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ABSTRACT

Multiphase flow in porous media is involved in various natural and industrial applications, including water infiltration into soils, carbon
geosequestration, and underground hydrogen storage. Understanding the invasion morphology at the pore scale is critical for better
prediction of flow properties at the continuum scale in partially saturated permeable media. The deep learning method, as a promising
technique to estimate the flow transport processes in porous media, has gained significant attention. However, existing works have mainly
focused on single-phase flow, whereas the capability of data-driven techniques has yet to be applied to the pore-scale modeling of fluid-fluid
displacement in porous media. Here, the conditional generative adversarial network is applied for pore-scale modeling of multiphase flow in
two-dimensional porous media. The network is trained based on a data set of porous media generated using a particle-deposition method,
with the corresponding invasion morphologies after the displacement processes calculated using a recently developed interface tracking algo-
rithm. The results demonstrate the capability of data-driven techniques in predicting both fluid saturation and spatial distribution. It is also
shown that the method can be generalized to estimate fluid distribution under different wetting conditions and particle shapes. This work
represents the first effort at the application of the deep learning method for pore-scale modeling of immiscible fluid displacement and high-
lights the strength of data-driven techniques for surrogate modeling of multiphase flow in porous media.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133054

I. INTRODUCTION

Multiphase flow in porous media has been investigated extensively
mainly in the context of geological systems for applications, including
enhanced oil recovery, carbon geosequestration, and underground
hydrogen storage." * It has been established that the fluid- fluid displace-
ment processes depend on both flow conditions and fluid properties,
which was revealed in the phase diagram proposed in the seminal work
by Lenormand,” where three regimes including capillary fingering, vis-
cous fingering, and stable displacement were found to be governed by
the viscosity ratio of the two fluids and Capillary number that reflects the
relative importance of viscous force to capillary force. In addition, the

significant impacts from the wettability of the porous media, quantified
by the contact angles measured at three-phase contact lines, have been
identified experimentally and numerically.” '’ Generally, as the wetting
conditions of porous media shift from non-wetting (drainage processes
with contact angle measured within the invading phase being less than
90°) to wetting (imbibition processes), smoother invasion fronts with
less trapping of defending phase are observed, which is explained by the
favored cooperative pore-filling events at the pore scale.'*'*

The knowledge of multiphase flow in porous geological systems,
i.e., rocks and soils, has been employed to study other topics involving
different types of porous materials, e.g., gas diffusion layer in fuel
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cells."™"* In most applications mentioned above, inferring macroscopic
metrics of fluid-fluid displacement processes, such as displacement effi-
ciency, the fractal dimension of the invading fluid distribution, and rela-
tive permeability from fluid properties and flow conditions, has been a
central focus. In the past decades, increased emphasis has been put on
the deterministic prediction and control of fluid transport phenomena,
especially in artificial porous media where the geometry of pore struc-
ture can be controlled, such as microfluidic devices for applications
including drug delivery and selective metallization.'”'® Specifically, how
geometry and topology of the pore structure affect multiphase flow
remains an active area of research.'” >’ Recent works have shown that,
by careful design of porous media with a particle size gradient, the capil-
lary or viscous fingering can be suppressed during fluid—fluid displace-
ment processes.” "~ Despite these efforts, the deterministic prediction of
multiphase flow in porous media remains elusive.

