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Abstract

The size effect of a quasi-brittle fracture is associated with the size of fracture process zone relative to

the structural characteristic length. In numerical simulations using damage models, the nonlocal enhance-

ment is commonly adopted to regularize the softening response. However, the conventional nonlocal

enhancement, both integral and gradient approaches, induces a spurious spreading of damage zone. Since

the evolution of fracture process zone cannot be captured well, the conventional nonlocal enhancement

cannot predict the size effect phenomenon accurately. In this paper, the localizing gradient enhancement

is adopted to avoid the spurious spreading of damage. Considering the three-point bend test of concrete

beams, it is demonstrated that the dissipation profiles obtained with the localizing gradient enhancement

compare well with those of reference meso-scale lattice models. With the correct damage evolution

process, the localizing gradient enhancement is shown to capture the size effect phenomenon accurately

for a series of geometrically similar concrete beams, using only a single set of material parameters.
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Introduction

The size effect of quasi-brittle fracture is widely reported, yet it is difficult to capture this phenom-
enon numerically with continuum damage models. During strain softening, the structural response
is largely driven by the development and propagation of the fracture process zone (FPZ). Since the
size of this FPZ does not scale consistently with the characteristic dimension of geometrically similar
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specimens, a size effect is induced at the structural level. Numerically, conventional nonlocal inte-
gral and gradient enhancements are commonly adopted to regularize the structural strain softening
responses. However, the damage process zone suffers from spurious numerical artifacts.
Consequently, conventional nonlocal enhancements cannot capture the size effect phenomenon
satisfactorily. This motivates the present paper, where the so-called localizing gradient enhancement
is shown to capture the size effect naturally.

Quasi-brittle structures exhibit two main types of size effects based on characteristics of the FPZ,
which in turn is influenced by the nature of specimen boundary. This was discussed extensively in
the context of notched and unnotched concrete beams in three-point bend tests (Barbat et al., 2020;
Ba�zant and Le, 2017; Ba�zant and Planas, 1997; Ba�zant and Yu, 2009; Hoover and Ba�zant, 2014). A
Type 1 size effect is observed with unnotched beams, where distributed microcracks formed within a
large process zone at peak load, and structural failure occurring with the initiation of a macroscopic
crack. With deeply notched beams, the maximum load is associated with the development of a long
macro-crack to give a Type 2 size effect. An extensive experimental design with notches of varying
depths was reported to investigate the transition between Type 1 and 2 size effects (Gr�egoire et al.,
2013; Hoover et al., 2013).

Numerically, standard continuum damage models are mesh dependent during strain softening.
One popular remedy is to adopt either a nonlocal integral or gradient enhancement, where a non-
local variable is utilized to drive the damage process. In the former approach, this nonlocal variable
is obtained via the weighted spatial average of the local counterpart within an interaction domain
(Pijaudier-Cabot and Ba�zant, 1987). For the latter, the local variable serves as a source term in a
differential equation that governs the evolution of the nonlocal term, with a length scale parameter
characterizing the size of the interaction domain (Al-Rub and Voyiadjis, 2009; Peerlings et al., 1996,
1998, 2001). The gradient approach can be understood as a reformulation of the integral enhance-
ment (Peerlings et al., 2001).

In a nonlocal enhancement, the interaction domain characterizes the size of FPZ. While the
structural strain softening response is now regularized, conventional nonlocal enhancements
induce numerical artifacts in the damage process zone. This was first reported in the context of
conventional gradient enhancement in Geers et al. (1998) where a spurious spreading of damage
bandwidth was shown. Other artifacts include an incorrect description of crack initiation and
propagation process (Geers et al., 1998; Simone et al., 2004). Similar issues were reported with
the conventional nonlocal integral enhancement (Giry et al., 2011; Nguyen, 2011). Recall that the
development and evolution of FPZ underpin the two types of size effects. Since conventional non-
local enhancements cannot describe the evolution and propagation of damage process zones cor-
rectly, they are inadequate in capturing both types of size effects. This limitation was reported
extensively for the integral approach (Gr�egoire et al., 2013; Havlásek et al., 2016; Marzec and
Bobi�nski, 2019a), and briefly illustrated for the gradient approach in Wosatko et al. (2018).

