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Abstract Unfavorable fluid‐fluid displacement, where a low‐viscosity fluid displaces a higher‐viscosity
fluid in permeable media, is commonly encountered in various subsurface processes. Understanding the
formation and evolution of the resulting interfacial instability can have practical benefits for engineering
applications. Using gradient capillary tubes as surrogate models of permeable media, we numerically investigate
interfacial dynamics during gas‐driven drainage. Our focus is on understanding the impact of tube geometry on
interface stability. In a gradient tube, since the interface shape changes during the drainage process, we measure
interfacial stability using the difference between the contact‐line velocity Ucl and the meniscus tip velocity Utip.
We define instability as a rapid reduction in the contact line velocityUcl compared to the tip velocityUtip. Beyond
the onset of this instability, gas penetrates into the liquid, forming a finger, and entraining a liquid film on the tube
wall. The observed stability transition can be rationalized to a large extent by adaptation of an existing theory for
cylindrical tubes in terms of a critical capillary number Cacrit. For an expanding tube, simulations suggest that a
stability transition from an initially unstable meniscus to a final stable one, with Ucl catching up with Utip, can
occur if the local capillary number is initially slightly larger than Cacrit and then drops below Cacrit. The insights
gained from this study can be beneficial in estimating the mode and efficiency of subsurface fluid displacement.

1. Introduction
Immiscible fluid‐fluid displacements in confined geometries play an essential role in various subsurface engi-
neering processes, such as carbon geological sequestration (Cuéllar‐Franca & Azapagic, 2015), underground
hydrogen storage (Muhammed et al., 2022), enhanced oil recovery (Khishvand et al., 2017), and nonaqueous
phase liquid (NAPL) remediation (Yuan et al., 2021). Accurate understanding of the underlying pore‐scale dy-
namics, particularly the interfacial stability, is essential for capturing the flow patterns in these applications.
Interfacial instabilities, commonly referred to as fingering phenomena, often hinder engineering practices and
limit their efficiency (Li et al., 2019; Yang et al., 2019). Thus, knowledge of the formation and evolution of the
fingers is crucial for these processes.

The dynamics of immiscible two‐phase flow are governed by the competition between viscous and capillary
forces. As a result, flow patterns can be primarily characterized by the capillary number Ca and the viscosity ratio
M of the defending phase over the invading phase. When a fluid of low viscosity displaces a fluid of higher
viscosity, that is, unfavorable displacement (M > 1), in a confined space, the interface may become unstable and
viscous fingers can dominate the flow pattern, as shown in the seminal work of Saffman and Taylor (1958). The
stability problem becomes more complex when fluid‐solid interaction is involved. Early experimental studies
(Levaché & Bartolo, 2014; Setu et al., 2013) have revealed that the presence of moving contact lines results in a
diverse range of patterns within the forced imbibition regime. In the drainage regime (a non‐wetting phase
displacing a wetting phase), recent microfluidic experiments in capillaries (Pahlavan et al., 2019; Zhao
et al., 2018) have demonstrated that gas‐driven drainage can lead to the entrainment of liquid films and eventual
formation of Taylor bubbles (Taylor, 1961) when the capillary number exceeds a critical value. Gao et al. (2019)
further developed a theoretical prediction for the critical capillary number Cacrit at which the apparent contact
angle vanishes and entrainment begins,

Cacrit =
θeq3

9
[ln(

Cacrit1/3θeq
181/3πAi2 (smax)λ

)]

− 1

, (1)
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where θeq is the equilibrium contact angle, Ai is an Airy function with smax = − 1.01879… is defined by
Ai'(smax) = 0, and λ is the dimensionless slip length. We note that the critical capillary number is strongly
dependent on the equilibrium contact angle. At a larger scale, interfacial instability emerges as a fractal pattern
during the unfavorable displacement in permeable media (Chen et al., 2017; Holtzman & Segre, 2015; Zhao
et al., 2016). In addition to the viscous fingering that occurs at larger values of Ca and M, another instability
pattern, that is, capillary fingering, dominated by capillary effects, can form in the low‐Ca regime. The transition
between these two patterns has been extensively studied and can be summarized using Lenormand's phase
diagram, which takes into account the parameters of Ca, M, and θeq (Primkulov et al., 2021).

