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A B S T R A C T

Effects of aggregate shape have become one of the research focuses on mesoscale concrete fracture. Most relevant 
findings are achieved from simple uniaxial tests without considering the more complex and realistic stress 
sustained by filed-scale engineering structures. To this end, mesoscale modelling using the finite element method 
(FEM) is conducted to investigate the three-phase concrete fracture behaviour subjected to triaxial compression 
with the presence of confining pressure. The realistic aggregate shape, characterised by the fractal dimension, is 
generated to emphasise the effects of aggregate morphology on the concrete strength under varying confining 
pressures. Quantitative evidence from a microscopic perspective on local stress, damage evolution, and crack 
patterns is provided to support macroscopic observations. As a result, similar to uniaxial tests, rougher aggregate 
with the higher fractal dimension leads to greater compressive strength of concrete. With increasing confining 
pressure, this effect can be amplified. We further find that the data for uniaxial-strength-normalised triaxial 
strength and confining pressure of concrete specimens with various aggregate shapes are well-calibrated with 
experimental results and can collapse onto a single universal curve. As microscopic evidence shows, the het-
erogeneity of stress distribution for aggregate shapes, which deviates from each other at initial loading, finally 
converges. Local damage exhibits a universal competition between the ITZ and aggregates, with increasing 
fractal dimension of aggregates, under varying confining pressures, and explains the occurrence of the scaling 
law in the relationship between triaxial compressive strength and confining pressure. The same competition 
extends to macro-cracks and is reflected in crack volume (or area) and cluster size. This study presents a pio-
neering effort in systematic mesoscale modelling under triaxial loading, shedding new light on the effects of the 
aggregate shape on the strength of concrete-like composites.

Notation

Ω⊂R3 3D domain space
VTi i th Voronoi cell
Si i th seed for i th Voronoi cell
Q Energy functional
ρvt Density function over Ω for the Voronoi tessellation
Ci Mass centroid of i th Voronoi cell
Nl Number of Lloyd iterations
H Hurst coefficient
Fd Fractal dimension
Fn n th Fourier descriptor
Rr Relative roughness
L Side length of cubic concrete specimen (mm)
Lvt Side length of cubic space for Voronoi tessellation (mm)
SFa Solid fraction of aggregates in concrete

(continued on next column)

(continued )

da Aggregate size (mm)
ρ Density (kg/m3)
E Young’s modulus (MPa)
v Poisson’s ratio
σc Compressive stress (MPa)
σc0 Yield stress in compression (MPa)
σcu Ultimate strength in compression (MPa)
σt Tensile stress (MPa)
σt0 Ultimate strength in tension (MPa)
εc Compressive strain
εcu Compressive strain at σcu
εt Tensile strain
εt0 Tensile strain at σt0

ε̃pl
c , ̃εpl

t
Equivalent plastic strain tensor in compression and tension

(continued on next page)

* Corresponding author.
E-mail address: yixiang.gan@sydney.edu.au (Y. Gan). 

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

https://doi.org/10.1016/j.ijmecsci.2025.110570
Received 6 April 2025; Received in revised form 10 June 2025; Accepted 1 July 2025  

International Journal of Mechanical Sciences 302 (2025) 110570 

Available online 3 July 2025 
0020-7403/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0000-0002-9621-0277
https://orcid.org/0000-0002-9621-0277
mailto:yixiang.gan@sydney.edu.au
www.sciencedirect.com/science/journal/00207403
https://www.elsevier.com/locate/ijmecsci
https://doi.org/10.1016/j.ijmecsci.2025.110570
https://doi.org/10.1016/j.ijmecsci.2025.110570
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2025.110570&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


(continued )

ε̃in
c

Inelastic strain in compression

ε̃ck
t

Cracking strain in tension
aa,ad, αt Parameters in GB50010-2010
dc,dt Damage variables for tension and compression in concrete 

damage plasticity (CDP)
t Traction (MPa)
tn,ts,tt Current traction in normal and two shear directions (MPa)
t0 Cohesive strength (MPa)
tn0,ts0,tt0 Cohesive strengths in normal and two shear directions (MPa)
tn, ts, tt Traction calculated based on the elastic-displacement behaviour 

for the current separations without damage in normal and two 
shear directions (MPa)

δ Separation (m)
δf Failure separation (m)
δn,δs,δt Separation in normal and two shear directions (m)
δm Effective relative displacement (m)
δm0,δmf Effective relative displacement at damage initiation and failure 

(m)
Gf Fracture energy (N/m)
Gf,n, Gf,s, Gf,t Fracture energy in normal and two shear directions (N/m)
kn,ks,kt Current cohesive stiffness in normal and two shear directions (N/ 

m3)
kn0,ks0,kt0 Initial cohesive stiffness in normal and two shear directions (N/ 

m3)
dCIE Damage variable for the cohesive element
F Sum of nodal reaction force on the top boundary (N)
A Area of initial specimen cross-section (mm2)
fc,0 Uniaxial concrete strength (MPa)
σ1 Axial stress in the loading direction (MPa)
σ2,σ3 Lateral stress (MPa)
σL Confining pressure (MPa)
σ1,s Triaxial strength of concrete (MPa)
σpe Mean stress of element for the mortar (MPa)
σnpe Normalised mean stress of element for the mortar
ε1 Axial strain in the loading direction
ε2,ε3 Lateral strain
k Fitting parameter of Eq. (23)
Vc Volume of the cubic concrete specimen (mm3)
Vi Volume of i th solid element (mm3)
Vpe,j Volume (mm3) of the element of mortar having σp,i/σp within j th 

bin of σnpe
Vtf,m, Stf,ITZ, Vtf,a Volume (mm3) or area (mm2) of cracked mortar, ITZ and 

aggregate
Vntf,m, Sntf,ITZ, 

Vntf,a

Normalised value of Vtf,m, Stf,ITZ, Vtf,a

Vf,m, Sf,ITZ, Vf,a Volume (mm3) or area (mm2) of the cluster of mortar, ITZ and 
aggregate

Vnf,m, Snf,ITZ, 
Vnf,a

Normalised value of Vf,m, Sf,ITZ, Vf,a

Si Area (mm2) of i th cohesive element for ITZ
Sc Surface area (mm2) of cubic concrete specimen
Ei i th element for crack
TE The set of elements for the crack of each material phase of 

concrete
TE,sub, k The set of elements belonging the same crack cluster
CT The set of separate crack clusters in each material phase
di Damage of i th element for the mortar, ITZ or aggregate
Dm,DITZ,Da Damage of mortar, ITZ and aggregate
Dm,p, DITZ,p, Da, 

p

Damage of mortar, ITZ and aggregate at the compressive strength 
of concrete

Knpe Kurtosis of σnpe
Snpe Skewness of σnpe
fln(xs) Lognormal fitting of the PDF for the random variable xs
μs,σs Lognormal fitting parameters
Mm,MITZ,Ma Mean value of lognormal fitting of PDF for Vnf,m, Snf,ITZ, Vnf,a
Mnpe Mean value of σnpe
SDnpe Standard deviation of σnpe
SDda Standard deviation of aggregate size (mm)