The spurious effects in conventional nonlocal enhancements arise due to the assumption of a
constant interaction domain size through the loading history, which enforces a diffusion of active
damage processes to the neighboring regions - see discussions in Poh and Sun (2017). In the context
of conventional integral enhancement, much attention has been focused on a so-called boundary
effect induced by this spurious diffusion of damage process zone to regions below the notch tip/
macro-crack. To this end, modifications were made to the averaging function to “sense” the bound-
aries, e.g. in the stress based (Giry et al., 2011; Grassl et al., 2014), distance based (Grassl et al.,
2014; Havlásek et al., 2016) and local complement (Grassl et al., 2014; Jirásek et al., 2004) integral
formulations. It is also worth mentioning here that other enhanced formulations, such as the phase-
field regularized cohesive zone model (Feng and Wu, 2018) and the thick level set damage model
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(G�omez et al., 2017), were shown to capture both types of size effects well without undue calibra-

tions. Compared to conventional nonlocal enhancements, the phase-field and thick level set

approaches do not suffer from the spurious damage growth phenomenon. Other attempts to achieve

localized failure include the thermodynamics-based framework recently proposed by Nguyen and

Bui (2020). Results suggest that a proper development and propagation of damage process zone,

without spurious effects, can resolve the limitations of conventional nonlocal enhancement for size

effect predictions.
This sets the backdrop of the current presentation, on the localizing gradient enhancement pro-

posed in Poh and Sun (2017). Departing from the conventional gradient formulation, an interaction

function that decreases with damage was incorporated into a micromorphic framework for damage

models (Forest, 2016, 2009), to recover a balance equation that closely resembles the conventional

gradient expression. The localizing gradient enhancement was shown to avoid the spurious effects

for quasi-static fracture (Poh and Sun, 2017; Sarkar et al., 2019), dynamic fracture (Wang et al.,

2019) and ductile fracture (Xu et al., 2020; Xu and Poh, 2019). It has also shown to work well for

the failure of fiber-reinforced epoxy (Nguyen et al., 2019) and corrosion induced damage of concrete

(Seetharam et al., 2019). It is thus of interest to investigate the capability of the localizing gradient

enhancement, in capturing the two types of size effects.
The paper is structured as follows. An isotropic damage model and the localizing gradient

enhancement are briefly introduced in second section. The spurious spreading and boundary effects

of the conventional gradient enhancement are elaborated in third section, which are shown to be

resolved with the localizing gradient enhancement in fourth section. Finally, the localizing gradient

enhancement is adopted for the series of three-point bend tests of concrete beams in Hoover et al.

(2013), and its predictive capability demonstrated for both types of size effects in fifth section.

Localizing gradient enhanced damage model

In this work, a simple isotropic damage model is adopted, with a gradient enhancement to regu-

larize its softening response. A brief outline is provided below. Details can be found at Poh and Sun

(2017).
The constitutive law is given by

r ¼ ð1� xÞC : e (1)

where r is the stress, e denotes the strain and C is the elastic stiffness tensor. x is a scalar damage

variable characterizes the degradation process. A detailed discussion on possible choices of the

damage variable can be found in Voyiadjis and Kattan (2009). Note that the constitutive law in

(1) should rightfully include a coupling stress component based on the micromorphic framework. It

was, however, set as a negligible term in Poh and Sun (2017), to recover the standard constitutive

relation. In this paper, the standard constitutive relation (1) will be adopted directly.
Assuming a deformation driven damage process, the damage variable (x) is defined in terms of a

deformation history variable j such that

0 � xðjÞ � 1; jðtÞ ¼ maxf~eðsÞj0 � s � tg (2)

where t is the loading step. The scalar variable ~e is a micromorphic kinematic field that characterizes

the deformation at the micro-scale.
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At the macro-scale, the deformation is characterized via an equivalent strain measure e. In this
paper, we adopt the Rankine equivalent strain (Jirásek, 2004)

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

I¼1
h�rIi2

r
(3)

where h i is the Macaulay bracket; �rI, I¼ 1, 2, 3 are the principal values of effective stress tensor
re ¼ C : e.

Based on the generalized micromophic framework (Poh and Sun, 2017), the microforce balance
governing the micro-macro interactions is given by

~e � e ¼ r � gl2r~e
� �

(4)

where l is the length scale parameter characterizing the size of damage process zone. To account for
the decreasing bandwidth of active micro-cracks during the formation of a macro localized crack,
the interaction function g is defined in terms of damage such that

g ¼ gðxÞ ¼ 1; x ¼ 0
R; x ! 1

�
(5)

where R�0 is a residual interaction value. Note that the conventional gradient enhancement is
recovered for the special case where g¼ 1, a constant interaction domain persists throughout the
deformation process.

In general, different interaction functions can be proposed. Here, we follow that Poh and Sun
(2017) to set

g ¼ ð1� RÞexpð�gxÞ þ R� expð�gÞ
1� expð�gÞ (6)

where g is a material parameter that controls the rate of decrease in the interaction domain during
the failure process. The influence of residual value R and parameter g on the interaction function,
and the corresponding structural response, can be found in Sarkar et al. (2019).