In addition to the three dimensionless parameters mentioned above, recent studies have increasingly suggested
that pore‐scale geometries have a significant impact on interfacial dynamics. Chen et al. (2017) conducted
experimental studies on immiscible displacement in rough fractures and observed film entrainment along with a
reduction in displacement efficiency, which shares similarities with phenomena reported in Levaché and Bar-
tolo (2014), but with a particular emphasis on the contribution of surface roughness. Furthermore, the use of
specific geometric designs to control interfacial instabilities has shown promising potential. For instance, Hele‐
Shaw experiments on air‐oil drainage performed by Al‐Housseiny et al. (2012) demonstrated that a gradient in
flow passage could fundamentally control interfacial dynamics. It has also been found that a pore size gradient in
porous media can help suppress fingerings (Lu et al., 2019; Rabbani et al., 2018; Vincent‐Dospital et al., 2022).
Moreover, Suo et al. comprehensively investigated the two‐phase flow in hierarchical porous media and sug-
gested that well‐designed two‐order pore spaces help suppress viscous fingering (Suo et al., 2020) and capillary
fingering (Suo & Gan, 2021). However, the quantitative dependence of flow instabilities on geometry and the
underlying interfacial dynamics are not well established.

In this work, we aim to investigate the impacts of geometry on interfacial dynamics during gas‐driven drainage
using numerical simulations and lubrication theory. The capillary tube, as a widely used surrogate, is employed
for investigating the fundamental physics and dynamics involved in flows within porous media. The rest of this
work is structured as follows. In Section 2, a numerical model was built up based on the phase‐field method for
simulating the drainage process in contracting and expanding capillary tubes, and the corresponding controlling
parameters and the stability condition were clarified. In Section 3, the impacts of the tube geometry on interfacial
dynamics and stability were demonstrated through numerical results. We then developed a theoretical solution of
critical capillary number, similar to Equation 1, to rationalize the observations from numerical simulations. In
Section 4, we investigate post‐instability dynamics including interfacial pinch‐off. Finally, we present our
conclusions in Section 5.

2. Numerical Modeling
2.1. Governing Equations and Boundary Conditions

We use the phase‐field (PF) method (Jacqmin, 1999; Yue et al., 2004) to simulate the drainage process. Assuming
the drainage flow inside a capillary tube is very slow (Reynolds number Re ≪ 1), the pressure p, velocity v and
phase‐field variable ϕ can be described by Stokes equations coupled with the Cahn‐Hilliard equations.

∇ ⋅ v = 0, (2)

∂ϕ/∂t + v ⋅∇ϕ = γ∇2G, (3)

− ∇p + μ(ϕ)∇2v + G∇ϕ = 0. (4)

Equation 2 is a conservation‐of‐mass rule. Equation 3 describes the two‐phase nature of the flow: ϕ ∈ [− 1,1]
defines the liquid (ϕ = 1) and the gas (ϕ = − 1) phases and thus the interface position (ϕ = 0). On the right‐hand‐
side, γ is the mobility and G is the bulk chemical potential, given by

G = ω[− ∇2ϕ + (ϕ2 − 1)ϕ/ϵ2], (5)

where ϵ is the interface thickness and ω is the mixing energy density which is related to the surface tension
σ = 2

̅̅̅
2

√
ω/ (3ϵ) . Finally, Equation 4 is a conservation‐of‐momentum law, where we assume the viscosity of
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mixed fluids takes the arithmetic mean value, that is, μ(ϕ) = 1+ϕ
2 μl +

1− ϕ
2 μg (which recovers the viscosity of liquid

phase μl and gas phase μg away from the interface), and the term G∇ϕ represents interfacial forces.

We apply our phase‐field model to drainage in gradient capillary tubes, as illustrated in Figure 1. Assuming the
flow is axisymmetric, we define cylindrical polar coordinates with z pointing along the length of the tube and r
pointing in the radial direction, and solve in the rz plane. The tube gradient k is defined by k = (Rin − Rout)/L,
where L is the tube length and Rin and Rout are the tube radius at the inlet and outlet respectively, and the slope
angle α = arctan k, correspondingly. We set the smaller radius min (Rin, Rout) = R0 and the larger one max (Rin,
Rout)= R1, and fix R1= 2R0 and L= 20R0, resulting in two geometric settings: an expanding tube (k= 0.05) and a
contracting tube (k = − 0.05). We consider a model problem of displacement of a liquid phase from a capillary
tube by injection of a gas phase at a fixed inlet flow rateQin, with the outlet connected to the ambient environment.
Initially, the interface is flat and located 0.5R0 away from the inlet. To simulate the contact line moving along the
wetted wall, besides the no‐slip condition, boundary conditions for ϕ are.

nw ⋅∇G = 0, (6)

ωnw ⋅∇ϕ = (3/4)σ(1 − ϕ2) cosθeq, (7)

Where nw is the wall normal vector and θeq is the equilibrium contact angle measured within the liquid phase. This
implementation of wall wettability can guarantee the consistency of the ϕ profile around the contact line on the
wall and across the interface within the bulk (Jacqmin, 2000).