1. Introduction

As a typical example of the matrix-inclusion composites containing 
hard particulates, concrete has emergent characteristics different from 
its components. Concrete industries have a worldwide consumption of 
about 17 billion metric tonnes per year [1]. Due to the presence of 
mismatched mechanical behaviour with the material constituents, one 

of the fundamental challenges is to quantitatively relate the microscale 
information to the emergent macroscopic properties [2]. It is well 
acknowledged that representing concrete as a homogenous material, 
with the advancement and development of non-local theory [3] and 
strain gradient models [4], has made significant progress. Nevertheless, 
the spatial heterogeneity is hard to be captured by such kind of 
mean-field approximations. The quasi-brittle behaviour of concrete is 
strongly influenced by the heterogeneity of its material constituents and 
interactions manifested over a large range of length scales [5]: from 
nano- to meso‑scale, namely nanometre (hydrated cement paste [6]) to 
centimetre (the largest aggregate scale [7]). Zaitsev and Wittmann [8] 
conduct pioneering study on concrete as a hierarchical structure with 
various length scales of inhomogeneities. The primary inhomogeneity of 
concrete is found at the mesoscale, which has been widely treated as the 
most sought-after scale to focus on the influence of heterogeneity on 
macro mechanical response [9]. At such a scale, besides voids, concrete 
is composed of three phases, namely mortar matrix, coarse aggregates, 
and interfacial transition zone (ITZ) jointed the two phases. Even under 
uniform loading conditions, the heterogenous internal stress field could 
be encountered, resulting in severe stress concentrations, which are of 
high possibility to cause crack initiation at the weakest phase—ITZ [10]. 
Note that the multi-scale approach dedicated to the collective mechan-
ical response can also be realised by upscaling the underlying mesoscale 
information as a constitutive law to the macroscopic scale to minimise 
the phenomenological assumptions and fitting parameters.

For experiments, a significant portion of the fundamental under-
standing of concrete fracture behaviour is derived from the results of 
simple uniaxial tests [11]. However, uniaxial tests fail to reflect the real 
mechanical responses of concrete structures subjected to complex 
multiaxial stress conditions. Although replicating the real stress condi-
tions of concrete in experimental studies is challenging, some progress 
has still been made in the study of triaxial fracture of concrete [12]. As a 
rock-like material, some empirical failure criterions or stress-strain re-
lations (such as the Mohr-Coulomb criterion), inspired by rock me-
chanics, are developed to predict the peak compressive stress of 
concrete; among them, three categories of stress-strain curves can be 
summarised: proper rational fraction, improper rational fraction, and 
polynomial equations [13]. Similar to the famous Hoek-Brown criterion 
[14,15] in rock mechanics community, in conventional triaxial tests on 
cylindrical concrete domain, influences of σ2 on compressive strength 
cannot be specifically included, with σ1, σ2, and σ3 being principal 
stresses and σ1 > σ2 = σ3. Meanwhile, the true triaxial compression tests, 
that are closer to real concrete stress conditions with the macro stress 
anisotropy, σ1 > σ2 > σ3, are of higher priority when morphology 
anisotropy comes into play. Bridging length scales, a few studies have 
highlighted the influence of mesoscale heterogeneity in concrete on 
macroscopic failure criterion, with a particular focus on aggregate type 
(e.g., natural and recycled aggregates) [16] and aggregate morphology 
[17]. However, there is insufficient evidence to support the changes in 
the microscale localisation and failure mechanisms within the concrete 
due to differences in aggregate properties. For this concern, one of 
studies employs X-ray computed tomography (CT) combining with in 
situ tests to identify the strain localisation and crack network develop-
ment within local regions (e.g., mortar, aggregate and pore) of concrete 
under triaxial stress conditions [38]. However, none of the tests consider 
the effects of aggregate shape, when local damage and failure of con-
crete are investigated under uniaxial or triaxial stress conditions. From 
the overview of experiments, conducting the refined study on the effects 
of aggregate shape and eliminating disturbance of other factors remain 
challenging. Additionally, achieving a controlled variation in the shape 
irregularity of aggregate is also difficult. Considering the above con-
cerns, the effects of aggregate shape on the underlying micro-mechanics 
rooted in grain-scale heterogeneity remains to be emphasised, in order 
to clarify the rigorousness and validity of macroscopic findings.

Mesoscale simulations have been proven as an effective alternative 
to experimental approaches to reveal the influences of local 
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heterogeneities on the complex global response [8]. Up to now, meso-
scale studies on concrete fracture behaviour can be classified into three 
categories, namely the finite element method (FEM) in the context of 
continuum mechanics, the discrete element method (DEM) and the 
combination of such two methods. Due to the maturity and rigorousness 
of continuum mechanics, many continuum-fashion mesoscale models 
have been proposed, such as the truss model [18] and the lattice model 
[19]. Considering that substantial cracks could initiate, grow, and coa-
lesce and much more input energy is consumed by frictional contacts at 
these cracks than the newly created fractures themselves [20], accurate 
simulations of fracture evolutions in concrete require careful consider-
ations of a large number of discrete contacts. Since then, DEM featured 
with contact searching and determining becomes popular in 
concrete-like-composite crack modelling; cracks are enriched in the 
bonds between connected elementary spheres in 3D (or circles in 2D) 
DEM. However, many physically meaningless local parameters in DEM 
parallel bond models are required to be fitted. The primary bulk elas-
ticity, in terms of Young’s modulus and Poisson’s ratios, is highly 
dependent on element packing structures; albeit the same calibrated 
parameters are utilised, the elasticity can no longer be warranted [21] 
when the packing structure is alternated. The combined finite and 
discrete element method (FDEM) [22], importing the capability of DEM 
to handle contacts to explicit FEM framework with crack initiations and 
evolutions, fits within the context of the accurately simulating fracture 
behaviour of mesoscale concretes.