Various numerical approaches have been employed to supplement
experiments in understanding the fluid transport in porous media at the
pore-scale, including conventional Navier-Stokes equations solvers such
as the volume of fluid method,”** mesoscale methods such as the lattice
Boltzmann method,” " and pore-network models.""**** On the other
hand, with the recent drastic advancement in the development of data-
driven techniques, deep learning has become a promising tool for effi-
ciently modeling fluid transport in porous media, where the focus was
placed on estimating the permeability of single-phase flow through a
porous medium using artificial neural networks (ANNs),”* convolutional
neural networks (CNNs),”” ™ or hybrid methods. ‘%47 To further obtain
the spatial flow details, approaches based on CNNs have been proposed
to either accelerate or directly predict the velocity field."* ™" A recent
review on the development of deep learning techniques on pore-scale
modeling is given by Wang et al.”' Despite tremendous progress in the
applications of data-driven methods in modeling transport problems in
porous media, most studies have focused on single-phase flow. For the
multiphase flow, Ganti et al.”* presented the first attempt on applying
data-driven methods for surrogate modeling of diesel jet injected into a
quiescent nitrogen environment. Wen et al.” adopted CNNs as a com-
putationally efficient substitute for predicting multiphase flow in the
context of carbon dioxide storage. Shokouhi et al.”* presented a
physics-informed deep learning method for the prediction of CO,
plume migration by modifying the loss function with the govern-
ing equations (continuity and Darcy’s law). However, these afore-
mentioned works are based on the equations at the continuum
scale, neglecting the invasion mechanisms at the pore scale.
Nevertheless, it has been shown extensively that the pore-scale
modeling of multiphase flow which includes the effects of wettabil-
ity and pore structures is of vital importance for the accurate pre-
diction of fluid flow processes.'®”"

In this work, the deep learning technique based on the conditional
generative adversarial network (CGAN) called pix2pix by Isola et al.”” is
applied for the pore-scale modeling multiphase flow in two-
dimensional porous media. This method is chosen due to its wide appli-
cability in handling image-to-image translation tasks. This is especially
suitable for multiphase flow problems as both the input (porous struc-
tures) and the output (liquid distribution in the pore space) are often
images such as those obtained using x-ray computed tomography. The
flow condition considered in the work is the capillary-dominated
regime, i.e., at the low capillary number where the viscous effect is negli-
gible compared with the interfacial tension, a scenario that can appear

scitation.org/journal/phf

in applications such as carbon geosequestration and subsurface hydro-
gen storage.”""” We first present the workflow, including the generation
of porous media, the numerical method for fluid—fluid displacement,
and the structure of cGAN. Next, the neural network is trained based
on 4000 simulation results of drainage processes (porous media being
non-wetting to the invading phase), and the prediction accuracy on test
samples (containing 1000 simulation results) considering both statistical
and deterministic metrics, ie., saturation and invasion morphology, are
examined. We explore the sensitivity of saturation and morphology pre-
diction performance on the network architecture by varying the net-
work depth. Then, we probe the generality of cGAN for multiphase
flow by extending to cases with different wetting conditions and particle
shapes. Finally, we discuss the implications of the findings and provide
perspectives for potential future works.

Il. METHODS

The workflow for predicting multiphase flow in porous media
using deep learning techniques is shown in Fig. 1. First, to obtain the
required data set for training, the two-dimensional porous media are
generated as binary images, which are used as geometry input along with
boundary conditions for multiphase flow simulation using numerical
methods. The simulation results containing three phases, ie., invading
fluid, defending fluid, and solids are then binarized to represent the final
morphology of the invading phase, which is regarded as the ground truth
results. Note that, despite that both the defending phase and solids are in
black, the binary images of geometry input and ground truth result
together should contain the complete information of phase distribution
without loss of information, as both will be input into the learning
machine, ie, the conditional generative adversarial network (cGAN),
during the training process. Once trained, given only a geometry input
(test data) that the machine has not seen, the cGAN can predict invading
phase distribution within the porous medium, which can be compared
with the simulation results to examine the network performance. In the
following, details are provided on the adopted methods in the workflow.

A. Porous media generation

Randomly arranged non-overlapping circular particles of differ-
ent sizes have been commonly used as porous media with heteroge-
neous pore structures.”*® Here, we adopt a simple particle-deposition
method to generate geometries with controlled statistical parameters.
Briefly, a circle with a prescribed radius Ry is repetitively and randomly
(uniform distribution) deposited into a square domain with an edge
length L. The total number N of particles to be deposited can be calcu-

