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Abstract
Powder spreading is the fundamental and most important process of powder bed fusion additive manufacturing. Powder
particles experience cohesive forces due to their micron size, and these forces influence the quality of the layer. The dynamics
of powder spreading is simulated using the discrete element method (DEM). DEM contact models with non-cohesive and
cohesive interactions were used in past studies. This work compares two predominant cohesion contact models, the Johnson–
Kendall–Roberts (JKR) and Derjaguin–Muller–Toporov (DMT). The influence of cohesion parameters and particle size on
the spread layer quality is analysed. Additionally, mesoscopic analysis is carried out to gain insights into the behaviour of the
spreading mechanism. The Tabor parameter (λT) that establishes the suitability of a specific cohesion model is investigated
in the context of powder spreading process. Both models predict similar packing fractions at lower λT, whereas, at higher
values of the λT, the contact forces of the JKR and DMTmodels diverge, leading to differences in packing fractions and local
particle configurations in the spread layer. The findings demonstrate that the JKR model is applicable across the entire range
of Tabor parameter.

Keywords Cohesion contact models · Discrete element method (DEM) · Derjaguin–Muller–Toporov model (DMT) ·
Johnson–Kendall–Roberts model (JKR) · Powder bed fusion additive manufacturing (PBFAM)

1 Introduction

Powder bed fusion additive manufacturing (PBFAM) tech-
nique has been used extensively to manufacture/fabricate a
wide range of components starting from mechanical [1, 2] to
aircraft [3, 4] to bio-medical implants [5]. The components
can be built by spreading powders and selectively fusing them
with a laser beam in a layer-by-layer manner. The structural
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and thermo-mechanical characteristics of these components
depend not only on the powder bed layer [6, 7], but also
on factors such as the heating source [8], melting [9, 10],
and solidification rates [11]. Therefore, the analysis of the
powder bed, melting, and solidification rates is crucial for
the production of high-quality parts and the optimisation of
production efficiency. Among the above processes, the gen-
eration of a dense powder bed is a fundamental and crucial
step in PBFAM, as the quality of the powder bed dictates the
overall quality of the finished parts [12].

The ability of the powder to form a quality layer (thin,
dense, and without voids) depends on the rheological prop-
erties of powders. The metal powders for PBFAM are
micron-sized, have a spherical and non-spherical shape
(see Fig. 1a), and often exhibit a particle size distribution
that closely resembles a Gaussian distribution (see Fig. 1b).
The atomisation process produces the powder with irregu-
lar shapes and rough surfaces, as illustrated in Fig. 1c, d.
The non-spherical particles experience unique interparticle
interaction forces, influencing the powder flow dynamics.
Furthermore, due to their smaller size, the van der Waals
force dominates the interparticle interactions, in addition to
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Fig. 1 a Scanning electron
microscope (SEM) image of
stainless steel 316L powder
showing spherical and
non-spherical particles with b
particle size distribution (PSD)
measured using particle size
analyser. D10 = 19.5µm,
D50 = 32.42µm,
D90 = 46.6µm, SEM images of
c Ti6Al4V powder particle
showing satellite irregularities
and d AlSi10Mg powder
particle showing surface
roughness irregularities

the elastic, frictional, and gravitational forces, thereby influ-
encing the powder layer quality [6, 13, 14]. The experimental
measurement of these forces and the powder bed layer anal-
ysis remain persistent challenges. Therefore, it is crucial that
the numerical models account for all these relevant interac-
tions between particles to study the powder flow dynamics
accurately in PBFAM. Numerical simulations ensure a real-
istic representation of the powder bed and are instrumental in
optimising the process parameters responsible for producing
high-quality PBFAM products.

In this paper, the powder flow dynamics during spread-
ing is simulated using the discrete element method (DEM)
[6, 15–22]. DEM is an efficient numerical tool to model
particle–particle and particle–geometry interactions for gran-
ular materials [23]. The contact models in DEM are the key
to accurately representing particle interactions and predict-
ing their behaviour in granular systems. The DEM contact
model specifies the forces and torques acting on particles
when they come into contact with other particles or geom-
etry [24–27], the details of which are described in Sect. 2.
Contact models will facilitate a more thorough comprehen-
sion of the correlation between micro- and macromechanics.

In previous studies, various contact models are used to sim-
ulate the powder spreading process, as tabulated in Table
1. Contact models such as the linear elastic adhesive law
[20], Lennard–Jones potential [28], linear Hookean [29, 30],
Johnson–Kendall–Roberts (JKR) [15, 16, 18, 19, 30–33],
and Derjaguin–Muller–Toporov (DMT) [6, 17, 34–36] are
used to model powder spreading processes. Furthermore,
researchers have investigated powders with different particle
size distributions, characterised by a range of varying mean
particle sizes and material properties (see Table 1). By utilis-
ing powders with diverse size distributions, these studies aim
to explore the influence of particle size on key phenomena
such as flowability and spreadability, as outlined in Table 1.