Mesoscale concrete models often require topological reconstructions 
of different material phases. The bottom-up method—a dense or loose 
random packing of artificially shaped and sized aggregates with mortar 
matrix filling the space between them—may be the most popular among 
others [23]. Due to the resulting loose packing structure, the target solid 
fraction of aggregates is typically achieved by mechanical compressions, 
such as the die compaction, which could induce strong strain local-
isations or even shear bands within the domain, hindering the investi-
gation of heterogeneity-influenced concrete fracture behaviour with the 
natural adequacy. By contrast, during the real concreting process, coarse 
aggregates are homogenously suspended within the mortar phase, with 
less variances in local aggregate fractions. Moreover, aggregate shapes 
utilised in most of such bottom-up methods are simple convex shapes (e. 
g., spheres, polyhedrons and ellipsoids) [24]. Natural grains have 
fractal-like shapes with higher irregularities on their surfaces, where 
more stress concentrations can be induced on the joints between the 
mortar and the aggregate phases. In recent years, with the development 
of non-destructive 3D imaging techniques (including magnetic reso-
nance imaging (MRI), and X-Ray and neutron tomography), real mes-
o‑morphologies became accessible. It has to be mentioned that in situ 
[25] and ex situ [26] X-Ray mechanical tests are also conducted on 
quasi-static localised deformation on mesh-scale concrete. However, 
unavoidable, yet large creep strains are encountered in the small-scale 
concrete specimen due to the long durations required form imaging 
towards full 3D spatial evolutions. Although the scanned 3D heteroge-
neity of concretes with packed aggregates can be readily imported into 
numerical models, the subsequent mechanical analysis is highly sensi-
tive to the randomly packing structure [24]. Consequently, the numer-
ical method seems to be a plausible alternative to isolate effects of 
heterogeneity rooted in aggregate morphology on concrete strength 
from other dominant factors. Another type of method in numerically 
modelled mesoscale heterogeneity is based on the top-down fashion. In 
these methods, global descriptors, such as aggregate fraction, specific 
formulations of the two-point correlation function, and more microscale 
statistical information extracted from the real 3D images, are realised by 
randomised processes [27]. Before the net homogenous distribution of 
aggregates is ready, unphysical, although hard to determine, features 
must be removed [28], followed by separating or labelling single ag-
gregates from the whole solid phase. These steps could bring additional 
uncertainties in these aggregate shapes, such as their sizes, and even the 
aggregate grading cannot be exactly sustained as the target distribution, 

as the first mesoscale factor to determine the concrete strength [29]. To 
capture realistic heterogeneously-localised deformations of mesoscale 
concrete specimens, an explicit method must be proposed to account for 
both the homogenously packing structures of aggregates and the 
high-fidelity aggregate morphology features.

For the mesoscale modelling of concrete fracture, the inherent het-
erogeneity of the mesoscale structure can be characterised by assigning 
distinct material properties to the mortar, aggregate, and interfacial 
transition zone (ITZ) phases [30–33]. This is based on constitutive laws 
implemented in various numerical models, such as the CDP model [34,
35], cohesive element method [36,37], Johnson–Holmquist Concrete 
(JHC) model [38,39] and others [40]. Interestingly, a novel combination 
of numerical models has been adopted in some studies, where the CDP 
model is used for the solid elements of mortar and aggregates, while 
zero-thickness cohesive elements considering the ratio of shear to 
normal strength are applied to represent the ITZ phase [41,42]. Given 
appropriate material properties for each material phase, mesoscale 
models can effectively capture the stress–strain response of concrete and 
have been widely used to investigate fracturing processes under various 
stress conditions, including static [36,43,44], dynamic [43,45,46], 
uniaxial [36,37,47,48] and multiaxial [43,45,49] loadings. The 3D 
mesoscale structures of concrete in these studies are generated using 
either scan-dependent (i.e., X-ray computed tomography) or 
scan-independent approaches (i.e., computer-based packing algo-
rithms). The influence of material properties or the morphology of 
material constituents, such as the ITZ [50,51], aggregates [50,52], and 
pores [24], on concrete fracture has been extensively studied. Although 
digital imaging allows the mesoscale structure to capture greater het-
erogeneity in concrete, including pores in the mortar phase, which 
significantly affect the formation of crack networks [23,53,54], few 
studies focus on the influence of aggregate shape. This is more 
commonly explored using the latter approach, such as the take-in-place 
method [41,42,48,55], random extension method [56–58], and 
Voronoi-tessellation-based method [22,59–62], which generate particle 
packings through computer programming.

Some studies have highlighted the effects of aggregate shape on 
concrete strength [22,24,35,36], local damage mechanisms [22,24], 
and failure patterns [24,35,36]. For instance, compared to cases with 
spherical aggregates, Wei et al. concluded that more concave and 
irregular aggregate shapes can induce higher stress concentrations and 
enhance the compressive strength of concrete. Moreover, this study 
quantitatively analysed the relationship between local damage and 
concrete strength, showing that with more concave aggregate shapes, 
cracking tends to occur more within the aggregates and less in the ITZ 
[22]. On another note, although some studies have compared the failure 
patterns of concrete with different aggregate shapes, these comparisons 
often rely heavily on visual observations and lack quantitative evidence 
[35,36]. While stress distribution in the host matrix is used as an indi-
cator of the fracture behaviour of heterogeneous materials [63], it has 
not yet been applied to analyse the influence of aggregate shape. 
Looking at existing literature on mesoscale studies on the influence of 
aggregate morphology, most are only dedicated to uniaxial compression 
or tension. Although some numerical progress has been made in inves-
tigating the triaxial failure of concrete, these efforts have primarily 
focused on stress-strain responses [45,64], without incorporating real-
istic aggregate shapes in concrete models. Moreover, assessing the effect 
of aggregate shape only based on macroscopic responses is insufficient. 
It is essential to support such assessments with comprehensive and 
quantitative analysis of the local responses of concrete at the micro-
scopic level. However, such investigations under triaxial loading con-
ditions are still lacking.

Based on the above discussions, in this study, we conduct mesoscale 
FEM modelling on triaxial compression induced fracture behaviour of 
three-phase concretes. The aggregates are generated with realistic 
shapes and are assumed to be distributed in a homogeneous mortar, 
without considering the influence of pores. The effect of aggregate shape 
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on concrete strength under triaxial loading is investigated. We aim to 
enrich the understanding of this effect, with a focus on local responses, 
including stress distributions, local damage, and crack patterns, which 
may provide insights into variations in macroscopic strength. The 
reminder of this paper is structured as follows. In Section 2, the packing/ 
parking process is firstly introduced for the 3D mesoscale concrete 
structure containing the irregularly shaped aggregates; with the target 
size distribution in hand, their positions and orientations are inherited 
from the Voronoi tessellation of the domain, while specific morphology 
features are realised by the combined method of random field and Fast 
Fourier Transformation. The FEM mesh generation and constitutive 
models, including the damage laws for cohesive interface elements of 
ITZ and concrete damage plasticity (CDP) of both aggregate and mortar 
elements, are also provided. Section 3 validates our numerical results by 
comparing them with some existing experimental results, and then 
demonstrates the macroscopic stress-strain curves under both uniaxial 
and triaxial compression loading conditions. The universality of 
aggregate-shape-influenced triaxial strength is analysed in Section 4 by 
quantitative statistics of microscopic stress distributions, evolutions of 
local damages, and crack patterns. Main conclusions are finally sum-
marised in Section 5.