lated by N = %, with ¢ the porosity. During deposition, if the

newly placed circle overlaps with an existing one, coalescence takes
place, i.e., the particles merge into one larger particle with a conserved
total area. The location of the merged particle is calculated based on
the area-weighted position, ie., Xpew = (%741 + x24;)/(A; + Az),
with x; the center coordinates and A; the area. A schematic showing
the coalescence of two particles is shown in Fig. 2(a). A sample gener-
ated porous medium with porosity ¢ = 0.6 is shown in Fig. 2(b).
Interestingly, it is found that the resulting particle size distribution
using this simple-deposition method can be well described by an expo-
nential distribution [Fig. 2(c)]. To further control the geometrical fea-
tures of porous media, first, a distance of inhibition h can be
introduced to prevent particles from being too close, ie., the
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FIG. 1. Workflow of predicting multiphase
flow in porous media using the conditional
generative adversarial network (cGAN).
Both the constructed porous media and
simulation results (ground truth) of inva-
sion morphologies are input into the
cGAN for training. Once trained, given a
new porous medium, cGAN directly pre-
dicts the invasion morphology of the
invading phase at percolation.
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FIG. 2. Porous media generation. (a) A schematic showing the coalescence of two particles (red) into a larger one (black) with updated size and position. (b) A sample porous
medium generated using the particle-deposition method with a porosity of 0.6. (c) The particle size is found to follow an exponential distribution. (d) Generated porous media
with a porosity of 0.6 under different numbers of repetition N, = {1, 10, 100}.
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coalescence criterion (ensuring non-overlapping) D < R; + R, is
changed to D < Ry + R, + h, with D the center-to-center distance
between two particles, and R; and R, the particle radii. Note that h =0
corresponds to the non-overlapping criterion. The specification of an
inhibition distance ensures sufficient pore spacing among particles
such that the non-overlapping geometries can be accurately captured
once the generated porous medium is binarized with a certain resolu-
tion. The other modification to control the particle size distribution is
the introduction of a number of repetitions N, during deposition to con-
trol the particle size distribution. Specifically, when depositing a new
particle, if the coalescence criterion is triggered, coalescence is sup-
pressed and another random location is chosen for the particle. This
process repeats until a non-overlapping location is chosen. The number
of repetition N, specifies the maximum times the “seek-new-location”
process can be executed. Thus, N, = 1 corresponds to the original algo-
rithm, and greater N, encourages space filling of small particles and
avoids coalescence, which would lead to a more uniform particle size
distribution. Figure 2(d) shows three generated porous media in square
domains of unit size with porosity ¢ = 0.6, Ry = 0.03, h=0.01, and
N, = {1, 10, 100}, respectively. In this study, N, = 10 is chosen.

B. Interface tracking algorithm

To simulate multiphase flow in porous media, a recently developed
interface tracking algorithm is used.”” The method is developed based
on the algorithm originally proposed by Cieplak and Robbins,"" which
considers essential pore-scale instability events, including burst, touch,
and overlap. The original method has been successfully applied to repro-
duce experimental results of multiphase flow in porous media filled
with perfectly spherical particles.””** The key extension in the new algo-
rithm is the consideration of the unpin event, which results from the
sharp edge pinning effect where the effective contact angle can be
greater than the intrinsic one, and the contact angle at which unpin
takes place can be determined according to a purely geometrical exten-
sion of Young-Dupre equation Oyypin = 0p + (180° — o) with 0, being

B
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the intrinsic contact angle and o the local corner angle.””’” This is a
common phenomenon observed in both natural and artificial surfaces
where menisci can get pinned at sharp edges, e.g., Wu et al.”' and Chen
et al”? Figure 3(a) shows the schematics of these pore-scale mecha-
nisms, with light and dark blue curves representing the menisci position
before and after an instability event, respectively. The main advantage of
the interface tracking algorithm is its applicability to arbitrary-
structured porous media, as opposed to perfectly circular grains in the
original model. This new method has been validated and applied to
study fluid-fluid displacement processes in porous media with complex
pore structures and different wetting conditions.””” As illustrative
examples, Figs. 3(b) and 3(c) show the simulated invasion morphologies
of diagonal injection simulations in a representation of a Berea sand-
stone”” with contact angles = {45°,165°}, respectively. The algorithm
is currently able to simulate multiphase flow in the capillary-dominated
regime, ie., quasi-static processes with vanishing capillary numbers
where the viscous effects are negligible. This regime is often encoun-
tered during fluid flow in fine soils and sands underground or in
microfluidic devices where the size of pore space is small (on the order
of micrometers). The algorithm is much more computationally efficient
compared with conventional computational fluid dynamics (CFD)
methods, which facilitates the generation of data sets for training neural
networks. A more detailed description of the algorithm can be found in
the previous studies”**” and is omitted here for brevity.