It is evident from the literature that powder spreading sim-
ulations were conducted with various contact models (see
Table 1). Among several cohesion contact models developed
to describe the cohesive interaction between particles, the
JKR and DMT models are predominantly used. JKR contact
model is valid for large particles with low elastic modulus
(soft) and high surface energy, whereas DMT model is suit-
able for small particles with high elastic modulus (hard) and
low surface energy. Both the JKR and DMT models offer
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valuable insights into the behaviour of particleswith cohesive
contact interactions and have been extensively employed in
various fields, including nanosystems, tribology, andmedical
sciences [38–41]. In the past studies, JKR and DMT models
were applied to a wide range of powder types. Parteli et al.
[13] investigated the packing density of fine glass powders
using JKR and DMT models to account for cohesive parti-
cle interactions. Behjani et al. [42] simulated the granulation
process of calcium carbonate powders using the JKR contact
model to study the flow and mixing behaviour of the parti-
cles during granulation. Pizette et al. [43] explored the factors
influencing the green strength of binder-free ceramic pow-
ders using DEM simulations with the DMT model. Behjani
et al. [44] used the JKR model to study the blending pro-
cess of pharmaceutical powders in a continuous twin-screw
mixer, highlighting the model’s ability to handle cohesive
powder systems in pharmaceutical applications. The JKR
contact model is commonly used in investigating powder
spreading systems, while the DMT model is less frequently
used. However, there is still some ambiguity regarding the
suitability of JKR or DMT models for the realistic simula-
tion of powder spreading. This work investigates the powder
spreading process of spherical particles incorporating JKR
and DMT cohesion contact models. The effect of cohesion
parameters and non-contact interactions on powder flow and
thepowder layer quality generatedby the spreadingprocess is
analysed for both contact models. The objectives of this work
are to provide answers to the following questions regarding
the modelling of PBFAM spreading.

1. What are the noticeable differences in the powder layer
formed during spreading using the JKR, DMT, and non-
cohesive Hertz–Mindlin (HM) contact models?

2. What are the effects of cohesion parameters and the par-
ticle size distribution on the quality of the spread layer?

3. What is the particle’s mechanical and cohesion property
range suitable for the use of JKR andDMTcohesionmod-
els?

A detailed approach to address the above questions is
presented in the following. A description of the simulation
methodology with different contact models and details of the
DEM simulations carried out are given in Sect. 2. The results
and discussion regarding the influence of cohesion parame-
ters and particle size variations on the spread powder layer are
reported in Sects. 3.1 and 3.2. Further, the respective range
of suitability of cohesion models using Tabor’s parameter is
presented in Sect. 3.3. Finally, Sect. 4 summarises the paper.
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2 Methodology

In this section, the DEM framework with three different
contact models (HM, JKR, and DMT) is presented to inves-
tigate their respective roles in the powder spreading process
for PBFAM. A comparative analysis of cohesion models
to address both contact and non-contact based interactions
is also presented. Furthermore, a non-dimensional Tabor
parameter is introduced to ascertain the suitability of a spe-
cific cohesion model for the range of system properties
considered in this work.

2.1 DEM framework and contact models

The discrete nature of the powder particles is modelled using
DEM,which treats each individual particle as a distinct entity.
In DEM, the translational and rotational motions of the par-
ticles are governed by Newton’s second law of motion and
the governing equations are delineated below:

mi
dvi
dt

=
∑

j

(Fn
i j + Ft

i j ) + mi g (2.1)

Ii
dωi

dt
=

∑

j

(T t
i j + T r

i j ) (2.2)

where mi , vi , Ii , and ωi are the mass, velocity, moment of
inertia, and angular velocity of the particle i , respectively. Fn

i j

and Ft
i j are the normal and tangential contact forces between

particle i and j .1 T t
i j and T

r
i j denote the contact torque due to

the tangential contact forces and rolling resistance. Further,
the normal and tangential contact forces can be additively
decomposed according to

Fn
i j = Fn,c

i j + Fn,d
i j (2.3)

Ft
i j = Ft,c

i j + Ft,d
i j (2.4)

The Hertz–Mindlin is a cohesion-less, nonlinear elastic
contact model [45]. In this model, the normal (Fn

i j ) and tan-

gential force (Ft
i j ) components are based onHertzian contact

theory [45] andMindlin–Deresiewicz [46], respectively. The
contact normal (Fn,c

i j ) and tangential (F
t,c
i j ) forces depend on

the positive normal overlap (δni j ) (see Fig. 2a), as expressed in
Eq. (2.5). The JKR model considers the van der Waals force
of attraction to describe the cohesive behaviour ofmetal pow-
ders [47]. The normal contact force in the JKRmodel and the
relationship between the contact radius (rc) and the overlap
(δni j ) are given in Eq. (2.6) (see Fig. 2a). The normal con-
tact force of the DMT model is provided in Eq. (2.7) [48,

1 Note that i and j represent the particles indices and do not represent
the indices of a second-order tensor.

49]. The expressions for the normal damping force (Fn,d
i j ),

tangential damping force (Ft,d
i j ), tangential torque (T

t
i j ), and

rolling resistance torque (T r
i j ) are the same for all the three

contact models discussed in this section. The exact formu-
lation for the estimation of Fn,d

i j , Ft,d
i j , T

t
i j , T

r
i j is detailed in

the supplementary information.