2. Methodology

In this section, the mesoscale modelling of concrete fracture under 
the triaxial stress condition is conducted in two stages. Mesoscale 
structures with irregularly shaped aggregates are generated to represent 
the cubic concrete specimen in Section 2.1. For the packing algorithm, 
the Voronoi tessellation as well as generation of fractally shaped ag-
gregates within a predefined cubic space are illustrated in Section 2.1.1 
and 2.1.2, respectively. The construction of the mesoscale structure of a 
three-phase cubic concrete specimen, including mortar, ITZ and aggre-
gate, is then provided in Section 2.1.3. Section 2.2 introduces the 
constitutive laws for mesoscale structure of concrete including the CDP 
for mortar and aggregate in Section 2.2.1 and cohesive element method 
for ITZ in Section 2.2.2, which are employed for the finite element 
modelling. In Section 2.3, boundary conditions for simulating the quasi- 
static triaxial tests are described.

2.1. Mesoscale structure of concrete

The effects of aggregate shape under triaxial stress conditions are 
investigated using a cubic concrete specimen, where the aggregates are 
assumed to be non-contacting and fully contained within the specimen 
domain. The key to generate the mesoscale structure is to produce initial 

Fig. 1. (a) A typical Voronoi tessellation, (b) irregular aggregate shapes varying with fractal dimension, Fd, and the normalised second Fourier descriptor, F2, in Cell 
A of (a), of which the colour bar is used to denote the relative roughness, Rr, (c) packing of irregularly shaped aggregates corresponding to the Voronoi tessellation in 
(a), and (d) schematic diagram of finite element (FE) modelling of the triaxial test, with arrows indicating the directions of the principal stresses of σ1, σ2 and σ3.
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aggregation packing within a reasonable range of packing density. To 
handle the packing problem of realistic shaped aggregates beyond ide-
alised convex shapes, we have referred to the work of Mollon and Zhao 
[65]. A specific cubic space can be divided into Voronoi cells. Then, the 
irregular aggregate shape characterised by the fractal dimension, Fd, is 
generated fully inside each Voronoi cell. By such packing processes, any 
contact or overlapping can be avoided. As shown in Fig. 1(a-c), when the 
aggregate shapes are varied within the same Voronoi cell, the spatial 
distribution and orientation, which are factors affecting the mechanical 
performance of heterogeneous materials [63,66], are kept the same for 
the generated shape. This can refine the investigation into the effects of 
aggregate shape. Mesoscale structures of concrete are typically gener-
ated in accordance with the Fuller curve to achieve a more realistic 
aggregate grading, which has been shown to significantly affect concrete 
strength, particularly with regard to the effects of maximum aggregate 
size [67,68]. To minimise interference from such effects in this study, 
nearly mono-sized aggregates are assumed in the concrete specimens to 
maintain consistent grading across different aggregate shapes, while still 
preserving the main heterogeneity of concrete. Although these as-
sumptions allow us to control only the aggregate shape, they lead to a 
simplified mesoscale structure that does not fully represent real con-
crete. This is a limitation that will be addressed in future work by 
incorporating aggregate characteristics under more realistic conditions.

2.1.1. Voronoi tessellation
In the 3D domain space Ω⊂R3, a Voronoi tessellation {VTi}

M
i=1 is a 

partition of Ω into M regions close to a set of seeds {Si}
M
i=1⊂Ω, if VTi∩VTj 

= ∅ for i ∕= j and ∪M
i=1 VTi = Ω. Each Voronoi cell VTi corresponding to 

the seed Si is defined in Eq. (1) [69]. The Voronoi cell VTi consisted of 
every point x in the region: 

VTi =
{
x ∈ Ω, ||x − Si|| ≤ ||x − Sj ‖, for j > 1, j ∕= i

}
, (1) 

where || ⋅ || denotes a Euclidean distance in R3. The energy functional 
associated to sets of {VTi}

M
i=1 and {Si}

M
i=1 is used to introduce the dif-

ferences of Voronoi cell geometry [69]: 

Q
(
{Si}

M
i=1, {VTi}

M
i=1
)
=
∑M

i=1

∫

VTi

ρvt(x)||x − Si|| dx, (2) 

where ρvt(x) is a density function over a domain. Clearly, the Q is 
minimised only if Voronoi tessellation has the seed Si coincided with the 
mass centroid of Voronoi cell Ci =

∫

VTi
xρvt(x)dx/

∫

VTi
ρvt(x)dx (i.e., 

Centroid Voronoi tessellation). Meanwhile, the Voronoi cell geometry 
becomes the most stable. Arbitrarily chosen seeds are usually not the 
mass centroids of their associated Voronoi cells, and reaching the 
coincidence is very difficult. The Lloyd iteration is used in this study to 
minimise Q by alternately moving the seed to the mass centroid of the 
Voronoi cell [70]. The number of Lloyd iterations Nl is a key factor to 
control the aggregate size and will be determined with the appropriate 
value later.

2.1.2. Packing for irregular aggregate shapes
In the 3D case, the existing method (i.e., a combination of the 

random field and Fourier-shape-descriptor based method) from the 
work of Mollon and Zhao [65], is employed to generate the irregularly 
shaped aggregate inside each Voronoi cell. In the current paper, based 
on the codes (MATLAB program accessible via http://guilhem.mollon. 
free.fr), we have improved this method by introducing the fractal 
dimension, Fd, which is a multiscale geometric index to characterise the 
aggregate shape. For the Fourier descriptor, Fn, the F0 is normally set to 1 
for the normalisation, F1 = 0 ensures that the aggregate centroid has 
been properly chosen. F2, Fn for 3 ≤ n < 8 and n ≥ 8 are used to control 
the elongation, irregularity and surface roughness of aggregate particles, 
respectively. For the natural aggregate, Fn for n ≥ 2 has a roughly linear 
decrease with the n in the log-log scale. According to Wei et al. [71], the 

exponential relation between Fn and n can be described using the Hurst 
coefficient, H, which is associated with fractal dimension, Fd, as follows: 

Fn∝n− 2H, (3) 

Fd = 3 − H, (4) 

where − 2H is the slope of relation between log (Fn) and log (n). Thus, Fn 
can be controlled by Fd and F2, as below [71]: 

Fn = F2

(n
2

)2Fd − 6
. (5) 

The relative roughness, Rr, can be used to compute how globally 
different the irregular aggregate shape is from r0, the mean radial length 
[22], as below: 

Rr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑∞

n=2

(

F2

(n
2

)2Fd − 6
)2

√

. (6) 

Given an example of Voronoi cells (i.e., Cell A) in Fig. 1(a), Fig. 1(b) 
shows the aggregate shapes generated at different combinations of Fd 
and F2, and we can see higher values of Fd and F2 causing the aggregate 
shape with the rougher surface. The size scaling of aggregate from its 
mass centre is required to not only reach the given packing density but 
also ensure the aggregate particle completely located inside the 
respective Voronoi cell. Consequently, any contact or overlapping be-
tween aggregate boundaries can be avoided. Then, the packing for 
irregularly shaped aggregates characterised by the fractal dimension is 
completed and used to produce the mesoscale structure for the concrete 
specimen in the following.