C. Conditional generative adversarial network

We adopt a conditional generative adversarial network (cGAN)
called pix2pix as described in Isola et al.”’ This method is chosen due
to its wide applicability in handling image-to-image translation tasks
and ease of adoption without the need for parameter tweaking. This is
especially suitable for multiphase flow problems as both the input
(porous structures) and the output (liquid distribution in the pore
space) are often images such as those obtained using x-ray computed

tomography, after image treatment and segmentation (see, e.g,

FIG. 3. Interface tracking algorithm for multiphase flow. (a) Schematics of pore-scale invasion mechanisms. The direction of meniscus movement is indicated by black arrows.
The light-blue and dark-blue curves represent the menisci position before and after the corresponding advancement event, respechvely (b) and (c) Invasion morphologies in a
representation of a Berea sandstone with contact angles 6 = {45°, 165° }, respectively. More details can be found in Wang et al”’
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Blunt et al.’”* and Bruchon et al.””). A schematic of the cGAN is shown
in Fig. 4, where the generator G, for a given input porous medium x,
predicts the invading fluid distribution at percolation y, i.e., when the
invading fluid reaches the outlet, while its adversary, the discriminator
D, tries to classify whether the output result is “real” or “fake.” In other
words, during the training process, G is trained to produce output
images that can “fool” D, whereas D is trained to distinguish fake
images from real ones. Specifically, the architectures of the generator
and discriminator are based on “ResU-net” and “PatchGAN”
described in detail in Zhang et al.”® and Nie et al.,’” respectively. The
exact network structures of the generator and the discriminator are
provided in the Appendix (Figs. 10 and 11, respectively). All neural
networks used in this framework are developed using Tensorflow.”®
The loss function of the cGAN is given by

»CcGAN(G7 D) = IEx‘y~Pdata(x‘y) [log D(x7 }/)]
+ ]Ex~Pduta(x) [log (1 - D(X, G(x)))]7 (1)

where G tries to minimize this objective against its adversary D that
tries to maximize it. At the same time, the generator not only learns to
fool the discriminator but also is tasked to generate output close to the
ground truth results in an L1 sense,

ELI(G) = IExwadata(x,y) U ‘)’ - G(X)HI] . (@)

L1 norm rather than L2 is used to encourage clear boundary for the
generator output,” i.e., a clear boundary between fluid—fluid and flu-
id-solid interfaces. Hence, the final objective is™

G =arg m()in max Lecan(G, D) + 2L (G). (3)
In the original work of Isola et al,*” it is shown that the quality of pre-
diction is affected by the choice of A. Particularly, L1 alone, corre-
sponding to / being too large or the absence of the first term on the
right-hand side of Eq. (3), leads to blurry results, which is undesirable
in the current application of immiscible fluids; A small value of 4, on
the other hand, gives sharper results but could introduce unwanted
artifacts. Thus, a A = 100 is chosen to reduce both of these artifacts,
the same value adopted in Isola et al®> We believe that the optimal
value of A is problem-based (could be different depending on the
application), which is worth further investigation. The standard
approach is followed during training:”” one gradient descent step is exe-
cuted alternatively between D and G, and the objective is divided by 2
while optimizing D, which slows down the rate at which D learns com-
pared with G. The Adam optimizer is adopted,”” with a learning rate of
0.0002, and momentum parameters f3; = 0.5, , = 0.999. For the

Input y

Input x Generator G Output G (x)

Discriminator D

Fake
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input, the generated porous media are binarized into 256 x 256 images
as input images x for training. For flow simulation using the interface
tracking algorithm, a diagonal injection setting is adopted, i.e., point
inlet at the bottom left and point outlet at the top right, a typical geome-
try relevant to oil recovery processes. The simulation results y are also
binarized into 256 x 256 images where the morphologies of the invad-
ing fluid at percolation are colored in white. 5000 simulation cases
under drainage conditions with a contact angle of 165° are simulated,
among which 4000 are for training, and 1000 for the test.