HM

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fn,c
i j = 4

3
E∗√

R∗ (δni j )
3
2 n̂

Ft,c
i j = 8G∗√

R∗δni j δti j n̂

δni j = |xi − xj| − (ri + r j )

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

JKR

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fn,c
i j = 4E∗

3R∗ r
3
c n̂ − √

8πE∗� r
3
2
c n̂

r4c − 2δni j R
∗ r2c − 2π�R∗2

E∗ rc + δni j
2R∗2 = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.6)

DMT

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn,c
i j = 0 if δni j < −δncut-off

Fn,c
i j = − HaR∗

6
(
δni j

)2 n̂ if − δncut-off ≤ δni j < −δmin

Fn,c
i j = − HaR∗

6δ2min

n̂ if − δmin ≤ δni j < 0

Fn,c
i j = 4

3
E∗√

R∗ (δni j )
3
2 n̂ − HaR∗

6δ2min

n̂ if δni j ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

Here, E∗, R∗, δni j , δti j , n̂, rc, ri , xi , Ha are the effective
Young’s modulus, effective radius, normal overlap, tan-
gential overlap, unit normal vector, contact radius, radius,
position, and Hamaker constant of the particles, respectively
(refer supplementary material for details). Additionally, δmin

is theminimumatomic separation distance between particles,
usually considered to be 1.65 Å [13, 50]. For the particles
of the same material, the work of adhesion � = 2γ , where γ

is the surface energy of the particles.
The distinction between the JKRandDMTcontactmodels

in terms of their interaction is briefly outlined in the follow-
ing discussion. At the contact level, two interacting particles
have different levels of engagement during the loading (parti-
cles coming closer together) and unloading (particlesmoving
farther apart) stages. In the loading stage, two particles may
undergo non-contact interaction (negative δni j ), followed by
contact interaction (positive δni j ) as shown in Fig. 2b with
blue particles. Conversely, in the unloading stage, the inter-
action between these two particles proceeds from contact
interaction to non-contact interaction, as described by the
red particles in Fig. 2b. The characteristic curve of the JKR
model is shown in Fig. 2c, d show the characteristic curves for
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Fig. 2 a Schematic illustration of the forces acting on the particles, b Characteristic curve of the JKR model for two-particle interaction. The
distinctions in the characteristic curves of the Hertz, JKR, and DMT models during c loading and d unloading stage

the HM, JKR, and DMT models in the loading, and unload-
ing stages. In the loading stage, the JKR model does not
consider non-contact interactions (as shown in Fig. 2c). The
normal contact force drops from point B to C due to the
cohesion forces at the zero overlap. During the contact inter-
actions, the normal force is lower than the Hertzian contact
force (compare points D andD2), as shown in Fig. 2c. During
the unloading stage, particles experience non-contact van der
Waals forces. The maximum cohesive force called the pull-
out force occurs at point (E) in the JKR model as shown
in Fig. 2c and is given by Equation (2.8). Cut-off overlap
is defined as the negative normal overlap beyond which the

cohesive interaction breaks [27]. At this point, denoted as
point (A), the non-contact cohesive interaction ceases, and
cohesive forces are ignored once the negative normal overlap
exceeds the cut-off overlap value given by Equation (2.9)

(Fn,c
i j )pull-out = −3πγ R∗n̂ (2.8)

δncut-off = −
(3(Fn,c

i j )2pull-out

16R∗E∗2

)1

3 (2.9)

To establish a relevant comparison between the JKR and
DMT models, the particle size, Young’s modulus, and cut-
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off overlap (δncut-off) for both models are considered equal. In
the DMT model, the Hamaker constant (Ha = 24πδ2minγ ) is
calculated with δmin = 1.65 Å, and surface energy (γ ) equal
to the JKR model. In the loading stage, the DMT model
considers van der Waals forces within the cut-off overlap
contrary to zero force in the case of the JKR model. As the
two particles overlap, the contact forces in the DMT model
are lower than those of the JKR, implying higher cohesive
forces (compare points D and D1 in Fig. 2c). As shown in
Fig. 2d during the unloading phase, both the JKR and DMT
models consider non-contact interactions, where the pull-
out force for the JKR model (i.e. Point E) is manifested at
a relatively larger separation distance than the DMT model
(i.e. Point C1). It should be noted that the DMT model (Eq.
(2.10)) has higher pull-out forces than the JKR model (Eq.
(2.8)).

(Fn,c
i j )pull-out = −4πγ R∗n̂ (2.10)

2.2 Tabor parameter

The two well-established cohesion models, JKR and DMT,
were initially considered competitive descriptions of adhe-
sive interactions between solid surfaces [27]. However,
subsequent research has revealed that these models represent
the extreme limits within a specific range of solutions gov-
erned by a critical non-dimensional parameter known as the
Tabor parameter (λT ) [51]. It is the most critical parameter
that considers the deformation of the particles that experi-
ence cohesive forces. The deformation of the particles with
a diameter greater than 10µm cannot be ignored [50]. In
PBFAM, powder particles are above 10µm, so modelling
the powders must take into account the deformations of the
particles. The Tabor parameter given by Equation (2.11) is
the ratio of normal elastic deformation caused by cohesion to
the spatial range of the cohesion forces. Figure3 illustrates
the induced elastic deformation (depicted by a contact circle
of radius rc) to a particle through the cohesive interaction
(note that the particle and wall are separated by a distance of
δmin) with a wall [51]. According to Tabor, the JKR model is
valid for λT > 3 and the DMTmodel is more appropriate for
λT < 0.1 [27, 52–54]. The Maugis model is valid between
the two limits, i.e. 0.1 < λT < 3 [53]. In summary, select-
ing an appropriate cohesion model requires considering the
material behaviour, contact range, and surface energies of the
particles.