2.1.3. Generation of material components for the mesoscale model
The cubic concrete specimen with the side length of L is used for the 

modelling of triaxial tests. To prevent aggregate boundaries from con-
tacting with the borders of concrete specimen, the cubic space for the 
Voronoi tessellation has the side length of Lvt is slightly smaller than L as 
in Fig. 1(a). Then, if the target solid fraction of aggregate is SFa, the 
packing density is required to reach the SFa(L/Lvt)3. For this study, all 
the mesoscale structures for concrete specimen are constructed with L =
50mm. In some mesoscale models of concrete [35,36,72–74], the 
aggregate solid fraction often reaches a certain high value exceeding 35 
%. It is challenging to isolate the influence of a single aggregate char-
acteristic from others. To conduct a refined investigation, the effects of 
aggregate shape are investigated under a relatively low solid fraction (at 
30 %), allowing variation of aggregate shape without any overlaps be-
tween aggregates. In the virtual samples, the solid fraction, size distri-
bution, and spatial distribution are kept the same across different shapes 
to emphasis on the effects of aggregate morphology. As mentioned in 
Naderi et al. [35], L needs to be guaranteed at least three to five times of 
the maximum aggregate size to be representative. To satisfy this con-
dition and keep SFa = 30 %, our concrete specimen is designed to 
contain 105 aggregates, as illustrated in Fig. 1(c). Here, we have defined 
the aggregate size da as the volume-equivalent sphere diameter to within 
a concrete specimen. Based on the standard deviation of da, SDda , the 
effects of the number of Lloyd iterations, Nl, on da is investigated, when 
various aggregate shapes are considered for the mesoscale structure of 
concrete specimen. As shown in Fig. 2(a), an increase in Nl leads to a 
decrease in SDda and a more uniform aggregate size distribution. To 
minimise fluctuations in aggregate size within the concrete specimen, Nl 
= 50 is decided for the Voronoi tessellation. For different aggregate 
shapes, this results in similar size grading curves as shown in Fig. 2(b), 
with da mostly varying from around 8 to 9 mm, closely approximating a 
mono-sized aggregate. Thus, the influence of aggregate size distribution 
can be minimised in this study.

Given the Voronoi tessellation with 105 seeds and 50 Lloyd iterations 
as shown in Fig. 1(a), an example of packing of irregularly shaped ag-
gregates with Fd = 2.3 and F2 = 0.06 as in Fig. 1(c) is made for 
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illustrative purposes. It is important to ensure that the meshing of ag-
gregates can capture the shape-induced stress concentration effects. The 
aggregate surface is defined with 642 vertices and discretised into 1280 
nearly uniform surficial triangular meshes, directly generated using the 
published code from the work of Mollon and Zhao [65], which in-
corporates the concept of geodesic structure. The number of surficial 
meshes is even more than adequate compared to that used in the work of 
Wei et al. [75], where around 400 uniformly surficial triangular meshes 
are defined for the irregular aggregate surface and found sufficient to 
demonstrate the effects of aggregate shape. Therefore, mesh sensitivity 
for the aggregate will not be a concern in our case. Then, we import 
aggregate surfaces, as solid geometries, into the Finite Element Soft-
ware, ABAQUS/Explicit. On another note, the aggregate shapes are 
artificially generated based on the statistical information obtained from 
the actual aggregate shapes [65,76,77]. The actual geometry may differ 
from the experimental and virtual samples, and our modelling effort 
focuses on demonstrating the influence of these statistical differences 
which were observed from experimental datasets. A future study using 
in situ XCT can supplement our current numerical methods by capturing 
temporospatial information for detailed validations, which represents a 
gap to be addressed. The mortar phase is generated by cutting the cubic 
space with L = 50mm using all the solid aggregates. Here, we assume 
that the mortar phase is homogeneous, without considering the distri-
bution of pores. Based on the surficial mesh size given on the aggregate 
surface, the tetrahedral element with the size of about 1 mm is used to 
mesh all solid entities including aggregates and mortar. Representation 
of ITZ has been debated to the date. The typical value of ITZ thickness 
varies between 10~50 μm [51]. It is challenging to represent the ITZ 
with physical thickness by the small-scale solid elements [35]. In this 
study, fracture of ITZ is simulated by the zero-thickness cohesive ele-
ments, inserted between the mortar phase and aggregates. Eventually, 
the meshed mesoscale structure of the concrete specimen is generated as 
in Fig. 1(d), with about 1420,000 solid elements and about 135,000 
cohesive elements for the ITZ. According to Wang et al. [24], 236,260 
solid elements are sufficient for the modelling of concrete fracture 
behaviour, when the mesoscale structure of concrete specimen is of L =
50mm and SFa = 30%. Therefore, no additional effort is dedicated to the 
mesh sensitivity study. The simulations are conducted in the 
High-Performance Computing (HPC) platform.

2.2. Constitutive laws for mesoscale model of concrete

Normal-strength concrete is considered here for the modelling of 

triaxial tests. The respective constitutive models for mortar, aggregate 
and ITZ have been decided to appropriately present concrete responses. 
The concrete damage plasticity (CDP) model has been widely used to 
simulate concrete damage behaviours [35]. This study focuses only on 
triaxial tests with low confining pressure, which is significantly lower 
than the uniaxial strength of normal-strength concrete (approximately 
30–40 MPa [78]). Although the entire concrete specimen is subjected to 
the specified confining pressure, some elements in local regions might 
experience extremely high pressure, for which we did not optimise the 
CDP model. For simplicity, as in a previous study [79], the built-in CDP 
model can be directly considered for our mesoscale structure to capture 
the general trend of the confined stress–strain response. Greater 
emphasis is placed on how different aggregate shapes affect the concrete 
strength under various low confining pressures, rather than on the 
stress–strain response in a specific region. Here, the built-in CDP model 
is implemented to the damage behaviour of both mortar phase and ag-
gregates, whereas aggregates are considerably stronger than mortar 
matrix in normal-strength concrete. The cohesive interface element 
(CIE) with the traction-separation law is employed to represent ITZ 
behaviours. Compared with the mortar, ITZ is relatively weaker, 
partially due to its more porous structures, which is the main reason why 
crack initiation of concrete generally occurs at ITZ [51]. In the following 
subsections, the CDP model and cohesive element method are briefly 
illustrated. More details can be seen in ABAQUS documentation.