Given that the limited thickness of the concrete specimens for all the examples, plane stress state
is assumed in our work. Hence, the Rankine equivalent strain in (3) becomes

e ¼ 1

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�r1i2 þ h�r2i2

q
(7)

where

�r1 ¼ 0:5ðrxx þ ryy þ SÞ;
�r2 ¼ 0:5ðrxx þ ryy � SÞ;
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryyð Þ2 þ 4r2xy

q
;

C ¼ E

1� v2

1 � 0
� 1 0

0 0
1� �

2

2
64

3
75
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In the literature, an exponential damage evolution law is generally preferred to give a more stable
numerical framework, since a complete loss of material stiffness is avoided. For convenience, we will
likewise adopt the commonly used exponential damage evolution law (Mazars and Pijaudier-Cabot,
1989; Peerlings et al., 1998) below

x ¼ xðjÞ ¼
0 if j < j0
1� j0

j
1� aþ aexp �b j� j0ð Þ� �� 	

if j � j0

(
(8)

where j0 is a threshold value beyond which damage occurs, with a and b as the damage parameters.
The parameter b controls the rate of damage growth, while parameter a defines the residual stress in
uniaxial tension as ð1� aÞEj0 (Peerlings et al., 1998).

In this paper, plane stress condition will be assumed for all problems considered. The corre-
sponding 2D numerical framework for the damage model is provided in Appendix 1. Throughout
this paper, g¼ 5, R¼ 0.005 and a¼ 1 are utilized.

Spurious effects with conventional gradient enhancement

In this paper, we focus on the size effect phenomenon in the three-point bend test of concrete beams,
which is characterized by the relative size between FPZ and beam depth. Depending on the FPZ
characteristics, a Type 1 or 2 size effect is observed (Gr�egoire et al., 2015; Marzec and Bobi�nski,
2019a). Correspondingly, a numerical model has to capture the evolution and propagation of FPZ
correctly, in order to predict the size effect accurately. In the context of the conventional nonlocal
integral enhancement, much work has been reported on its inadequacy for structural size effect
predictions, i.e. the structural responses of geometrically similar concrete beams cannot be accu-
rately reproduced with a single set of material parameters, for both elasticity-based isotropic
damage models (Gr�egoire et al., 2013; Havlásek et al., 2016) and elasto-plasticity models (Marzec
and Bobi�nski, 2019a).

It is largely accepted that the conventional nonlocal integral approach induces a “boundary
effect” which results in an artificial strengthening above the notch tip. This can be best illustrated
by considering a notched beam. The averaging function in the conventional nonlocal integral
approach enforces a diffusion of damage in the active process zone, to the neighboring regions
within the interaction domain, including material points below the notch tip. Hence, the numerical
process zone includes regions below the notch tip, which is not physical. This boundary effect
induces an artificial strengthening mechanism in the “true” process zone above the notch tip,
since a larger dissipation is now required for the evolution and/or propagation of damage therewith
(Grassl et al., 2014; Havlásek et al., 2016).

To address this limitation, several modified averaging procedures have been proposed for a
better “sensing” of the boundary, e.g. (i) the stress-based approach (Giry et al., 2011; Grassl
et al., 2014), where the influence of the boundary on a specific material point is implicitly perceived
by its stress state; (ii) the distance-based approach (Grassl et al., 2014; Havlásek et al., 2016), where
the averaging function at a point is scaled according to its distance to the nearest boundary; (iii) the
local-complement method (Grassl et al., 2014; Jirásek et al., 2004), where the contribution of the
losing material outside the physical boundaries is preserved by a “fixed” averaging function with an
additional term. Comparing the dissipation profiles for notched specimens with meso-scale lattice
models, the stress-based, distance-based and local-complement averaging approaches are shown to
reduce the spurious dissipation close to the notch (Grassl et al., 2014). In terms of size effect
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predictions, the distance-based averaging approach is able to provide good predictions (Havlásek
et al., 2016), while the stress-based averaging approach continues to over-estimate the peak forces
(Giry et al., 2014; Marzec and Bobi�nski, 2019b).

The conventional gradient enhancement suffers from the same spurious damage growth phe-
nomenon, and is equally inapt for size effect analyses. This was demonstrated by Wosatko et al.
(2018), where the experimentally observed size effect in Gr�egoire et al. (2013) for unnotched speci-
mens cannot be captured properly with a single set of parameters. In the following, the mechanisms
underlying the limitations of conventional gradient enhancement are elaborated.

For ease of discussion, we distinguish between two interconnected, yet subtly different mecha-
nisms, as depicted in Figure 1: (i) a spreading effect that retards the localization process; (ii) a
boundary effect – following the terminology in the integral approach – where damage spreads
towards physical notches/cracks. It is highlighted that available discussions with the nonlocal inte-
gral approach mostly focus on the boundary effect only.