I1l. RESULTS AND DISCUSSION
A. Performance evaluation

A sample multiphase flow prediction for given input geometry
from cGAN as well as the ground truth results from the simulation are
displayed in Fig. 5(a). In the case of drainage processes (0 = 165°), the
occupation of relatively big pores by the invading phase (white) is
observed. Despite that there is some unphysical scattered invading phase
that is disconnected from the main invading cluster, the prediction of
phase distribution from ¢cGANs compares well with the ground truth
result. The image contrast in Fig. 5(a), i.e, cGAN prediction subtracted
from the ground truth result, highlights the regions where the prediction
and the ground truth result are different. Specifically, 1, 0, and —1 in the
contrast map respectively represent the region of false invasion (not
invaded in the ground truth), exact match, and false non-invasion
(invaded in the ground truth). It can be seen that most of the unmatched
regions (clusters in red or blue) are located at the menisci interfaces and
are in the form of thin slices of the size of one or two layers of pixels.
This, however, is not surprising as uncertainties are likely to be intro-
duced when the geometry input and ground truth result are binarized
into images with limited resolution. In the current work, with the choice
of image resolution of 256 x 256 pixels, the characteristic geometrical
feature size of the porous media, ie., the average face-to-face distance
between particles (or the average throat size), corresponds to 13.02 pixels.
Higher image resolution associated with a greater number of pixels for
the characteristic size may improve the accuracy at a compromise of
increased computational cost.

The performance of cGAN in predicting multiphase flow is
quantitatively evaluated based on two metrics. The first is the invading
fluid saturation Siny = Ainy/Apores With Ajy, and Apgre the area of
invading fluid and total pore space, respectively. This is a critical
parameter for the macroscopic characterization of multiphase flow in
many engineering applications, such as enhanced oil recovery and car-
bon geosequestration. Note that, as the pore space is initially filled
with only the defending phase, the value of Sy, is also equal to the
sweep efficiency of the displacement process, i.e., the proportion of the

Discriminator D FIG. 4. Conditional generative adversarial

network (cGAN). The generator G learns
to generate the output that can fool the
discriminator. The discriminator D learns
to classify fake images (created by the
generator) from the ground truth y.

True
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FIG. 5. Error quantification for drainage with 6 = 165°. (a) From left to right: a sample input of a porous medium, the corresponding simulation result (ground truth), prediction
from cGAN, and contrast between simulation result and cGAN prediction, respectively. (b) Comparison of invading phase saturation from simulation and cGAN prediction on
training (blue) and test (red) samples. The coefficients of determination R for training and test results are 0.998 and 0.981, respectively. The inset shows the distribution of rel-
ative error from cGAN on test samples, with the standard deviation 0.068 indicated by black-dashed lines. (c) Cumulative distribution function (CDF) for the error percentage
for both saturation and morphology predictions. The percentage of cases that have less than 20% error on saturation-training, saturation-test, morphology-training, morphol-

ogy-test are {100.0%, 98.7%, 99.9%, 89.4%)}, respectively.

defending fluid that is displaced out of the porous domain. The com-
parison of saturation prediction of cGAN for the training data (blue)
and test data (red) is shown in Fig. 5(b). The predictions on test data
are clearly more sparsely distributed. However, a small standard devia-
tion of 0.068 (black-dashed lines) of the error distribution shown in
the inset indicates overall outstanding performance in saturation pre-
diction. Indeed, the coefficient of determination is calculated to be
R? = 0.981 on test data. The other metric, which is comparatively
harsher compared with Ajpy, is the area ratio of total mismatched lig-
uid distribution to the total pore space:

4 ()

€ln APOTC ’
with A the mismatched area [red and blue regions in the image con-
trast in Fig. 5(a)]. Therefore, €, not only concerns the prediction of
the total amount of invading liquid that is occupying the pore space
after the displacement process, but also where it is distributed, i.e., the
morphology, within the pore space. Figure 5(c) shows the cumulative
distribution function (CDF) of the errors in saturation (e, absolute
saturation difference between cGAN predictions and ground truth
results) and morphology prediction (ey,) for both training and test

data. The CDF shows the proportion of predictions (y-axis) that have
errors that are less than a specific value (x-axis). A shift of curves
toward the right indicates an increase in the error. It can be seen that
the error in morphology prediction is higher than in saturation predic-
tion. Specifically, if 20% is chosen as the error threshold, the corre-
sponding percentage of saturation (PX’) and morphology (PX)
predictions are 98.7% and 89.4%, respectively. In other words, about
90% of predictions in the phase occupation status in the pore space
have less than 20% error.