λT =
[
4R∗ γ 2

E∗2 δ3min

]1/3
(2.11)

Fig. 3 Illustration of elastic deformation of a cohesive sphere and a
wall [51]

2.3 Details of simulation set-up

This section describes the simulation procedure and themate-
rial properties used in thiswork. Inmost commercial PBFAM
machines, blade-shaped flat recoaters are used. Therefore,
powder spreading simulations are carried out using a blade
recoater on the platform, and the homogeneity of the powder
bed is analysed, as shown in Fig. 4a. The simulation set-up
consists of two platforms: collection (Lc being its length)
and spreading platform with length (Ls). The powder parti-
cles were generated at the left end of the collection platform.
Subsequently, the generated particles were spread on the
spreading platform with the recoater that moved along the x-
direction at a constant speed (V ) until the end of the spreading
platform. The sufficient length of the collection platform is
considered for the particles to become dynamic and develop a
proper repose angle before reaching the spreading platform.
The gap between the recoater and the spreading platform is
known as the layer thickness (H ). Periodic boundary condi-
tions were applied across the width of the platform (along the
y-direction), representing a very large (infinite) volume of the
actual set-up by using a small volume similar to the represen-
tative volume element (RVE). Periodic boundary conditions
ensure that particle interactionswithin the simulation domain
represent the entire system. Additionally, the gravitational
force is along the negative z-direction. Three zones are con-
sidered for subsequent analysis of the spreading process.
Zone 1 to determine the deposition rate of the powder par-
ticles flowing through the gap between the recoater and the
platform. Zone 2 for calculation of stress and coordination
number of the particles in a pile in front of the recoater with
an attached box bin, where the side length equals 8× D50.
The packing fraction of the spread layer was analysed within
Zone 3. The following sections will provide a comprehensive
analysis of the metrics used to evaluate the powder spreading
process. The material properties of the powder particles and
the parameters considered for the simulations are provided in
Table 2, assuming that the powder is 316L stainless steel [32].
Nan et al. [32] provided detailed experimental investigations
to determine the surface energy using a newly developed drop
test method, which offers a robust approach to characteris-
ing surface energy values for various materials. Additionally,
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Fig. 4 Visualisation of the a powder spreading process b zones for analysis are highlighted

their work includes experimental techniques for determining
key material properties such as Young’s modulus, the coef-
ficient of restitution, and the coefficient of sliding friction.
The rolling friction coefficient considered is within range of
values used in the literature [19, 20, 31]. The Young’s mod-
ulus considered in the simulations is 100 times lower than
the actual experimental value, and the surface energy is also
correspondingly scaled down in accordance with the cohe-
sion number [42, 50] (details in supplementarymaterial). The
analysis of the particle size distribution with varying mean
size (Dm) and standard deviation (SD) of the powder sizes is
presented in Sects. 3.1 and 3.2. The simulations are carried
out in EDEM [55], an Altair DEM tool. The contact models
like Hertz–Mindlin and JKR with Hertz–Mindlin are avail-
able as built-in models in the tool. Altair EDEMTM provides
an application programming interface (API) to incorporate
user-defined contact constitutive models. In this work, the
DMTmodel is developed as anAPI for the comparative anal-
ysis of the three models to be discussed in the following.

3 Results and discussion

3.1 Effect of themean powder size on the spread
powder layer quality

The powders used in PBFAM exhibit a Gaussian distribu-
tion, as mentioned in Sect. 1. The powders with the Gaussian
distribution of different mean sizes such as 25µm, 50µm,
75µm, and 100µm with the same standard deviation of the
powder sizes (SD = 5) are used for the simulation. Several
spreading simulations have been carried outwith varying sur-
face energy (γ ) of the particles and with HM, JKR, and DMT
contact models. The layer thickness (H ) is the most crucial
process parameter that defines the quality of the spread layer.

Table 2 Material properties and simulation parameters

Parameters Particles Bed

Particle size (D, µm) 6–115 –

Young’s modulus (E , GPa) 2.1 2.1

Poisson’s ratio (ξ ) 0.3 0.3

Coefficient of restitution (e) 0.64 0.64

Coefficient of static friction (μs) 0.5 0.5

Coefficient of rolling friction (μr) 0.1 0.1

Density (ρ, kg/m3) 7980 –

Recoater velocity (V , m/s) 0.1 –

Layer thickness (H , µm) 4Dm –

Length of the collection platform (Lc, mm) – 5

Length of the spreading platform (Ls, mm) – 7.5

Width of the spreading platform (W , mm) – 0.6

For all simulations, the layer thickness is maintained to be
four times the mean size (4Dm) so that the volume of the
spreading zone increases with an increase in the mean size.