In the following, we consider an unnotched (k¼ 0) beam and a notched (k ¼ 0:2) beam in the
three-point bend tests by Gr�egoire et al. (2013), where k denotes the notch to beam depth ratio. The
geometrical details of the two beams considered are shown in Figure 2. The concrete properties
obtained experimentally are E¼ 37GPa and � ¼ 0:21. In the numerical model, the damage initia-
tion threshold is calibrated as j0 ¼ 0:72� 10�4. For the two beams considered here, Gr�egoire et al.
(2015) characterized the damage evolution process via meso-scale simulations using 2D lattice
model, where concrete is assumed as a three-phase material comprising of coarse aggregate,
mortar matrix and interfacial layer. The meso-scale 2D lattice model was reported to capture the
size effect phenomenon well (Grassl et al., 2012). Thus, the meso-scale dissipation profiles are taken
as reference solutions for benchmarking the performance of the gradient enhancements.

Unnotched specimen

We first consider the unnotched specimen in Figure 2(a), where the crack mouth opening displace-
ment (CMOD) is defined as the relative horizontal distance between points A and B. The length

(a) (b)

Figure 2. Geometry and test set up for the (a) unnotched specimen with D¼ 100mm and (b) notched specimen
with D¼ 200mm, k ¼ 0:2 and a notch width of 2mm. The out-of-plane thickness for both specimens is 50mm.

Figure 1. The “spreading” and “boundary” effects induced in the damage process zone.
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scale parameter is assumed as l¼ 5mm, and the corresponding softening parameter b is calibrated

as 750, to fit the structural response with respective to the experimental data in Figure 3(a). The

absence of a pre-existing notch in this example enables us to focus solely on the spreading effect, as

per the definition introducted in Figure 5(a).
The damage profile at the final stage of loading is presented on the right side of Figure 3(a). Note

that the damage bandwidth is about 50mm, despite adopting a small length scale parameter of

l¼ 5mm in the gradient enhancement. This already suggests a spreading effect, which will be further

illustrated below.
As reported in Gr�egoire et al. (2015), the structural behavior and the dissipation within the

damage process zone for concrete beams tested in Gr�egoire et al. (2013) were numerically analyzed

with the meso-scale 2D lattice model. Note that the analysis results for each specimen were pre-

sented as the average values from 10 different random realizations. Therewith, the projections of the

incremental dissipation in the vertical direction were extracted from the meso-scale analyses at three

different loading stages. At each loading step, the dissipation histograms along the ligament length

is obtained by integrating the spatial incremental dissipation density in the horizontal direction. The

meso-scale results are presented in Figure 4, which will be used for benchmarking the performance

of the gradient damage models in this paper.

(a)

(b)

Figure 3. Numerical structural response compared to experimental data (Gr�egoire et al., 2013) for unnotched
specimen, and the corresponding damage profile at CMOD ¼ 0:2 mm with (a) conventional gradient enhancement
(l¼ 5mm, b¼ 750); (b) localizing gradient enhancement (l¼ 5mm, b¼ 60).

1018 International Journal of Damage Mechanics 30(7)



Following the meso-scale analysis in Gr�egoire et al. (2015), three loading intervals with the same
amount of incremental dissipation are considered here, as depicted in Figure 3(a). The incremental
dissipation profiles projected in the vertical direction, for the conventional gradient enhancement,
are plotted alongside the dissipation histograms from the meso-scale analyses for the three loading
stages. Details on the determination of dissipation profile is provided in Appendix 2. It is easily

(a)

(b)

(c)

Figure 4. Vertical projections of incremental dissipation for the unnotched specimen using conventional (dash dot
line) and localizing (solid line) gradient enhancements with l¼ 5mm, compared against corresponding projected
incremental dissipation histograms from meso-scale lattice model (Gr�egoire et al., 2015) at the three loading stages of
Figure 3(a) and (b), respectively.

Zhang et al. 1019



observed that spurious dissipation spikes are not readily observed at the specimen boundary (y¼ 0),
which is consistent with our earlier point that an unnotched specimen does not exhibit any bound-
ary effect as defined in Figure 1. Note that the projected dissipation profiles in Grassl et al. (2014),
obtained from conventional integral enhancement, similarly do not exhibit any spikes at the bound-
ary of unnotched specimen.

Although the projected profiles in Figure 4 from the conventional gradient enhancement seem to
match well with the meso-scale histograms, a clear spreading effect can be observed from the
incremental dissipation map shown in Figure 5(a). Throughout the strain softening process, a

(a) (b)

Figure 5. Dissipation maps of the unnotched specimen using (a) conventional gradient enhancement (l¼ 5mm); (b)
localizing gradient enhancement (l¼ 5mm), at the three loading stages of Figure 3(a) and (b), respectively. Only half of
the specimen is presented due to symmetry.
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large active FPZ is obtained with the conventional gradient enhancement. Note that this spreading

effect is a well known limitation of the conventional gradient enhancement (Geers et al., 1998;

Simone et al., 2004; Sun and Poh, 2016).