B. Sensitivity on network complexity

To investigate how the network architecture complexity impacts
the prediction accuracy, the network depth of the cGAN generator is
varied, which is illustrated in Fig. 6(a). The deepest bridging layers are
progressively removed, which is associated with decreasing the net-
work complexity of the generator. The obtained architectures are
denoted as cGAN-4, cGAN-8, cGAN-16. Figures 6(b) and 6(c) respec-
tively show the error CFD for the saturation and morphology pre-
dictions with different network depths. As expected, compared
with spatial fluid distribution, the saturation predictions are generally
better for all cases. For architecture-wise comparison, cGAN-16 is
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FIG. 6. Simplifications of generator net-
work structure. (a) Network structures of

the generator with progressively removed
bridging layers of minimum size. (b) and
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- (c) Corresponding performance in predict-
ing the final saturation and invasion mor-
phologies of multiphase flow in porous
media, respectively.

A Encoder Decoder B 1! 7~
o - . m i
’ N & o5
H : gy : b [ Input layer “
# EE Output layer
[ Intermediate layer Oo 10
....... e ¢
4t [Z771 8x8 bridging layer ! g
a4 EZZ  16x16 bridging layer I
SCI e » Skip connection 205t /
16x16 e ,‘Z
U oll ‘
256x256 256x256 o 10

significantly outperformed by cGAN-4 and cGAN-8, whereas there is
no significant difference between cGAN-4 and cGAN-8, indicating a
saturated performance at cGAN-8, and further network complexity
will not lead to a further increase in prediction accuracy. The quantita-
tive metrics for performance quantification are summarized in Table I.
We note that apart from the architecture complexity examined in this
section, other aspects of the neural network as well as parameters dur-
ing training, such as the type of activation function, the learning rate,
and the momentum parameters, could also impact the training time
and the performance of the trained model; this is however beyond the
scope of the current study.

C. Predicting multiphase flow in porous media

Since wettability and particle shape have been identified as key
factors that can influence multiphase flow processes in porous media,
it is important to assess the applicability and performance of cGAN in
predicting multiphase flow under different wetting conditions and
pore structures. Thus, we generate another 15000 cases of simulation
results to cover different contact angles 0 = {60°,105°} and angular
particles with sharp corners (represented by square shapes in this
work). The porous media with angular grains can be generated based
on the original circular ones by converting circular grains to square
ones while preserving particle size (conserved area). Random rotation
is then applied to every square particle. Again, for each 5000 data sets,
4000 are for training and 1000 are for validation.

Figure 7 shows three sample geometry inputs, ground truth results,
and predictions from ¢cGAN for different wettability and particle shapes.
Qualitatively, the predictions of the invading phase distribution within the
pore space agree reasonably well with the simulation results. A general
trend of more compact area occupied by the invading phase can be
observed for cases with smaller contact angles, consistent with the
expected transition from capillary fingering to stable displacement as

TABLE I. Comparison of performance for the generator with different network depth.
P20 and P2 represent the proportion of cases on the validation data set that have
less than 20% error for saturation and morphology, respectively. € and €, denote
the average error for saturation and morphology predictions, respectively.

Architecture  Network depth px & px €m

cGAN-4 7 0.987 0.051 0.894 0.111
cGAN-8 6 0.987 0.051 0.906 0.109
cGAN-16 5 0.747 0.141 0.111 0.277

20 30 40 50
Error (%)

contact angle decreases due to favored cooperative pore-filling events.' "'

Again, small regions of dispersed invading fluid that are disconnected
from the main invading cluster can be observed. It is possible to design
and carry out a post-processing procedure during which these isolated
clusters are filtered out. However, we note that such a procedure may not
be necessarily beneficial in interpreting the predicted results from cGAN.
This is because the isolated clusters are not necessarily unphysical and
might appear in three-dimensional displacement processes. In strong
drainage, snap-off events caused by the swelling of defending phase corner
flow could occur, which can disconnect the invading fluid,** although
the disconnection tends to be intermittent. In strong imbibition, the fluid
invasion process in the capillary-dominated regime follows a percolation-
like pattern where the invading phase can be mainly transported through
corner flows.”*” This implies that the invading fluid could appear to be
disconnected for given limited imaging resolution where the corner or
thin film flows cannot be resolved. Therefore, in this work we refrain from
applying any post-processing techniques to the results from cGAN.