2.2. Numerical Implementation

The model outlined in Section 2.1 is solved numerically using the finite element method via COMSOL Multi-
physics®.We used triangular elements to mesh the trapezoidal domain, with mixed‐order shape functions, that is,
second‐order (quadratic) for velocities and linear for other variables. The appropriate time step is determined by
the Courant–Friedrichs–Lewy (CFL) number, and we set its upper limit to 0.5 to ensure numerical convergence.
The numerical scheme has been validated by comparing against a theoretical solution for a uniform tube, see
Appendix A.

2.3. Controlling Parameters

In our numerical simulations, we solve a non‐dimensionalized version of Equations 2–7. All lengths are scaled by
R0, and all times are scaled by πLR2

0/Qin. The dimensionless problem is governed by the slope angle α, the
wettability θeq, Cahn number Cn, relative slip length S, viscosity ratio M and capillary number Ca, which are
introduced and defined below.

Figure 1. Schematic of numerical models for drainage: a wetting liquid is displaced by a non‐wetting gas in (a) an expanding
capillary tube and (b) a contracting capillary tube.

Water Resources Research 10.1029/2023WR036766

SUO ET AL. 3 of 14

 19447973, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036766 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [01/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3.1. Slip Length and Interface Thickness

Macroscopic lengths arising in the Cahn‐Hilliard model have a strong influence on capillary‐dominated flows. In
particular, the bulk chemical potential G depends on an assumed interface thickness ϵ and diffuses across the
interface over a diffusion lengthscale ld =

̅̅̅̅̅̅̅̅̅
γμeff

√
(Yue et al., 2010), where μeff =

̅̅̅̅̅̅̅̅̅μgμl
√ and γ is an artificial

parameter which plays the role of a diffusion coefficient. To make an appropriate choice of γ and ld, one can
usually introduce the notion of a slip length ls, which emerges from the microscopic physical origins of contact
line motion and leads to a rational solution of macroscopic hydrodynamics far from the contact lines (Cox, 1986;
Eggers, 2005). The connection of ld to ls was first suggested in (Jacqmin, 2000), and numerical data suggests the
choice ls = 2.5ld (Yue & Feng, 2011). Then, this equation was further validated by the comparison between the
simulation and an asymptotic solution in the situation of dewetting in a capillary tube (Gao et al., 2019).

The choice of interface thickness ϵ is driven by a balance between model accuracy and computational efficiency.
Smaller values of ϵ are closer to the reality of a nanoscale interface, and yield less energy dissipation. However,
reducing ϵ requires finer meshing of the computational domain and hence increases computational time. To
compromise, ϵ, characterized by the Cahn number Cn = ϵ/R0, should be selected by the requirement of just
attaining the sharp‐interface limit, below which the numerical results no longer depend on the Cn. Previous
resolution sensitivity studies suggested that Cn ≤ 0.035 can guarantee convergent numerical solutions (Bai
et al., 2017; Peng et al., 2021). Also, an empirical criterion Cn ≤ 4S (Yue et al., 2010), in which S = ld/R0 is the
relative slip length, should be satisfied.

In summary, appropriate values for the lengths ϵ and ld are typically on the nanometer scale for relevant physical
problems. For a tube whose radius is on the order of 1 mm, this corresponds to dimensionless lengths Cn, S = O
(10− 5). However, such severe length scales are difficult to resolve within PF‐based numerical scheme, so to
balance the computational loads and underlying physics, we instead chose Cn = 0.01 and S = 0.004 resulting in
ls = 0.01R0. As indicated by Equation 1, the critical capillary number is proportional to 1/ ln l− 1s and larger S
would result in a larger critical capillary number. Nevertheless, the underlying physics and qualitative picture of
geometrical impacts on interfacial dynamics should remain the same.