Notched specimen

The three-point bend of notched specimen as depicted in Figure 2(b) is considered in this section.

Referring to Figure 1, we expect to see a boundary effect, in addition to the spreading effect

observed earlier for the unnotched beam. The same parameters as before are adopted here,

except for a recalibration of b¼ 700 such that the softening response matches the experimental

data in Figure 6(a). The fact that b has to be recalibrated here already highlights the limitation of

conventional gradient enhancement, i.e. a single set of material parameters cannot be used to cap-

ture correctly the size effect phenomenon.
The damage profile at the final loading stage shown in Figure 6(a) also provides a quick illus-

tration of the spurious effects: a spreading effect leading to a broad damage bandwidth of 50mm,

despite utilizing a small length scale parameter of only 5mm, which is inconsistent with experimen-

tal observations for notched specimens (e.g. see Figure 15(b) for a notched beam with similar k
value); a boundary effect where significant damage develops below the crack tip. These artifacts are

elaborated below.
As before, the incremental dissipation at three loading stages are projected in the vertical direc-

tion and depicted in Figure 7(a), compared against the corresponding histograms from the meso-

scale lattice models by Gr�egoire et al. (2015). A sharp spike in the dissipation is observed at the

notch tip (y¼ 0), especially at the earlier stages of the softening process. A closer look near the

notch tip in Figure 7(b) indicates spurious dissipation below the notch. This boundary effect is

consistent with that reported for the conventional integral approach, e.g. a high dissipation spike

has been observed in Grassl et al. (2014) for the total dissipation analysis of a sharp-notched

specimen. The study also reveals that while the other modified integral approaches (i.e. the

stress-based, distance-based and the local implement methods) improve the boundary effect by

having a smaller peak near the notch tip, a spreading effect below the notch is still obtained.
As mentioned earlier, most analyses with the conventional integral approach focus only on the

boundary effect. Here, we highlight the presence of an accompanying spreading effect, depicted in

Figure 8(a). The boundary effect is observed clearly from the dissipation spikes at the notch tip, as

well as the spurious dissipation below the notch. In addition, we observe a very wide bandwidth of

the dissipation map in the horizontal (x) direction, i.e. a spreading effect.
The boundary effect artificially strengthens the notch tip, as a larger dissipation is now required

for crack initiation. The spreading effect retards the crack propagation process, by smearing the

dissipation across a larger bandwidth. The combined influence on the crack initiation and propa-

gation processes can be observed in Figure 9(a), where only a small crack is captured at peak load

Fmax and a diffused macro-crack with a relative fracture length of Lcrack=D�0:25 at 80%Fmax post

peak. This is inconsistent with the observation in Alam et al. (2014), where the evolution of fracture

length of a notched specimen with similar geometry (D¼ 200mm, k ¼ 0:2 and span ¼ 3D) examined

using the digital image correlation (DIC) technique showed a crack length developing from the

notch of Lcrack=D ¼ 0:2 at peak load, which propagated quickly to �0:45 at 80%Fmax post peak. A

similar observation is also reported in the DIC results of Moazzami et al. (2020) for notched

specimens from cohesive frictional materials (marble and sandstones), i.e. a confined FPZ accom-

panied by a rapid development of macroscopic crack near Fmax.
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A smaller length scale parameter. The length scale parameter characterizes the size of interaction
domain. In this section, we investigate the effectiveness of having a smaller length scale parameter,
as a quick remedy to control the boundary and spreading effects. The same notched problem in
Figure 2(b) is considered, with l¼ 2mm and b¼ 280, to give a structural response in Figure 6(b) that
matches the experimental data. Compared to Figure 6(a), the damage profile in Figure 6(b) exhibits

(a)

(b)

(c)

Figure 6. Numerical structural response compared to experimental data (Gr�egoire et al., 2013) for notched
specimen, and the corresponding damage profile at CMOD ¼ 0:3 mm with (a) conventional gradient enhancement
(l¼ 5mm, b¼ 700); (b) conventional gradient enhancement (l¼ 2mm, b¼ 280); (c) localizing gradient enhancement
(l¼ 5mm, b¼ 60).
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a narrower bandwidth, though it is still larger than the experimentally observed fracture process
bandwidth for a similar notched beam in Figure 15(b).

As depicted in Figure 7, the boundary effect with a smaller length scale parameter is reduced,
compared to the earlier case with l¼ 5mm. Particularly, the spike in dissipation at the notch tip
persists only at the initial softening stage, with a smaller spread below the notch tip (y< 0).