The predictions of invading phase saturation Si,, from cGAN
under different wetting conditions for the test data are plotted in Fig. 8.
To highlight the regions where most data points fall into, the dashed
and solid curves enclose, respectively, 80% and 50% of cases based on
the contours of density plot. It can be seen that these regions are located
close to the diagonal line (black-solid line), indicating a general consis-
tency between the predictions and the ground truth results. Specifically,
the coefficients of determination are R? = {0.849,0.956,0.981} for
0 = {60°,105°,165°}, respectively, which also corresponds to P
= {0.775,0.940, 0.987} (proportion with less than 20% error in satura-
tion prediction), respectively. One reason that may explain the decrease
in accuracy as the porous media become more wetting to the invading
fluid could be the favored non-local cooperative pore-filling events (or
overlap event), since the pore invasion triggered by the overlap of two
menisci depends on the exact location of both menisci, and as men-
tioned previously significant proportion of morphological inconsistency
are located at the fluid—fluid interfaces [see the image contrast in Fig.
5(a)]. The average values of S;,, for different contact angles are indicated
as solid dots. As expected, the invading phase saturation increases as 0
decreases, consistent with existing literature.*' "%

The performance of cGAN on predicting fluid morphological distri-
bution for different wettability and particle shapes is evaluated by plotting
the CDF of error in invasion morphology predictions (Fig. 9). The overall
trend of accuracy as a function of wettability is similar: greater error is
observed when 0 decreases. For circular grains with 6 = 60°, only 56%
of morphology predictions have less than 20% error, a noticeable
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FIG. 8. Saturation prediction for multiphase flow under different wetting conditions
0 = {60°,105°,165°}, with R?> = {0.849, 0.956, 0.981}, respectively. The dashed
and solid curves surround the 80% and 50% cases based on the contours of density
plot. The nontransparent circles denote the mean saturation for different 6.

FIG. 7. Prediction of multiphase flow in
porous media with different wettability and
particle shapes.

reduction compared with 91% for 0 = 165°. For porous media with
angular particles, the proportion of predictions having less than 20%
error is slightly smaller (86%) compared with circular grains at the same
wetting condition (91%). This might be attributed to the decrease in the
minimum throat size when converting circular grains into square ones.
As mentioned previously, the porous media with square particles are gen-
erated by converting each circular grain to square ones with the area of
each particle remaining the same (consequently the same porosity), after
which a random rotation is applied to each individual particle. As a result,
the minimum feature size of the porous media—the minimum possible
face-to-face distance between two particles—is smaller for square par-
ticles compared with circular ones. Given the intrinsic uncertainties
(inversely related to the image resolution) remain the same, slightly
greater errors are observed in porous media with angular particles.

D. Discussion

The capability of data-driven method for predicting fluid—fluid dis-
placement processes in porous media with different wetting conditions
and particle shapes has been clearly demonstrated. The saturation esti-
mation from cGAN is in good agreement with the ground truth results,
whereas the prediction of spacial liquid distribution fails to achieve the
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FIG. 9. Cumulative distribution function (CDF) for error percentage of invasion mor-
phology predictions. For test cases, the proportion of cases that have less than
20% errors for circular grains 0 = {60°,105°, 165° } and angular grains 0 = 165°
are {0.56, 0.73, 0.91, 0.86}, respectively.