2.3.2. Viscosity Ratio and Capillary Number

We set the viscosity ratio M = μl/μg to a fixed value of M = 50, to represent air entering a tube of water. The
capillary number measures the strength of viscous stresses relative to surface tension. We use the maximum
average velocity U0 = Qin/ (πR2

0) to define the global capillary number Ca = U0μl/σ, which characterizes the
viscous bending effect throughout the displacement process. Importantly, unlike displacement in a straight tube
where the radially averaged velocity Ū remains constant ( Ū = U0) due to the uniform tube radius, in the case of a
gradient tube with radius changing along the z axis as R= Rin+ kz, the radially averaged velocity varies according
to Ū(z) = U0(R0/R)2. To better understand how the tube geometry impacts the interfacial dynamics, we introduce
a local capillary number Caz = Ca(R0/R)2. We anticipate that interface stability will change locally with Caz.

2.4. Interfacial Stability

Previous analysis of two‐phase flow in capillary tubes suggests that the interface shape is made up of a boundary
region close to the tube wall where viscous and capillary forces compete, and an outer region close to the center of
the tube where surface tension dominates (Gao et al., 2019; Zhao et al., 2018). In the boundary layer, viscous
forces bend the contact line, changing its slope from the local microscopic contact angle θeq to an apparent bulk
contact angle θapp. The bulk shape is then a spherical cap whose radius of curvature is set directly by θapp. The
consequent θapp for a given θeq depends on the capillary number Ca, but is fixed throughout an experiment in a
tube with straight walls (Gao et al., 2019; Zhao et al., 2018). Gao et al. (2019) predicted that the system becomes
unstable at the critical value of Ca for which the apparent contact angle reaches θapp = 0. Beyond this value, a
spherical cap cannot be maintained and the interface stretches out, leading to liquid entrainment and eventually
capillary pinch‐off (Zhao et al., 2018). This instability has been predicted theoretically from predictions of θapp,
and was observed experimentally by measuring the speeds of the contact line and cap front: in the stable regime,
the contact line and cap front travel at the same speed, but in the unstable regime the cap front accelerates away
from the contact line. An abrupt drop in the contact line velocity is typically observed, driving entrainment (Gao
et al., 2019; Zhao et al., 2018).
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In this work, we investigate two‐phase flow in tubes with gradient walls instead of straight walls. For a fixed inlet
velocity, conservation of mass tells us that the flow speed should increase as the tube narrows or decrease as the
tube widens, leading to local changes in the balance between viscous stresses and capillary forces in the wall
boundary region. We can interpret this as a change in the effective capillary number, which leads to a local change
in θapp. In other words, we expect to observe a moving front with a spherical cap whose curvature is evolving, until
the flow reaches a speed (i.e., capillary number) beyond which a spherical cap cannot be maintained. It is not clear
a priori whether this will correspond exactly to the threshold where the theoretical prediction of θapp reaches zero,
but we can investigate in our simulations by tracking the relative velocity jump

Δu =
Utip − Ucl

U0
, (8)

whereUtip is the speed of the outermost tip of the moving front,Ucl is the speed of the moving contact line, andU0

is the speed at the inlet. In our numerical simulations, we set a threshold of 1% for Δu, beyond which we regard the
system to have transitioned from an evolving spherical cap to entrainment. In some scenarios, the interface will
travel the full length of the tube with a shape that is an evolving spherical cap ‐ we refer to this as a “stable”
scenario, and to scenarios where entrainment occurs as “unstable”.

3. Results and Discussion
3.1. Simulation Results

We investigate the transition of the system outlined in Section 2 from stable to unstable displacement by per-
forming a parameter sweep through Ca, θeq and slope angle α. Figure 2 illustrates the interface shape just before
the tip of the interfacial front reaches the outlet for different capillary numbers and equilibrium contact angles. As
Ca is increased (by increasing the inlet velocity), the displacement mode transitions from stable to unstable for
each case, with the phase boundary marked by red solid lines in Figure 2a. In the stable mode, the meniscus takes
the form of an evolving spherical cap throughout the simulation. In the unstable mode, interfacial instability
occurs at a certain position, resulting in finger‐shaped meniscus and entrainment of a liquid film on the tube wall.
This mode transition is highly dependent on the wettability (θeq). For the expanding tube, shown in Figure 2b, for
θeq= 30°, the mode transition occurs at around Ca= 0.018, while for θeq= 45°, it occurs at around Ca= 0.045. In
other words, a smaller θeq, indicating a more hydrophilic tube wall, results in a more significant viscous bending
effect and makes the instability more likely to occur.