2.2.1. CDP model for mortar and aggregate
Compression crushing and tension cracking are considered to be 

main failure mechanisms given in the CDP model, as in first and third 
quadrants of Fig. 3(a), respectively. The stress-strain in both quadrants 
follow the linear elastic relation before ultimate strength in tension, σt0, 
and yield stress in compression, σc0. The compressive response between 
yield stress, σc0, and ultimate strength, σcu, is defined to be strain 
hardening. For the issue of mesh sensitivity, which is induced by strain 
localisation [51], it is suggested in some studies to define tensile soft-
ening behaviour by specifying stress–displacement curves using the 
fracture energy criterion instead of stress–strain [51,68,80]. Such con-
siderations are important when using small solid elements in local re-
gions, which are more susceptible to strain localisation and may even 
lead to unreasonable numerical results [80]. In the current study, our 
concrete model is meshed with a nearly uniform size, which can be 
sufficiently used to present the aggregate morphology. Thus, our cases 
can follow similar works [41,42,81] and directly use stress–strain to 
define both compressive and tensile softening behaviour in the CDP 

Fig. 2. (a) Influence of the number of Lloyd iterations, Nl, on the standard deviation of aggregate size, SDda and (b) aggregate size distribution curves at Nl = 50, with 
the same legend in (a).
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model, aiming to obtain an acceptable overall trend in the stress–strain 
response of concrete, rather than calibrating the model for a specific 
region. According to Code for Design of Concrete Structures (GB 
50010-2010), the compressive strain hardening and softening behaviour 
are defined as:  

where σc and εc are compressive stress and strain, εcu is the strain at σcu, 
aa = 2.4 − 0.0125σcu and ad = 0.157σcu

0.785 − 0.905.
For the tension, beyond the ultimate strength, σt0, the softening 

behaviour can be expressed as: 

σt

σt0
=

εt
εt0

αt

(
εt
εt0

− 1
)1.7

+ εt
εt0

, (8) 

where σt and εt are tensile stress and strain, εt0 is the strain at σt0, and αt 
= 0.312σt0

2 .
The stress-strain as defined above can be also converted into the 

stress-plastic strain curve, by following equations: 

ε̃pl
c = ε̃in

c + εel
0c − εel

c , (9) 

ε̃pl
t = ε̃ck

t + εel
0t − εel

t , (10) 

where ̃εpl
c and ̃εpl

t are equivalent plastic strain tensor in compression and 
tension, ̃εin

c and ̃εck
t are inelastic strain in compression and cracking strain 

in tension, and εel
0c, εel

c , εel
0t and εel

t are defined as below: 

εel
0c =

σc

E
, εel

c =
σc

(1 − dc)E
, (11) 

εel
0t =

σt

E
, εel

t =
σt

(1 − dt)E
, (12) 

where dc and dt are damage variables for compression and tension, 
respectively, and E is Young’s modulus. Eventually, the stress-strain 
relation under tension and compression loading can be obtained as 

below: 

σc = (1 − dc)E
(
εc − ε̃pl

c
)
, (13) 

σt = (1 − dt)E
(
εt − ε̃pl

t
)
, (14) 

where εc = εel
0c + ε̃in

c and σt = εel
0t + ε̃ck

t .
For material properties of mortar and aggregate, most inputs for the 

CDP are given with acceptable values from previous literature [35,51,
82], as listed in Table 1. Additionally, other five parameters for the CDP 
model, the dilation angle, plastic potential eccentricity, ratio of 
compressive strengths under biaxial and uniaxial loading, ratio of the 
second stress invariant on the tensile meridian to that on the compres-
sive meridian, and viscosity parameter, have the corresponding values 
of 35◦, 0.1, 1.16, 0.667 and 0.0005 [35,51], and are used for both 
concrete phases here.

2.2.2. Cohesive interface element method for ITZ
For the cohesive element, the traction-separation law illustrates that 

one normal and two shear tractions acting on adjacent surfaces result in 

Fig. 3. Schematic diagrams of (a) stress–strain relationship of the CDP model and (b) bilinear traction-separation law of the cohesive element in the normal direction.

Table 1 
Material properties of concrete constituents.

Component Material property Value

Mortar/Aggregate 
(Concrete damage plasticity, 
CDP)

Density, ρ (kg/m3) 2200/ 
2600

Young’s modulus, E (GPa) 30/70
Poisson’s ratio, v 0.2/0.2
Ultimate strength in compression, 
σcu (MPa)

45/80

Ultimate strength in tension, σt0 

(MPa)
4/10

ITZ 
(Cohesive interface element, 
CIE)

Initial stiffness, kn0, ks0, kt0(N/m3) 1 × 1013

Normal strength, tn0, (MPa) 2.4
Shear strength, ts0,tt0 (MPa) 7.2
Fracture energy, Gf,n, Gf,s, Gf,t (N/m) 30

Fracture (Broken CIE) Friction coefficient 0.3

σc

σcu
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aa
εc

εcu
+ (3 − 2aa)

(
εc

εcu

)2

+ (aa − 2)
(

εc

εcu

)3

,
σc

σcu
≥ 0.4 and

εc

εcu
≤ 1 (harderning)

εc

εcu

ad

(
εc
εcu

− 1
)2

+
εc

εcu

,
εc

εcu
> 1 (softening)

, (7) 
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separations, such as crack initiation and evolution [83]. For simplicity, 
we consider the bilinear traction-separation law to describe the response 
of cohesive elements, as in Fig. 3(b). The linear elastic behaviour after 
the damage initiation is followed by linear softening. It is noted for Fig. 3
(b) that here only shows the normal direction with the notation *n. The 
first quadrant of Fig. 3(b), if *n is replaced by *s and *t as shown in 
context, can be also used as first and third quadrants of schematic dia-
gram to illustrate the traction-separation in two shear directions, and the 
corresponding diagrams in both directions are not provided here. In this 
study, the criterion for damage initiation is the quadratic nominal stress 
law, as given by: 
{
〈tn〉
tn0

}2

+

{
ts
ts0

}2

+

{
tt
tt0

}2

= 1, (15) 

where tn is normal traction, ts and tt are two shear tractions, tn0, ts0 and tt0 
are corresponding cohesive strengths and critical values for damage 
initiation, and 〈 ⋅ 〉 is the Macaulay bracket defined as: 

