forces. This means that there
can be larger contact areas in ellipsoidal systems compared with
sphere systems for the same contact force. One could ask how
this is possible. Let us take a step back and look at the texture
that forms under compression. The shorter half-axis of oblate
ellipsoids aligns in the z-direction, whereas the longer half-axis
of prolate spheroids rotates into the xy-plane. As the assemblies
are compressed in the z-direction, we expect more contacts along
this direction. To this end, we analyze the contact normal with a
fabric tensor analysis Figure 29 exemplarily shows the fabric ten-
sor of rank four F® for a, = 0.667,0.769,1.3,1.5 at maximum
compression. From this graph, it gets clear that most of the con-
tact normal are aligned along the z-axis, because the z-direction is
more favorable.

Together with the observations made concerning the texture
of the systems, we can conclude that the oblate ellipsoids touch
preferentially at poles, whereas for prolate spheroids, contact at
the equator is favorable. The relation between contact force and
related contact area for idealized configurations of two particles is
visualized in Figure 30. In this graph, the ratio of the spheroid
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Figure 28. Normalized mechanical contact area Acnei/Acnespn (left),
normalized contact force f, oi/fn (right), and coordination number
(bottom) versus increasing compression.
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Figure 29. Fabric tensor of the fourth rank F(*) for contact normal n'/.

relation to the sphere relation is shown for oblate ellipsoids
touching at their poles on the left and for prolate ellipsoids
touching at their equators aligned or rotated about 90° on the
right-hand side. The ratio is evaluated for different overlaps rep-
resented by the different dots, whereas the sphere contact force
and the contact area at maximum overlap are taken as reference
values. The blue curve with circular points represents the sphere
solution. As for the same force ratio, the ratio of the contact area
for the contact situations spheroids lies always right of the sphere
relation, it is obvious that spheroids form a larger contact area
than spheres for the same contact force. This trend is more pro-
nounced with increasing aspect ratio and more noticeable in the
case of a pole contact between two oblate ellipsoids. Based on the
relation between contact force and contact area for idealized con-
figurations of two particles together with the observed texture
that occurs as a result of compression, the steeper increase in
the effective conductivity of the solid phase for spheroids with
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Figure 30. Normalized contact force f, o1 /f , spn Over normalized mechan-
ical contact area Acnyeil/Acntsph for oblate (left) and prolate ellipsoids
aligned or rotated about 90° (right).

increasing aspect ratio in Figure 25 and 26 can be explained. The
larger coordination number, which is present in spheroidal par-
ticle assemblies and was found in other studies before, see the
previous study,®* has an additional positive impact to this trend.

As was demonstrated in this section, significant changes may
be induced in the electrode microstructure due to mechanical
impact, such as the calendering step. The mechanics themselves
are strongly influenced by the particle shape. As the mechanics,
in turn, impact on the effective transport properties, big differ-
ences in the preservable effective transport properties between
spheroids and spheres can be observed. Given the fact that
the redox reaction, which takes place during loading and unload-
ing of a battery, is an interplay between ionic and electronic trans-
port, an optimal level of compaction has to be found to efficiently
enhance the cell performance and to ensure sufficient conductiv-
ity characteristics for both phases. In this context, the influence
of the particle shape on the mechanics, as well as on the effective
transport properties, as has been demonstrated here, should be
kept in mind for an ideal battery electrode design.

4, Conclusion

The major goal of this study was to investigate the influence of
the particle shape on mechanics and on effective transport prop-
erties in granular LIB electrodes. To this end, all necessary equa-
tions for the implementation of superellipsoidal shapes into a
mechanical DEM code were presented at the beginning of this
work. This especially included the definition of superellipsoids
and the formulation of the contact forces as well as the contact
point definition. In addition, a microstructure generator based
on the RCP algorithm for the generation of initial particle sys-
tems with superellipsoidal shapes was introduced. It was shown
that random, highly packed but overlap-free initial states for
superellipsoidal particles systems could be generated with the
modified algorithm. An analytical formula for the calculation
of the resistance between two mechanically compressed ellip-
soids was derived in the theoretical part of this article, as well,
whereas a geometry-based method was presented to determine
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the resistance of an individual pore throat in a superellipsoidal
particle system. Based on these individual resistances, it was
shown how a RN can be build up for the solid or the pore phase
of a particle assembly to determine the effective transport prop-
erties of such structures. The derived formulas were verified by
FEA and proved to deliver realistic values for the fast estimation
of the effective conductivity of granular media by the comparison
with well-known theories in the literature.

Based on the presented theoretical formulas, the influence of
the ellipsoidal shape on the mechanical behavior and the effec-
tive transport properties under compression, such as in the cal-
endering step during manufacturing of a LIB electrode, was
investigated. Therefore, different random monosized ellipsoidal
particle structures were generated with the newly RCP and uni-
axially compressed. In the scope of this contribution, different
mechanical and structural quantities during compression were
examined to better understand the response of the particle sys-
tem to the external impact. For that purpose, the stress evolution
and the effective transport properties of the solid and pore phases
with increasing compression were studied. Significant differen-
ces in the evolution of these properties were observed. In general,
spheroidal particle systems showed a less stiff stress response at
the same level of compaction. While a faster decrease in the pore
phase conductivity with increasing compression and particle
aspect ratio was observed, the effective conductivity of the solid
phase showed a reverse trend. Here, the effective conductivity
increased stronger with increasing aspect ratio. The different
response behavior of spheres and ellipsoids could be explained
with the help of structural investigations, such as the analysis of
the particle’s orientation, the pore throat structure, or theoretical
bounds such as the maximum possible packing density in depen-
dence of the particle’s aspect ratio. Based on this work, deeper
insight into the electrode behavior during calendering with
the presented simulation techniques becomes possible, which,
with regard to the requirement of specific cell properties, could
be helpful to choose an appropriate electrode design.
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