Model validation

In the current work, the dynamic repose angle (DRA) of the
powder pile is used to validate the simulation results. DRA
(θ ) indicates powder flow during spreading, and a smaller
repose angle signifies low cohesive powder and high powder
flow. Figure5 depicts theDRA for powder with themean size
of 25µm is about 44.62◦ and 46.97◦ while spreading with
JKRandDMTmodels, respectively. The powderwith amean
size of 100µm, θ is about 29.98◦ and 29.65◦ with JKR and
DMT models, respectively. The DRA values of the powders
with mean size 25µm and 100µm are in good agreement
with the experiments and simulations studies in the literature
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Fig. 5 Dynamic repose angle
(θ) of powder pile during
spreading process for powder
with mean size (Dm) of a
25µm, and b 100µm

[12, 18, 19]. DRA for the powder with a smaller mean size
is higher than that of a larger mean-sized powder because of
higher cohesive forces.

3.1.1 Packing fraction and homogeneity of the powder
layer

During the powder spreading, the powder pile is formed
in front of the recoater, and the powder detached from the
pile through the gap (H ) forms a thin layer on the spread-
ing platform. The terms flowability and spreadability are
used in this context to characterise the ability of powders
to flow and spread, respectively. Flowability characterises
the extent to which a collection of particles moves in relation
to neighbouring particles or along the recoater surface. It pri-
marily impacts the detachment of particles from the piles and
the replenishment of depleted regions within the piles [56].
Spreadability refers to the ability of a powder to be uniformly
spread as a thin layer without any voids and agglomerates
[21]. After the completion of the spreading process, a thin
layer of powder is formed on the spreading platform (see
Fig. 4b). The packing fraction of the spread layer has a direct
impact on the quality of the final product produced through
PBFAM. Therefore, the packing fraction of the spread layer
is a crucial metric. The packing fraction of the thin layer is
determined after the elimination of a few particle diameters
at the extreme ends to avoid wall effects, as shown in zone
3 of Fig. 4b. The packing fraction is defined as the ratio of
the total volume of the particles to the volume of the zone
available for spreading and is given by the following:

Packing fraction (φ) =
∑

Vp
Ls × W × H

, (3.1)

where
∑

Vp is the total volume of the particles in the spread
layer, and the definitions of Ls, W , and H are provided in
Table 2.

The variation of the packing fraction of the spread layer as
a function of surface energy (γ ) with different mean sizes (as
shown in Fig. 6a) and contact models is shown in Fig. 6b. The
surface energy range considered in this study is based on val-
ues extracted from relevant literature, as presented in Table
1. HM contact model does not consider cohesion forces;
thereby, the packing fraction of the spread powder layer is
independent of the surface energy (solid lines in Fig. 6b). It
is also observed that the packing fraction remains unchanged
by variation in the mean particle size as the volume of the
spreading zone increases with themean size (i.e. H = 4Dm).
It is a well-known fact in granular mechanics that the pack-
ing fraction is influenced by the relationship between the
confinement volume and the size of the particles [57]. This is
the reason to increase the layer thickness with respect to Dm.
The objective is to study the effect of cohesion parameters
and particle size on the spread powder layer rather than the
effect of confinement volume. In reality, with the decrease
in the mean size of the powders, the cohesive forces among
the powder particles increase, leading to a poor powder bed.
This phenomenon is well predicted by the cohesion mod-
els (JKR and DMT). Hence, the HM model is suitable for
the investigation of the dynamics of powders with a mean
size greater than 100µm, as the powder particles experience
lower cohesive forces, as shown in Fig. 6b. For the JKR and
DMTmodels, the packing fraction of the bed decreases with
a decrease in particle size for a given γ (dashed lines for JKR
and dashed dots with marker lines for DMT in Fig. 6b). For
a given particle size, it is observed that the packing fraction
decreases with increasing γ as the cohesive force increases.
The cohesive forces degrade the flowability and spreadabil-
ity of the powder. Thus, the packing fraction of the powder
layer decreases with decreasing particle size or increasing γ

as shown in Fig. 6b. As explained in Sect. 2, the DMT model
predicts higher cohesive forces than the JKR model, and the
packing fraction obtained by theDMTmodel is always lower
than the JKR model. Figure7 shows the powder layers after
spreading using the JKR contact model; it is observed that
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Fig. 6 a Particle size distribution with different mean sizes (Dm), b packing fraction (φ) variation as a function of the surface energy (γ )

Fig. 7 Visualisation of the powder layer with variation of mean particle
size (Dm)

the porosity increases (empty patches) with a decrease in
the particle size (bottom to top images). The cohesive forces
increase drastically for a relatively slight increase in surface
energy for powders with a mean size (Dm) of 25µm. There-
fore, for γ that is equal to 1.25 mJ/m2, the packing fraction
of the spread layer approaches zero. It indicates that the pow-
der forms agglomeration with no spreadability by spreading
with a surface energy greater than 1.25 mJ/m2. The sub-
sequent section explains in detail the relationship between
mesoscopic and macroscopic behaviour.