〈tn〉 =

{
tn, tn ≥ 0 (tension)

0, tn < 0 (compression)
. (16) 

Fracture energy, Gf, is the area under the curve representing sepa-
ration, δ, and traction, t(δ), and it can be determined using the cohesive 
strength, t0, and failure separation, δf, in either normal or shear di-
rections, as below: 

Gf =

∫δf

0

t(δ)dδ =
1
2
t0δf . (17) 

The damage variable, dCIE, as function of effective relative dis-
placement,δm, is introduced to describe the linear softening branch 
representing the damage evolution, and defined as: 

dCIE =
δmf (δm − δm0)

δm
(
δmf − δm0

), (18) 

δm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈δn〉
2
+ δs

2 + δt
2

√

, (19) 

〈δn〉 =

{
δn, δn ≥ 0 (tension)

0, δn < 0 (compression) , (20) 

where δn, δs and δt are separation in one normal and two shear di-
rections, δm0 and δmf are effective relative displacement at damage 
initiation and final failure. During the damage evolution, the stiffness 
degradation is controlled by dCIE, and the current stiffness in one normal 
and two shear directions kn, ks, kt are given by: 

kn = (1 − dCIE)kn0, ks = (1 − dCIE)ks0, kt = (1 − dCIE)kt0, (21) 

where kn0, ks0 and kt0 are initial cohesive stiffness correspondingly, and 
kn0 = ks0 = kt0 is assumed in this study. Damage-affected tractions, tn, ts 
and tt, are defined as: 

tn =

{
(1 − dCIE)tn, tn ≥ 0

tn, tn < 0
,

ts = (1 − dCIE)ts,

tt = (1 − dCIE)tt ,

(22) 

where tn, ts and tt are traction components calculated based on the 
elastic-displacement behaviour for the current separations without 
damage.

For the ITZ, input values for material parameters of the cohesive 
element are listed in Table 1, as in some studies [35,51,82]. The 
energy-based crack evolution is considered for the linear softening re-
gion. The Benzeggagh-Kenane criterion [84] is used for the mixed mode 

behaviour, and for simplicity, fracture energy Gf are assumed to be the 
same in normal Gf,n and two shear directions Gf,s and Gf,t, Gf = Gf,n = Gf,s 
= Gf,t.

2.3. Triaxial loading conditions

As shown in Fig. 1(d), the concrete model is loaded under triaxial 
compressive stresses of σ1,σ2 and σ3, where σ1, σ2 and σ3 are referred to 
principal stresses. In this study, σ1 > σ2 = σ3 = σL ≥ 0MPa and only 
confining pressure, σL, less than uniaxial compressive strength of con-
crete are considered. Though the explicit scheme is used here for its 
efficiency of handling multiple contacts, the modelling focuses on the 
quasi-static triaxial test. As the ABAQUS/Explicit is a dynamic solver, 
the loading rate on the concrete model needs to be carefully selected to 
avoid considerable initial effects; we have ensured that the ratio of the 
total kinetic energy to internal energy is always below 5 % in all 
simulations.

The loading is implemented in two steps, which are carried out 
sequentially in the simulation without any coupling settings. As shown 
in Fig. 1(d), all nodes at the bottom are fixed in the direction of σ1 (i.e., 
the y-direction). In the first step, the confining pressure, σL, is applied to 
the top and side faces of the cubic concrete specimen, linearly increasing 
to the given value within 0.001 s. In the second step, the stress σ1 for the 
top surface is increased to σ1 + σq, where σq is the deviatoric stress 
applied using a velocity-controlled method. Meanwhile, confining 
pressure σL keeps acting to other confined faces (i.e., σ2 = σ3 = σL), as 
propagated from the end of first step. The velocity of the nodes on the 
top surface is linearly ramped up to 25 mm/s within 0.001 s and then 
held constant until the end of the second step. In this study, the given 
confining pressures σL = 0, 5, 10, 15, 20, 25MPa are considered, unless 
otherwise emphasised. To obtain the stress-strain data under different 
σL, the entire time of the second step is set to 0.02 s. It is noted that the 
uniaxial compression tests correspond to cases with σL = 0MPa.

3. Results and discussion

In this section, using our established model, numerical analyses are 
performed to investigate the macro- and micro-mechanical responses of 
concrete under various confining pressures and aggregate shapes. The 
macroscopic responses of concrete under uniaxial and triaxial stress 
conditions are presented in Section 3.1. Particular focus is placed on the 
relation between the macro-strength of concrete and confining pressure, 
which will be compared with existing experimental data. To explore the 
underlying micro-mechanisms behind the influence of aggregate shape 
on these relations, quantitative evidence is examined through local 
stress distribution, local damage and crack clusters in Sections 3.2 to 3.4, 
respectively.

3.1. Stress–strain responses

Based on the above-established modelling, firstly we can obtain the 
σL-influenced axial stress (σ1) − strain (ε1) curves for the concrete with 
various shaped inclusions, as the specimens with sphere, Fd = 2.1, Fd =

2.3, Fd = 2.4, and Fd = 2.6 shown in Fig. 4(a). Therein, σ1 is defined as F/ 
A, with F being the sum of nodal reaction force on the top boundary 
where the velocity boundary condition is inserted, and A = 50 × 50mm2 

is the initial cross-section area, and ε1 is calculated as the ratio of nodal 
displacement to the initial side length of the specimen. For the obtained 
stress–strain curves, our results for uniaxial tests show good agreement 
with the experimental work of Lowes et al. [85]. For the triaxial tests, it 
is challenging to find experimental results that exactly match the same 
combination of aggregate solid fraction, aggregate size, specimen di-
mensions, and confining pressures used in our model. We acknowledge 
this as a limitation in validating our model from the stress–strain 
perspective. Thus, Fig. 4(a) is primarily used to demonstrate that our 
model can capture the general characteristics of the triaxial response of 
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Fig. 4. (a) Typical axial stress–strain curves for different aggregate shapes and confining pressures, where EXP shows results from the experiments of Lowes et al. 
[85], (b) compressive strength, σ1,s, versus relative roughness, Rr, where the markers from left to right represent cases of sphere, Fd = 2.1, Fd = 2.3, Fd = 2.4 and Fd =

2.6, respectively, (c) relations between normalised strength, σ1,s/fc,0, and confining pressure, σL, where the black line fits FEM simulations, and dashed black lines are 
for fitted upper and lower bounds of experimental data, and (d-l) damage field distributions of mortar, ITZ and aggregate at the compressive strength, where (d-f) are 
for the uniaxial test, (g-l) are for the triaxial test with σL = 25MPa; (d-i) are for the sphere and (j-l) are for aggregates with Fd = 2.6.
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concrete. As an alternative approach for model validation, the relation 
between concrete strength and confining pressure, as our main basis of 
investigation into the influence of aggregate shape, will be compared 
with existing data in the following.