In the following, we provide more insights into how the interface evolves in the contracting and expanding
geometries, and especially focus on its transition from a stable to unstable state, and the reverse. Specifically, we
track the change of moving speed of the interface at the symmetry axis (Utip) and the contact line (Ucl), non‐
dimensionalized as Catip and Cacl correspondingly. For the stable regime, we also measure the apparent con-
tact angle θapp by fitting a spherical cap to the interface shape at each time step. Specifically, the interfacial profile
under the axisymmetric condition is assumed to be an arc whose center and radius are determined by fitting the
extracted interface position using the equation of circles, and θapp is calculated at the contact point.

3.1.1. Drainage in Contracting Tubes

Simulation results for a contracting tub (k < 0) are illustrated in Figure 3. In this scenario, the average axial
velocity and hence the local capillary number Caz increases as the gas‐liquid interface moves forward along the z
axis. As Caz increases, the curvature of the interface must also increase so that surface tension balances viscous
stresses. This leads to a decrease in the apparent contact angle θapp, as illustrated over three frames in Figure 3a.
As long as the viscous bending effect can be balanced by the capillary force, the interface shape remains close to a
spherical cap ‐ although its radius of curvature and hence the apparent contact angle θapp decrease continuously as
shown in 3(c). Furthermore, the speed of the interface at the symmetry axis (Utip) and the contact line (Ucl) both
increase but are almost identical at all times in this simulation, as shown in Figure 3b.

The system transitions to an unstable state once Caz exceeds a critical value Cacrit, as illustrated in Figure 3d. In
the early (stable) part of the simulation, the apparent tip and contact line speeds increase simultaneously
(Figure 3e) and the apparent contact angle θapp decreases smoothly. Instability occurs when θapp reaches zero and
the tip and contact line speeds diverge. A thin film is entrained on the tube wall, which hinders the movement of
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the contact line, as shown in 3(d). As a result,Ucl sharply declines whileUtip continues to increase after instability,
as illustrated in Figure 3e.

3.1.2. Drainage in Expanding Tubes

The drainage process in an expanding tube is more complex than in a contracting tube. Due to the decrease in local
capillary number Caz along the tube axis, the viscous bending effect is weakened, and an initially unstable
drainage process may become stable after a transition period if Ca is small enough. Figure 4a illustrates an
example with Ca = 0.0154 and θeq = 30°. At the early stage, a finger‐shaped interface is generated by the sig-
nificant difference between Utip and Ucl, as shown in Figure 4b. However, Utip decreases more rapidly Ucl, and
there is a brief “transition” period in which Ucl > Utip and the contact line can “catch up” with the tip to form a
spherical cap shape, beyond which the velocities converge. Simultaneously, as the viscous effect decreases, θapp
increases from zero, corresponding to the beginning of the transition period as shown in Figure 4c.

For larger values of Ca, the viscous force exerts significant bending at the early time, and an entrained film forms
quickly, as illustrated in Figure 4d for Ca = 0.0215. In this scenario, Utip remains higher than Ucl throughout the
drainage process, and interfacial stability cannot be attained within the tube length considered here.

3.2. Summary of Observations

The behavior of an advancing interface in a capillary tube is determined by competition between viscous bending
and capillary resistance. Surface tension acts to minimize the interfacial area and maintain a minimal gradient in
interfacial velocity across the interface. For a contracting tube, the viscous bending effect increases in time due to

Figure 2. Final interfacial profiles before the interfacial tip touches the outlet under various θeq and Ca for the contracting tube
(a) and the expanding tube (b). The red lines separate cases into stable and unstable ones.
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an increase in Caz. If an interfacial instability occurs at any point during the simulation, it will continue to develop
as Caz increases further. For an expanding tube, the viscous bending effect decreases and the capillary effect may
dominate the flow eventually. Therefore, even when Δu ≥ 1% and the interface is unstable at the start of the
instability, interfacial instability can be suppressed as long as significant liquid entrainment does not occur.

Figure 3. Film drainage in contracting tubes with Ca = 0.0215. Interfacial profiles, the corresponding scaled velocity at the
meniscus tip (Catip) and the contact line (Cacl), and the measured apparent contact angle (θapp) are shown for θeq = 45° (a, b,
c) and θeq = 30° (d, e, f). The dashed line in (e), (f) marks the position at which Δu = 1% is attained.
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3.3. Critical Capillary Number

The simulations results reported above (and results for cylindrical tubes in the literature) suggest that there exists a
critical capillary number Cacrit beyond which the interface becomes unstable during a drainage process. To
investigate this further, we use the theoretical model of Gao et al. (2019), who predicted the critical capillary
number of a cylindrical tube. Adapting their methodology to the case of a gradient tube yields a methodology for
predicting the apparent contact angle and dimensionless contact‐line‐to‐tip distance ΔZcl/R; details are given in
Appendix B.