Mesoscopic analysis of the deposition mechanism

When the recoater spreads the powder on the spreading
platform, the deposition of the powder on the platform is
highly influenced by the stress distribution and the coordi-
nation number of the particles in the pile. These mesoscopic
characteristics help to understand the effect of powder flow
dynamics on powder deposition and bed quality. In the
following section, the relationship between stress and the
coordination number of the powder particles with the depo-
sition rate is analysed. The metrics used to analyse the
deposition rates, stress, and coordination number distribu-
tion are discussed below.

Deposition rate

During the spreading process, particles are released from the
gap (H ) between the recoater and the spreading platform and
are deposited on the platform. The mass deposited between
subsequent steps of spreading is shown as red-coloured par-
ticles in Fig. 8. The deposition rate (q) of the powder on the

platform in zone 1 is calculated as q = dm

dt
, where dm is

the mass of the particles deposited within a time interval
dt = 0.001s.

Stress and coordination number

The stress on the particles in a pile is calculated from zone 2
(see Fig. 8) at every time interval of deposition. The volume-
averaged stress on the single discrete particle is calculated as
follows:
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Fig. 8 Illustration of the mass deposition and recoater displacement

σ ij = 1

Vp

( nc∑

c=1

Fc
ijr

c
ij

)
(3.2)

where Vp is the volume of the particle; nc is the number of
contacts of the particle; Fc

ij is the contact force at the contact
c; and r cij is the corresponding vector connecting the centre
of the particle i and j . The vonMises stress (σv) is computed
from the stress tensor σ ij. The coordination number (Z ) of a
particle is defined as the number of particles in contact and
also non-contact particles within the cut-off overlap (δncut-off).

Kernel smoothing density function

The amount of powder accumulated in front of the recoater
decreases proportionally to the extent of powder deposition
on the platform. Therefore, the average von Mises stress and
coordination number values collected (from zone 2) at every
time interval of deposition decrease from the beginning to
the end of spreading. To quantify these varying quantities
during the entire spreading process, a kernel smoothing den-
sity function is used. It provides local cloud density and is
calculated as follows:

F(x) = 1

nh

n∑

i=1

K

(
x − xi

h

)
(3.3)

where F(x) is the probability density distribution, K is a nor-
mal kernel smoothing function, h is the data points sampling
bandwidth, n is the total number of data points with xi repre-
senting each data point, and x is the sampling position. The
probability density of these values (average von Mises stress
or coordination number) is determined andplotted against the
deposition rate. Further, the comparison of the mesoscopic
characteristics of small-sized powders (Dm = 50µm) and
large-sized powders (Dm = 100µm) is presented here. The
colour intensity shows the probability density values, which

means the higher the intensity, the higher the density of the
values.

3.1.2 Stress distribution of the powder particles in the pile

For mean particle size of 50µm, average von Mises stresses
are less at lower surface energy (γ = 0.25 mJ/m2), leading to
higher deposition rates. These stresses and deposition rates
of the three models are similar, as indicated by the blue circle
in Fig. 9a. With increasing the surface energy (γ ), cohesive
forces among the powder particles increase, leading to lower
deposition rates and higher stresses. This can be observed for
cohesive powders (γ = 2.5 mJ/m2), as depicted by the blue
to red circles in Fig. 9b. As mentioned in Sect. 2, the DMT
model predicts higher cohesive forces than the JKR model,
stresses in the pile obtained from DMT are higher than the
JKR (red and green circle in Fig. 9b, respectively). For mean
particle size of 100µm, at lower surface energy, stress (σv)
is lower, similar to 50µm; however, the deposition is higher
due to large size and lower cohesive forces (compare Fig. 9a,
c). Additionally, for large-sized powders (Dm = 100µm),
the variation of the stresses with deposition rates at higher
surface energy is not observed (within the range of values
considered), as shown in Fig. 9d.

3.1.3 Coordination number distribution of the powder
particles

The coordination number of the powder particles provides
insights into the flowability and spreadability of the pow-
ders. At lower surface energy (γ = 0.25 mJ/m2), powder
with a mean size of 50µm, the average coordination num-
ber, and deposition rates of all the three models are similar,
as shown in Fig. 10a. With an increase in the surface energy,
the coordination number and deposition rate decreases for the
small-sized powders, as shown in Fig. 10b. Figure10c depicts
the coordination number for large-sized (Dm = 100µm) and
small-sized (Dm = 50µm) particles at low surface energy.
At low surface energy, with a decrease in the particle size, the
coordination number increases. With an increase in the sur-
face energy, the coordination number is unaltered for large
particles (within the range of values considered). In contrast,
with an increase in the surface energy, the coordination num-
ber decreases for the small-sized powders (see Fig. 10d). In
summary, with the decrease in particle sizes, the coordina-
tion number increases initially. Further decrease in the mean
particle size, coordination number decreases as the cohesive
forces lead to agglomerations or cluster formation in the pile,
as reported by He et al. [36].
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Fig. 9 Stress distribution (σv) with deposition rate (q) for different
models and surface energies (γ ). For mean particle size of 50µm a
low surface energy (γ = 0.25 mJ/m2) b high surface energy (γ = 2.5
mJ/m2). Comparison between mean particle size of 50µm and 100µm

c low surface energy (γ = 0.25 mJ/m2) and d high surface energy (γ
= 2.5 mJ/m2). For ease of comparison, the stresses of Dm = 50µm are
represented with the similar coloured circles in the green box in c and
d