same level of quantitative accuracy. The noticeable reduction in fluid
morphology prediction highlights an important feature of multiphase
flow in porous media compared with single-phase flow. During single-
phase flow, small variations in local pore size is not expected to have a
significant impact on the permeability. However, for multiphase flow,
the global spatial liquid distribution can be very sensitive to local pore/
throat size fluctuations, especially in processes where the capillary force
and pore geometry governs the invasion sequence. An infinitesimal
amount of variation in the size of one throat/pore could theoretically
lead to the change of phase occupation status of an entire region, e.g,
when all the subsequent invasion of a region depends on the filling of a
specific pore/throat. An example of drastic change in the invasion mor-
phology during imbibition processes due to slight variation in porous
medium porosity or wettability has been reported recently.”” This, com-
bined with the previously mentioned more demanding accuracy for the
exact menisci location prediction during the cooperative pore-filling
event, results in deteriorated performance in fluid morphology predic-
tion during imbibition processes (0 = 60°). Despite the complexity
involved in fluid-fluid displacement processes, the overall performance
of ¢cGAN on fluid morphology prediction is found to be satisfactory:
56% (imbibition) to 91% (drainage) correct prediction with 20% error
tolerance, and 94% (imbibition) to 100% (drainage) with 40% error tol-
erance. In future works, images with enhanced quality, i.e., greater pixel
density for the pore geometry, can be adopted to explore the improve-
ment in pore-scale accuracy during imbibition processes.

In the current study, conditional generative adversarial networks
were chosen as the network architecture for the pore-scale modeling
of fluid—fluid displacement processes under different wettability and
particle shapes. This is because, as mentioned before, (1) its proven
strength of handling image-to-image translation tasks, and (2) the
inputs and outputs of multiphase flow in porous media are often
images as those obtained from x-ray CT. By exploring the perfor-
mance of cGAN under different network complexity, it is shown that
the prediction accuracy is saturated at network cGAN-8, which is

scitation.org/journal/phf

associated with a network depth of 6. However, we note that this obser-
vation is likely to be case-specific, i.e., the network depth needed for satu-
rated performance depends on the smallest geometrical features of the
pore structure, e.g., the characteristic throat size of the porous media.
Here, cGAN has been focused on in this work, and we note that further
studies are required for the exploration of optimal network structures
using other alternative architectures. For the computational cost, the
computation time is around 85h on an NVIDIA Tesla P100 GPU for
the training process with 4000 training data. Once trained, the computa-
tion time for predicting 1000 test cases using cGAN is about 6 min,
which is approximately two orders of magnitude faster than the interface
tracking algorithm that was used for data generation.”” In the current
work, despite that the same network architecture is adopted for all cases
as shown in Fig. 7, the model is retrained for different wetting conditions
and particle shapes. Future work could include embedding the contact
angle into the training data such that the model can be used to predict
the fluid distribution under various conditions. Alternatively, it is also
possible to apply transfer learning to accelerate the training processes.

IV. CONCLUSIONS

We have presented a workflow where the data-driven technique
is applied for predicting pore-scale multiphase flow in porous media,
which is a crucial process in many engineering applications, such as
enhanced oil recovery and carbon geosequestration. It is shown that
deep learning techniques can be used to not only predict the macro-
scopic metric during multiphase flow, such as saturation, but also are
able to perform satisfactorily in predicting spatial liquid distribution
with different wetting conditions and particle shapes. Specifically,
more than 99% (drainage) and 78% (imbibition) cases have less than
20% error for the saturation prediction, and more than 91% (drainage)
and 56% (imbibition) cases have less than 20% error regarding the
exact liquid spatial distribution. The greater error observed during
imbibition processes is attributed to the more favored non-local coop-
erative pore-filling events at smaller contact angles, a mechanism that
is demanding in accurate prediction of the exact location of menisci.

This work represents the first effort on the application of data-
driven technique for the pore-scale modeling of immiscible fluid dis-
placement in porous media. The direct consideration of wettability
and pore structure geometry during multiphase flow distinguishes the
current work from several recent studies in the literature.” >****’ The
results presented in this study demonstrated the strength of data-
driven techniques for fast surrogate modeling of fluid displacement
processes in porous media, which could facilitate the development of
more accurate continuum-scale models as well as help in deterministic
predictions of fluid flow in artificial porous media such as topological
optimization of microfluidic devices for controlled liquid transport.
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APPENDIX: NETWORK STRUCTURE

Schematic showing the network structure of the generator
used in this work (Fig. 10). Schematic showing the network struc-
ture of the discriminator used in this work (Fig. 11).
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