For each of the simulations presented above, we compare the instantaneous capillary number Caz with the
theoretical threshold value Cacrit which is determined based from (B4) and (B5) (see Figures 5a and 5b). The
comparison can be used to rationalize some of the observations of Figure 2: for the cases of Ca = 0.0154 and
0.0215 when θeq= 45°, Caz is lower than Cacrit along the full length of both expanding and contracting tubes, and
correspondingly a fully stable drainage process is observed. Conversely, for the case of Ca= 0.0923, Caz is above
Cacrit along the full length of both expanding and contracting tubes tube, and film entrainment is observed. For
intermediate capillary numbers in contracting tubes, Caz crosses the threshold value during the drainage process
and the interface becomes unstable. In particular, for a contracting tube, the corresponding critical position zcr, at
which instability starts to develop, can be predicted accordingly using the intersection point of Caz and Cacrit. The
prediction is validated by comparing with the numerical results, as shown in Figure 5c.

Figure 4. Evolution of interfacial profiles in the expanding tube, the corresponding scaled velocity at the meniscus tip (Catip) and the contact line (Cacl), and the measured
apparent contact angle (θapp) for θeq = 30° under Ca = 0.0154 (a, b, c) and Ca = 0.0215 (d), (e). The dashed lines mark the position of Δu = 1%.
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Since the theoretical model is derived based on the quasi‐steady assumption, it cannot predict interface dynamics
after instability. In particular, the model cannot reliably predict the transition to a stable interface observed in
expanding tubes in Figure 4. For the case of Ca = 0.154 and θeq = 30°, Caz is initially above Cacrit and then
decreases below it, and the system does indeed transition from unstable to stable. However, for the case with
Ca = 0.215 this stabilization is not observed, even though Caz does cross the stability threshold. A complete
theoretical analysis of the transition to stability is beyond the scope of the current work.

Besides the critical position zcr, We conclude our theoretical analysis by comparing the tip‐to‐contact line length
ΔZcl/R for a stable interface to the value observed in simulations. If we assume the interface shape is a spherical
cap, then we can approximate (see Appendix B for details)

ΔZcl
R

=
1 − sin(θapp − α)
cos(θapp − α)

. (9)

Figure 6 illustrates the comparison between the ΔZcl values extracted from the simulated interfaces and those
predicted by the theoretical model. For θeq= 30°, the theoretical prediction closely matches the simulation results.
However, when θeq = 45°, a significant mismatch is observed especially in the low‐Caz region, as shown in
Figure 6b. This discrepancy is likely due to the small‐θeq and steady‐interface assumptions employed in the
theory. In a uniform tube, where the shape of the interface remains unchanged under a small Ca during the
displacement, the theoretical prediction agrees well with simulations (Gao et al., 2019) and experiments (Zhao
et al., 2018). However, in a gradient tube, the interface evolves continuously with the ongoing displacement,
especially in a contracting tube where the movement of the interface is accelerated, and the dynamic effects may
not be negligible.

Figure 5. The local capillary number Caz along the tube compared with critical capillary number Cacrit of θeq = 30° and 45°
for (a) k = 0.05 and (b) k = − 0.05. (c) The comparison on the start position zcr of instability between theoretical and
numerical results, named zcr,th and zcr,sim separately.
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In summary, we present a theoretical model that is built on Eggers' approach, which involves matching the local
contact line solution with the far‐field meniscus to determine the stable interface shape and critical capillary
number. Our model effectively describes the drainage process in a contracting tube. However, when applied to an
expanding tube, our theoretical framework only offers a conservative prediction for displacement stability.
Specifically, a fully stable interface is achieved when Ca < Cacrit.