3.2 Effect of the standard deviation of the powder
sizes on the bed quality

In PBFAM, powders may exhibit varying particle size distri-
butions. These distributions are categorized as well graded
and poorly graded.Well-graded powders refer to those with a
wide range of particle sizes, with particles of different sizes.
On the other hand, poorly graded powders are closer to being
mono-sized, meaning particles have a uniform size distribu-
tion. In this section, the effect of standard deviation (SD) of
the powder sizes on the powder bed quality is analysed. The
mean size of the powder is chosen to be 50µm, and dif-
ferent standard deviations like 1, 3, and 5 are used for the

simulations, as shown in Fig. 11a. The particle size distribu-
tionwith a standard deviation of 1 are poorly graded, whereas
PSDwith a standard deviation of 5 is a relatively well-graded
system. Similar to Sect. 3.1, several simulations are carried
outwith varying surface energies (γ ) of the particles andwith
the HM, JKR, and DMT contact models.

3.2.1 Average packing fraction and homogeneity of the
powder layer

The variation of the packing fraction of the spread layer
with respect to γ is shown in Fig. 11b. As mentioned in
Sect. 3.1.1, the packing fraction of the spread powder layer
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Fig. 10 Coordination number (Z ) distribution with deposition rate (q)
for different models and surface energies (γ ). For mean particle size of
50µm a low surface energy (γ = 0.25 mJ/m2) b high surface energy
(γ = 2.5 mJ/m2). Comparison between mean particle size of 50µm

and 100µm c low surface energy (γ = 0.25 mJ/m2) and d high surface
energy (γ = 2.5 mJ/m2). For ease of comparison, the coordination num-
ber distribution of Dm = 50µm is represented with the similar coloured
circles in the green box in c and d

is independent of the surface energy for the HM model
(solid lines in Fig. 11b). As the SD increases, particle size
difference increases so that the small particles occupy the
voids, thereby increasing the packing fraction of the bed.
It is well known that as standard deviation increases, the
packing fraction of the system increases (polydispersity in
[57]). As mentioned in Sect. 3.1.1, for JKR and DMT mod-
els, the packing fraction of the bed decreases with increasing
γ (dashed lines for JKR and dashed dot with marker lines
for DMT in Fig. 11b). As the SD increases, resulting in an
increased number of smaller particles. Consequently, these
smaller particles increase cohesive forces in the system. The
cohesive forces reduce the flowability and spreadability of

the powder, and thereby, the packing fraction of the powder
layer decreases with increasing SD, as shown in Fig. 11b. As
the DMT model detects higher cohesive forces than the JKR
model, as described in Sect. 2, the packing fraction obtained
by the DMT model is lower than the JKR model.

3.2.2 Stress and coordination number distribution of the
powder particles in the pile

With the decrease in the standard deviation of the powder
sizes, the powder behaves less cohesive. As a result, pow-
ders have higher deposition and lower stress. For powders
with SD = 1, at lower surface energy, the deposition rate and
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Fig. 11 a Particle size distribution for different standard deviations (SD), and b packing fraction (φ) variation as a function of the surface energy
(γ )

average vonMises stresses of the cohesion models (JKR and
DMT) are similar to the HM.With the increase in the surface
energy, cohesive forces increase, leading to lower deposition
and higher average von Mises stresses as shown in Fig. 12a.
However, the increase in the stresses and decrease in deposi-
tion for powders with SD = 1 are lower than SD = 5, as shown
in Fig. 12b.With the increase in the surface energy, a decrease
in the average coordination number is also observed for pow-
ders with SD = 1, as shown in Fig. 12c. This characteristic is
similar to the powders with SD = 5 (see Fig. 10b). However,
coordination number distribution is too scattered for powders
with SD = 1, and this implies low cohesivity of the powders.
As the SD increases, small-sized particles increase relatively.
Thereby, the coordination number increases for powderswith
higher SD, as shown in Fig. 12d.

3.3 Suitability of the contact model based on the
Tabor parameter

In this section, the suitability of Tabor’s parameter range as a
guideline for the selection of a specific cohesion model (JKR
or DMT) for powder spreading simulations is investigated.
Several simulations are carried out to study the combined
effect of the elastic modulus and the surface energy, as shown
in Table 3. The range of Young’s modulus and surface energy
considered in this study is based on values extracted from rel-
evant literature, as presented in Table 1. Figures13a, b depict
the variation of the packing fraction of the spread layer with
log(λT) for JKR and DMT models, respectively. It can be
observed that with an increase in the log(λT), the packing

fraction decreases in both models as the particles become
softer and more cohesive. The difference between the pack-
ing fraction obtained from the models is calculated using the
root mean square deviation (RMSD), as given in Eq. (3.4).