(a) (b)

Figure 7. (a) Vertical projections of incremental dissipation for the notched specimen, compared against corre-
sponding projected incremental dissipation histograms from meso-scale lattice model (Gr�egoire et al., 2015), with the
conventional gradient enhancement of l¼ 5mm, l¼ 2mm and localizing gradient enhancement of l¼ 5mm, at the
three loading stages of Figure 6(a), (b) and (c) respectively. (b) The zoom in of spurious incremental dissipation below
the notch tip (shaded region) at each loading step with the conventional gradient enhancement.
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The dissipation maps in Figure 8(b) also illustrates a smaller, albeit still obvious, spreading effect

compared to Figure 8(a).
The results here thus demonstrate that a smaller length scale parameter helps to reduce the

spurious effects, but does not fully resolve the problem. Since the FPZ cannot be captured correctly,

its applicability for size effect predictions is still limited. It is also noted that a smaller length scale

parameter requires the use of smaller elements for obtaining mesh converged results, hence com-

putationally more expensive.

Remedy with localizing gradient enhancement

The spreading and boundary effects with the conventional gradient enhancement were elaborated in

the previous section. Here, the localizing gradient enhancement will be adopted for the same prob-

lems to demonstrate its improved performance.

Unnotched specimen

The three-point bend of the unnotched specimen in “Spurious effects with conventional gradient

enhancement” section is investigated here, using the same parameters as before (l¼ 5mm), with the

(a) (b) (c)

Figure 8. Dissipation maps of the notched specimen using (a) conventional gradient enhancement of l¼ 5mm and
(b) l¼ 2mm; (c) localizing gradient enhancement of l¼ 5mm, at the three loading stages of Figure 6(a), (b) and (c)
respectively. Only half of the specimen is presented due to symmetry.
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softening parameter calibrated as b¼ 60, to give a structural response that matches well with

experimental data in Figure 3(b). A localized damage profile at the end of loading step is also

obtained in Figure 3(b), a significant improvement over that of Figure 3(a).
Loading stages following those of Gr�egoire et al. (2015) are depicted in Figure 3(b). The vertical

projection of the incremental dissipation is provided in Figure 4, showing a good match with the

meso-scale histograms. The superior performance of the localizing gradient enhancement is better

illustrated through the incremental dissipation maps presented in Figure 5(b). Compared to

Figure 5(a), a more localized FPZ is obtained here in terms of the bandwidth, as well as being

confined to the region at the crack front.

Notched specimen

The three-point bend of the notched specimen with k ¼ 0:2 is next considered here with the local-

izing gradient enhancement. The same parameters as used for the unnotched specimen in this

section are adopted here, to give a structural response that match well with the experimental

data in Figure 6(c). This already highlights an improved performance with the localizing gradient

enhancement, which is in contrast with the earlier analyses using the conventional gradient enhance-

ment where a recalibration is required. As expected, a localized damage profile is obtained at the

end of the loading stage. Figure 6(c) also provides the same loading stages as defined in Gr�egoire

et al. (2015).
The projected incremental dissipations in the vertical direction are depicted in Figure 7, which

agree well with the meso-scale histograms. Notably, the spurious dissipation spikes at the notch tip

are now removed, with a negligible dissipation below the notch tip. In addition to resolving the

boundary effect that plagued the conventional gradient enhancement, FPZ is again confined to a

region ahead of the crack tip (location of maximum dissipation), as shown in Figure 8(c). Recall

that a wrong crack propagation process from the notch tip was obtained with the conventional

gradient enhancement in the third section, when compared against the DIC measurements in Alam

et al. (2014) for a notch beam of similar geometry (D¼ 200mm, k ¼ 0:2 and span ¼ 3D). This crack

propagation process is now captured more correctly with the localizing gradient enhancement, i.e.

Lcrack=D ¼ 0:175 at peak load Fmax (DIC value ¼ 0:18), which propagates rapidly to a value of 0.36

at 80% Fmax post peak (DIC value ¼ 0:44), as depicted in Figure 9(b).

Size effect with localizing gradient enhancement

Thus far, the localizing gradient enhancement is shown to describe the evolution and propagation of

the FPZ well. Its applicability for capturing both Types 1 and 2 size effects is put to test here, by

considering the series of three-point bend tests in Hoover et al. (2013). This is a comprehensive

experimental matrix of concrete beams, schematically illustrated in Figure 10, involving four beam

depths D, five notch-to-depth ratios k (including unnotched beams) and a fixed notch width of

1.524mm (for notched beams). Each beam is of length 2:4D, with a span of 2:176D and a constant

out-of-plane thickness of 40mm. In the experiments, a finite loading and support platen length is

utilized to avoid damage therewith. The loading/support platen widths LS corresponding to each

specimen dimension is provided in Table 1. More experimental details can be found in Hoover et al.