4. Post‐Instability Dynamics
When the local capillary number, Caz, exceeds a critical value, Cacrit, the meniscus is unable to maintain a
spherical cap and becomes unstable. If this instability further develops, it can result in the gas phase penetrating
the liquid phase to form a gas finger, while a thin film is entrained on the wall. Between the contact line and the
entrained film, a dewetting rim forms. Consequently, there appear three representative regions, that is, the rim,
connection and finger regions whose interfacial curvatures are significantly different, as shown in Figure 7a. As
the viscosity of the gas phase can be neglected, the pressure in the gas phase Pg is uniformly distributed. Ac-
cording to the Young‐Laplace equation, the corresponding pressures Pr, Pc and Pf can be estimated as.

Pr = Pg − σ(
1
rr,o
−

1
rr,i
), (10)

Figure 6. The evolution of ΔZcl along the tube for various Ca, k and θeq. The symbols (×) represent the simulation results and
the curves correspond to the theoretical predictions.

Figure 7. (a) Representative shapes of dewetting rims with θeq = 30°, 45° and 55° for Ca = 0.0923 and k = 0.05. (b) The
corresponding contour plot of the pressure field for θeq= 45° and (c) its zoom‐in plot indicating the recirculation zone, where
the white lines represents the stream lines and black arrows indicate the local velocity directions.
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Pc = Pg − σ(
1
rc,o

+
1
rc,i
), and (11)

Pf = Pg −
σ
rf,o

, (12)

Where 1/r is the curvature of the interface, and the subscripts o and i represent
the axial and hoop directions respectively. As conceptualized in Figure 7a,
Pc < Pr and Pc < Pf. Thus, this capillary effect leads to a low‐pressure zone at
the connection. Liquid is sucked along the tube toward this low‐pressure zone
from both sides, and must then move radially inwards where the flows from
the two directions meet. The injected gas then applies a shear stress on the top
of liquid film driving the liquid film flowing toward the outlet, leading to the
development of a recirculation zone, as shown in Figures 7b and 7c. If the
effect of Pf − Pc surpasses the other two, the net flow of liquid would be from
the outside to the rim region, causing the liquid to collect at the rim and
allowing it to grow higher until gas bubble pinch‐off occurs, that is, the so‐
called Taylor bubble forms (Taylor, 1961).

The shape of the rim mainly depends on the equilibrium contact angle, θeq. The larger θeq is, the higher the rim
becomes, as shown in Figure 7a, resulting in lower pressure at the rim. Therefore, pinch‐off is more likely to occur
with a larger θeq. Figure 8 demonstrates the formation of a Taylor bubble for θeq= 55°, k= 0.05 and Ca= 0.0923.
Notably, unlike in a uniform tube, where a train of traveling bubbles can form, in an expanding tube, the pinch‐off
process stops once the newly formed meniscus is located within a stable regime where Caz < Cacrit. Furthermore,
for a contracting tube, since the viscous effect is enhancing, we could expect an extremely long bubble would
appear and even the pinch‐off would not occur. However, the related quantitative picture remains to be explored.

5. Conclusions
In this study, we investigate the dynamics of the interface between a gas and a liquid when gas is used to displace a
wetting liquid in a gradient capillary tube. Our focus is on understanding the impact of tube geometry on the
stability of the liquid‐gas interface. The simulations reveal that the interface remains stable as long as Caz < Cacrit.
Once Caz exceeds Cacrit, for a contracting tube, the interface becomes unstable and the instability continuously
develops. However, for an expanding tube, the instability is likely to be suppressed afterward, that is, a stability
transition from an initially unstable meniscus to a final stable one can happen when Caz exceeds Cacrit not too
much. Our theoretical predictions rationalize the occurrence of fully stable and fully unstable spherical interfaces,
as well as the dynamic transition from stable to unstable. However, a novel transition from instability back to
stable interface propagation is observed in our simulations and warrants further investigations on the precise
prediction of such a stabilizing effect. This work provides insights for estimating the mode and efficiency of fluid
displacement in porous media with gradient pore structures. Since porous media can be regarded as a bundle of
connected capillary tubes, the developed theoretical tools and discovered rules could in principle be integrated
into pore‐network methods to achieve a larger‐scale modeling.

We note that the scope of this work is currently limited to the gas‐liquid displacement in the unfavorable‐
displacement regime (M ≫ 1). Further studies on the neutral‐ (M ≈ 1) and favorable‐displacement regime
(M≪ 1), as well as extending the theory to consider different viscosity ratios, hold practical value and are areas of
potential future investigation.