RMSD =

√√√√√
∑n

i=1

(
φi,JKR − φi,DMT

φi,DMT

)2

n
(3.4)

where φi,JKR, and φi,DMT are the packing fraction of the
spread layer obtained using JKR and DMT models, respec-
tively, and n is the number of realisations. The structure of
the powder layer is generally evaluated by metrics such as
packing fraction, coordination number andparticle clustering
[36]. The present study uses the packing fraction to assess the
layer structure. Figure13c depicts a variation of RMSD as a
function of the packing fraction of the spread layer. As men-
tioned in Sect. 2.2, the JKR model is valid for log(λT) > 0.5,
and the DMT model is more appropriate for log(λT) < −1.
However, the RMSD variation of the packing fraction gives
a different perspective. The RMSD between the models is
very close to zero for log(λT) < −1, and deviation increases
with an increase in log(λT), as shown in Fig. 13c. Both the
models depict similar layer structures for lower values of
λT and different structures with an increase in λT. At lower
values of λT, both the JKR and DMT models yield similar
packing fractions because the interaction between particles
is less influenced by the cohesion. In this range, the forces
predicted by both the models are nearly equivalent, making
either model suitable for simulations in low λT ranges. How-
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Fig. 12 Average vonMises stress (σv) distributionwith respect to depo-
sition rate (q) for differentmodels and surface energies awith a standard
deviation of 1 b comparison between SD = 1 and SD = 5. Coordination

number (Z ) distribution with respect to deposition rate (q) for different
models and surface energies c with a standard deviation of 1 d compar-
ison between SD = 1 and SD = 5

ever, at higher λT values, particles become relatively softer
(see Young’s modulus values in Table 3) and are highly influ-
enced by cohesive forces, causing the contact forces between
the two models to diverge and resulting in different layer
structures. This analysis is consistent with recent findings
by Greenwood [58], where the author highlighted that the
DMT model focused primarily on calculating the pull-off
force during cohesion, but it did not provide a comprehen-
sive description of contact mechanics like the JKR model.
Further, Greenwood [58] also identified errors in the ther-
modynamic formulation of the DMT model and argued that
Hertzian geometry does not occur as assumed in the DMT
theory. Therefore, the JKR model is more suitable and can
be applied across the entire range of the Tabor parameter.

4 Conclusions

In this work, DEM simulations were carried out to anal-
yse powder spreading dynamics with a focus on additive
manufacturing, considering the HM, JKR, and DMT con-
tact models. The results demonstrate that both the mean and
standard deviation of the powder sizes significantly influ-
ence the powder layer quality. A decrease in the mean size or
increase in the standard deviation of the powder sizes reduces
their spreadability, resulting in a lower packing fraction that
is accurately captured by both the JKR and DMT models.
Additionally, the Hertz–Mindlin (HM) contact model was
found to be inadequate for simulating powders with mean
sizes smaller than 100µm, as it does not capture the cohe-
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Fig. 13 Variation of packing fraction vs log(λT ) for a JKR and b DMT models c RMSD of the packing fraction for both models

Table 3 List of cases for
parametric analysis of surface
energy and Young’s modulus for
powders with Dm = 50µm

Surface energy (γ , mJ/m2) Young’s modulus (E , GPa) Tabor’s parameter (λT) log(λT)

0.25 210 0.037 −1.40

1.0 210 0.0942 −1.046

1.5 210 0.12 −0.92

2.5 210 0.17 −0.77

0.25 21 0.17 −0.77

1.5 21 0.57 −0.244

2.5 21 0.8 −0.092

0.25 2.1 0.8 −0.09

1.5 2.1 2.66 0.43

2.5 2.1 3.74 0.573

0.25 0.21 3.74 0.573

1.5 0.21 12.3 1.09
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sive behaviour of these fine powders. This insight suggests
that cohesive contact models, JKR and DMT, are essential
for accurately predicting powder layer behaviour.

The deposition mechanism is characterised by average
von Mises stress (σv) and coordination number (Z ). With
an increase in surface energy, the spreadability of the powder
reduces, resulting in a lower deposition rate.Additionally, the
average von Mises stress within the powder pile increases,
while the coordination number decreases with the increase
in surface energy. This trend is observed only for powders
with mean sizes smaller than 100µm, due to the influence
of cohesive forces.

The suitability of Tabor’s parameter range as a criterion
for the selection of an appropriate cohesion model is inves-
tigated. For the lower Tabor’s parameter, both the JKR and
DMT models predict similar powder layer structure. How-
ever, for the higher values of Tabor’s parameter, the contact
forces for the JKR and DMT models diverge and generate
different structures.Hence, either the JKRorDMTmodel can
be used in the lower range of the Tabor parameter (λT < 0.1),
and for powders with material properties exhibiting higher
Tabor parameter (λT > 3, relatively low elastic modulus,
large size, or high surface energy), only the JKR model
is appropriate. Using the DMT model for materials with
a higher Tabor parameter can lead to an overestimation of
cohesive forces, resulting in inaccurate predictions of pow-
der behaviour. Through this study, we emphasize that the
JKR model can be applied across the entire range of the
Tabor parameter, consistent with the fundamental insights of
Greenwood [58].

The detailed investigation of the two cohesion contact
models demonstrates that the JKR model can be effectively
applied to a wide variety of powder types, provided the
material properties are appropriately defined for each case.
The versatility of this contact model makes it suitable for
simulating various powder behaviours across different indus-
tries, including additivemanufacturing, pharmaceuticals, and
ceramics.
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tary material available at https://doi.org/10.1007/s40571-024-00894-
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