(2013) and its extension work in Wendner et al. (2015).
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Numerical parameters and mesh convergence study

The average values of experimentally measured mechanical properties, i.e., Young’s modulus
E¼ 41.24GPa and Poisson’s ratio � ¼ 0:172, are utilized. Adopting a length scale parameter of
l¼ 5mm, the remaining parameters are calibrated from the reference beam (D¼ 40mm, k ¼ 0:3), to

(a)

(b)

Figure 9. The growth of macro-crack (considered as x > 0:95) in the notched specimen at Fmax (left) and 80%Fmax

post peak (right), with (a) conventional gradient enhancement (l¼ 5mm); (b) localizing gradient enhancement
(l¼ 5mm).

Figure 10. Geometry of the concrete beams under three-point bend tests (Hoover et al., 2013).
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give j0 ¼ 0:85� 10�4 and b¼ 130. These parameters will be used for all beams in this section. The
loading/support widths in the simulations follow that of the experimental setup (see Table 1).

The mesh sizes adopted are shown in Figure 11, with a finer mesh close to the notch. For
completeness, a mesh refinement check is done for the reference beam by considering three different
mesh sizes (0:004D; 0:002D and 0:001D) near the notch. The structural responses depicted in

Table 1 Widths of loading/support blocks equipped in the bend tests (Hoover et al., 2013).

Test Height, D (mm) Loading/Support block width, LS (mm)

A 500 60

B 215 25.8

C 93 11.1

D 40 4.8

Figure 11. Mesh and boundary conditions for half of the specimen based on symmetry with respect to y-axis.
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Figure 12. Mesh convergence for the specimen with D¼ 40mm and k ¼ 0:3 with three different mesh sizes using
the localizing gradient enhancement.
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Figure 12 show that mesh convergence is achieved. In the following, a more conservative size of

0:002D will be used near the notch for all beams considered.

Results and discussions

The structural responses for all specimen dimensions are compared with the experimental results of

Hoover et al. (2013) in Figure 13, using a single set of parameters calibrated from the reference

(a) (b)

(c)

(e)

(d)

Figure 13. Comparison between experimental data (Hoover et al., 2013) and numerical results using localizing
gradient damage enhancement for the concrete specimens with different notch-to-depth ratios: (a) k¼ 0.3; (b)
k¼ 0.15; (c) k¼ 0.075; (d) k¼ 0.025 and (e) k¼ 0 (unnotched beam). Shaded regions denote experimental data, lines
denote numerical results.
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Figure 14. Nominal strength versus beam depth for numerical results using localizing gradient enhancement
compared with experimental data (Hoover et al., 2013) for the concrete specimens with different depths D and
notch-to-depth ratios k. Shaded regions denote experimental data, scatters denote numerical results.

(a) (b)

(c) (d)

Figure 15. Crack patterns for beams with k ¼ 0:3 and (a) D¼ 500mm; (b) D¼ 215mm; (c) D¼ 93mm; (d)
D¼ 40mm. Solid black lines denote average crack paths (x(y)) over the ligament depth (y) observed in the experiment
(Wendner et al., 2015). Damage profiles from localizing gradient damage enhancement are extracted at CMOD ¼
0:25 mm.
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beam in previous subsection. It is easily observed that both elastic and post-peak softening

responses match well with the experimental data for all cases considered. This is a huge improve-

ment compared to the conventional nonlocal enhancement, discussed comprehensively by Gr�egoire
et al. (2013); Havlásek et al. (2016); Marzec and Bobi�nski (2019a) in the context of integral

approach, and is thus not repeated here. A brief presentation with the conventional gradient

enhancement was presented by Wosatko et al. (2018), and also demonstrated briefly in third section

where the same set of parameters cannot be used for the notched and unnotched beams considered.
Referring to Hoover et al. (2013), the nominal strength of the beam specimen is defined as

rN;max ¼ 1:5FmaxS= bD2ð Þ, where Fmax is peak load, S is span, b and D are the out-of-plane thickness

and depth. As shown in Figure 14, the nominal strength is well captured using the localizing gra-

dient enhancement compared with the experimentally tested data.
As a check, the final damage profiles for the different specimen sizes with k ¼ 0:3 are depicted in

Figure 15, compared against the experimental crack paths obtained in Wendner et al. (2015). A

good agreement is obtained in terms of the numerical and experimental damage bandwidths, which

further provides confidence that the localizing gradient enhancement is able to describe the damage

processes adequately.

Conclusion

In this contribution, the localizing gradient enhancement (Poh and Sun, 2017) is adopted to resolve

the deficiency of conventional nonlocal models in getting accurate predictions on the size effect of

quasi-brittle materials. The underlying limitations in a conventional nonlocal enhancement, both

integral and gradient approaches, results from an inherent damage diffusion mechanism in the

formulation. To better elaborate on this numerical artefact, we distinguish between a spreading

effect and a boundary effect in the context of gradient enhancement, in the three-point bend test of

concrete beams. Considering first an unnotched beam, a spreading effect is observed with the

conventional gradient enhancement, where a very diffused damage process bandwidth is obtained.