Appendix A: Validation of the Numerical Scheme
In this appendix, we validate numerical scheme employed in the paper by applying it to the special case of a
straight capillary tube, as an extreme case. In Figure A1, we compare the tip length ΔZcl/R to the theoretical
solution reported in Gao et al. (2019) for a range of Ca values. Our numerical results are in good agreement with
the theoretical prediction, suggesting that the numerical scheme can accurately resolve the capillary and viscous
effects in the tube.

Figure 8. Process of a bubble pinch‐off for θeq = 55°, k = 0.05 and
Ca = 0.0923. The Caz is over Cacrit, see Figure 5(a).
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Appendix B: Critical Capillary Number Cacrit
In this Appendix we adapt the derivation of Gao et al. (2019) of the critical capillary number Cacrit beyond which
instability occurs to the case of gradient tubes. The derivation requires matching between a smooth outer region
where the interface is smooth, and a boundary layer near the wall where the interface slope adjusts rapidly to
satisfy the contact angle. Notably, this approach relies on two fundamental assumptions: the “lubrication
approximation” and the “spherical cap” in our situation. The former requires a small slope of the contact line, that
is, small θeq, while the latter necessitates a small α.

First, we assume that the interface in the outer region is a spherical cap before the instability occurs. As shown in
Figure B1, the local coordinate is based on the contact point with the x‐axis aligned with the tube wall, and the
outer solution of film thickness hout satisfies the equation

(R + x sin α − hout cos α)2 + [R tan(θapp − α) + hout sin α + x cos α]2 =
R2

cos2 (θapp − α)
. (B1)

Multiplying out terms in (B1) yields a quadratic equation for hout for a given apparent contact angle θapp. We can
determine the correct value of θapp by matching with an inner solution hin near the contact point, that is, for x ≪ 1.
Seeking an asymptotic expansion for hout in powers of x yields

hout (x) = x tanθapp +
cos(θapp − α)
2Rcos3 θapp

x2 + O( x3). (B2)

The inner solution hin, which is determined by the balance of the viscous force
and the surface tension within the region ls ≪ x ≪ R, is from Eggers' work
(Eggers, 2005). In this problem, only the receding contact line is involved;
additionally, the curvature of the tube wall can be ignored since ls ≪ R.
Therefore, this problem is an analogy to pulling a flat plate from a liquid bath,
and an asymptotic solution of hin as a function of the reduced capillary
number δ = 3Ca/θeq3 is

hin(x) = δ1/3[
θeq2κy
6ls

x2 + θeqbyx + O(ls)], (B3)

where κy = ( 21/ 6β
πAi(s1))

2
, by = − 22/ 3Ai′(s1)

Ai(s1) , β2 = π/22/3e− 1/(3δ) + O(δ), and Ai is

the Airy function. Notably, though the inner solution is derived based on the

Figure A1. Comparison of representative interfacial profiles for θeq = 30° and S = 0.01 between our simulation and a
theoretical solution in Gao et al. (2019).

Figure B1. Schematic of the axisymmetric theoretical model in the global
cylindrical coordinate r‐z. Based on the contact point, a local coordinate is
set to describe the film thickness at different length scales.
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assumption that θeq is small, the comparison against numerical simulations indicates that it can be used for large
contact angles, for example, θeq= 50° (Gao et al., 2019). By comparing (B2) to (B3), two matching conditions are
obtained.

tanθapp = δ1/3θeqby, (B4)

cos(θapp − α)
Rcos3 θapp

=
δ1/3θeq2κy

3ls
. (B5)

For a given Ca in a given tube (i.e., given θeq, α, R and ls), the apparent contact angle θapp and the auxiliary
variable s1 can be determined from the simultaneous equations (B4) and (B5). The critical capillary number
Cacrit can be determined by increasing Ca until (B4) and (B5) are not solvable. Figure B2(a) and B2(b) show
the solution of θapp versus Ca with various θeq and α, and the critical capillary number Cacrit and the corre-
sponding θapp,crit are labeled for each case. In the case of a contracting tube (k < 0), Ca reaches the critical value
when θapp decreases to zero. Notably, for an expanding tube, θapp,crit takes a small positive value but it is close
to zero.

It is worth noting that as θeq and α increase, the applicability of our theoretical solution gradually diminishes.
From the comparison against the simulations, we can confirm the applicability of our theoretical prediction within
k ∈ [− 0.05, 0.05]. However, determining the exact boundary of this limitation is out of the scope of this work.

Data Availability Statement
All numerical simulations in this work are implemented in COMSOL Multiphysics® v. 5.6 (www.comsol.com.
COMSOL AB, Stockholm, Sweden).
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