With a notched beam, a boundary effect is observed where damage diffuses in a non-physically

manner to the region below the notch tip, to give a spike in dissipation at the notch tip, in addition

to a spreading effect. The combined action of both effects thus delays the initiation of a crack

(boundary effect) and retards the crack propagation process (spreading effect).
The localizing gradient enhancement remedies the spurious effects, by restricting the active pro-

cess zone in front of a crack tip to a finite region, hence resolving the spreading and boundary

effects. The projected dissipation profiles in the vertical direction match well with the dissipation

histograms from reference meso-scale simulations in Gr�egoire et al. (2015). Since the crack prop-

agation process is captured adequately with the localizing gradient enhancement, it is able to accu-

rately predict both Type 1 and 2 size effects in the series of three-point bend tests of concrete beams

by Hoover et al. (2013), using only a single set of material parameters. The results here, although

encouraging, are shown only for tensile dominated fracture. It will be of interest, as part of future

work, to investigate the performance of localizing gradient enhancement for other types of exper-

imentally observed size effect, e.g. torsional (Kirane et al. 2016), mixed mode (Garcia-Alvarez et al.

2012) or dynamic fracture (Wang et al. 2018).
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Appendix 1: Numerical framework (plane stress)

The numerical framework is adapted from Poh and Sun (2017). To facilitate the implementation, all
expressions are presented in Voigt notations.

The basic two variables, u; ~e, can be discretized as

u
2�1

¼ Nu

2�16

au
16�1

; ~e ¼ Ne

1�4

ae
4�1

(9)

where Nu and Ne are quadratic and linear shape functions respectively; au and ae are the matrices of
the nodal degrees of freedom.

The gradient terms, e and r~e , are thus discretized as

e
3�1

¼ Bu

3�16

au
16�1

; r~e
2�1

¼ Be

2�4

ae
4�1

(10)

where Bu and Be are the gradient operators for displacement and damage strain.
The constitutive relationship for r is given by

r ¼ ð1� xÞC : e (11)

Performing a consistent linearization of the stress quantities and ignoring the contribution of
higher-traction, the weak form of the governing equations at the global level is reduced to the
following equality

Z
BT
u drdv ¼

Z
NT

u tda�
Z

BT
u rdv (12a)

Z
NT

e d~r þ BT
e d

~ndv ¼
Z

�NT
e ~r � BT

e
~ndv (12b)
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The numerical framework can thus be written as

Kuu

Keu

Kue

Kee

" #
dau
dae

" #
¼ Fu

Fe

" #
(13)

where at the element level using a Rankine equivalent strain measure in plane stress condition, the

sub matrices are given as
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 �
dv

Appendix 2: Determination of dissipation

Following the dissipation inequality principle of the localizing gradient enhancement (Poh and Sun

2017), the dissipated energy for the entire domain is given as

D ¼ 1

2

Z Z
e : C : eð Þ dx dv (14)

Since the numerical framework is in 2D, the computed dissipation is obtained per unit out of

plane thickness. The incremental dissipation DD in a single element at each loading step is

obtained as

DD ¼ 1

2
e : C : eADx (15)

where Dx is the damage increment between two loading steps, and A is the element in-plane area.

Projection of dissipation in the vertical direction

To compute the projection of dissipation in the vertical direction (along specimen ligament), the

region of interest is discretized into n rows which are perpendicular to the y-axis, as shown in

Figure 16. The length of the ligament is determined from the notch tip to the top surface of the

beam specimen along the vertical direction (y-axis). For simplicity, the width of each row, a, is set to
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be the same as the mesh size. All elements in the same row can thus be grouped together. The region
of interest should be large enough so that the entire damaged area contributes towards the deter-
mination of dissipation.

At each loading step, the total incremental dissipation (per unit out of plane thickness) of an
element ðEAÞ is obtained by the volumetric integration of DD. The dissipation per unit area for each
row, projected in the vertical direction, is thus obtained as by summing up the total incremental
dissipation from all elements of the same row, divided by the element height a. Note that a con-
vergence check is necessary to ensure that the loading step is small enough, such that a converged
dissipation map is obtained.

Dissipation map

The dissipation density of each element is computed as

Ev ¼ DD
A

(16)

The value in (16) denotes the average volumetric incremental dissipation density in joule per
cubic meters. This is plotted at the mid-point of each element to give the dissipation map.

Figure 16. Discretization of “region of interest” to compute the projection of dissipation in the vertical direction.
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