As shown in Fig. 4(a), with a rising confining pressure, the peak value 
of σ1 (i.e., compressive strength, σ1,s) are increased, and the post-peak 
softening turns to be flatter. Such an increase of σ1,s in the triaxial test 
can be explained by severer damage in all three phases as shown in Fig. 4
(g–i), when compared to the uniaxial test in Fig. 4(d–f). In Fig. 4(a), 
another noticeable point is that rougher aggregate shapes with higher Fd 
result in higher σ1,s. That is because higher Fd induces higher stress 
concentrations near aggregate surfaces, which may lead to more frac-
tures propagating across the strongest phase, aggregate, rather than 
along the weakest phase—ITZ, as demonstrated in Fig. 4(g–l); as a result, 
the macroscopic strength of concrete is enhanced. This influence could 
be further enhanced by higher confining pressure, σL, as illustrated in 
Fig. 4(b). Wei et al. [22] also found more roughness-induced higher 
uniaxial compressive strength, fc,0, in numerical uniaxial tests on 
mesoscale concrete samples. This pronounced effect due to increased 
confining pressure may be rooted in more stress concentrations under 
triaxial states.

The combined effects of confining pressures and aggregate 
morphology features, fc,0-normalised σ1,s versus σL are provided in Fig. 4
(c). Our numerical results are also plotted against some existing exper-
imental works focusing on various strength-dependent factors including 
normal [86–89] or high-strength concrete [90,91], confinement [92], 
supplementary materials [93], and dynamic loading impacts [94]. Be-
sides the consistence with the experimental results, it is surprising that 
all data pertinent to various inclusion shapes and confining pressures 
collapses well onto a single line with R2 ≈ 1, as below: 

σ1,s

/
fc,0 = k⋅(σL / σ0) + 1, (23) 

where σ0 is 1 MPa for normalisation, and k = 0.13 is the fitting 
parameter. Failure criterions have been analytically or empirically 
proposed to predict σ1,s by σL, such as unmodified [95] and modified 
Mohr-Coulomb [96], Newman [97], Leon-Pramono [98] criterions and 
others [99]. Compared with all these criterions, our model only contains 
one fitting parameter. The following sections are dedicated to untan-
gling why and how the macroscopic scaling law bridging σ1,s and σL 
holds for concrete with distinctive inclusions, with the micro perspec-
tives of local stress, damage evolutions and crack patterns.

3.2. Local stress distributions

The stress distribution and its evolution during triaxial loading are 
focused on the mortar phase. As a continuous medium connecting 
discretely distributed aggregates surrounded by the ITZ, the mortar has 
the stress distribution that results from aggregate-to-aggregate and 
aggregate-to-mortar interactions, in addition to external loading, thus 
reflecting the influence of aggregate shape. The stress distribution in the 
host matrix has been successfully used to explain the 2D macro failure of 
materials with a disordered spatial distribution of circular flaws [63]. 
Such an approach using the stress distribution will be extended to more 
general cases of concrete, where the mortar is taken as host matrix 
containing the aggregate and surrounding ITZ, to gain the insight into 
the fracture process of concrete with different aggregate shapes. Here, 
the evolution of stress distribution in the mortar is focused during the 
loading with an increasing ratio of macroscopic stress to compressive 
strength, σ1/σ1,s ∈ [0.1, 1], where the confining stage (i.e., σ1 ≤ σL) is 
excluded. Given the mean stress of element in the mortar phase, σpe, 
obtained from the simulation results, probability density function (PDF) 
is plotted for its normalised value, σnpe = (σpe + 2σt,0)/fc,0, where σt,0 is 
tensile strength as given in Table 1, and the shift of 2σt,0 is used to 
remove the negative value and allows the PDF of σnpe plotted in log-log 
scale, fc,0 (i.e., σ1,s at σL = 0 MPa) is uniaxial strength of concrete with 

the influence of aggregate shapes in terms of relative roughness, Rr, as 
shown in Fig. 4(b), and normalising fc,0 scales element stress to minimise 
the quantitative differences between aggregate shape, making it more 
effective for focusing on how the aggregate shape affects the heteroge-
neity of stress distribution during the triaxial loading. The PDF at each 
σ1/σ1,s is calculated based on the element volumes, showing its de-
pendences on the aggregate shape and confining pressure by log-log 
plots, as shown in a few examples in Fig. 5(a–c). To characterise the 
PDF, the following statistical indices are introduced for Fig. 5(d–f) as: 

Kurtosis : Knpe =

1
n
∑n

i=1
(
σnpe − Mnpe

)4

(

1
n
∑n

i=1
(
σnpe − Mnpe

)2

)2 − 3 (24) 

Skewness : Snpe =

1
n
∑n

i=1
(
σnpe − Mnpe

)3

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(
σnpe − Mnpe

)2
√

)3 (25) 

and 

Standard deviation : SDnpe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1

(
σnpe − Mnpe

)2
√

, (26) 

where the Mnpe is the mean value of element-level stress σnpe.
At almost linear elastic regime (σ1/σ1,s= 0.2), PDF in Fig. 5(a) shows 

that most element stresses σnpe are concentrated within a small range. 
The kurtosis, Knpe, and skewness, Snpe, which is used to indicate the 
heterogeneity of stress distribution in mortar, exhibit significant varia-
tion across different aggregate shapes, as shown in the Fig. 5(d) and (e), 
respectively. That is due to the presence of extreme values of σnpe in the 
right tails of PDF, showing a dependency on the aggregate shape. The 
rougher aggregates induce the higher concentrated stresses on mortar 
elements adjacent to their boundaries and can result in greater hetero-
geneity of stress distribution in mortar, as also evidenced by higher 
value of Knpe and Snpe. In triaxial tests with increasing confining pres-
sure, although the stress near aggregate boundaries intensifies and shifts 
the PDF to the right, the overall trend of PDF in Fig. 5(a) remains nearly 
unchanged for all aggregate shapes, showing decreasing dependency on 
the shapes. This is also reflected in insignificant variation of Knpe and 
Snpe at σ1/σ1,s= 0.2 across different confining pressures, suggesting the 
similar influence of aggregate shape on heterogeneity of stress distri-
bution in mortar.

Beyond the elastic region, as σ1/σ1,s increases, the overall stress in 
the mortar improves to varying degrees, leading to a broader range of 
the PDF of σnpe, as seen in the comparison between Fig. 5(b) or (c) and 
(a). Simultaneously, the standard deviation, SDnpe, shows a continuous 
increase, accompanied by a progressively more pronounced effect of 
confining pressure. This is because the stress in the mortar tend to in-
crease and propagate in a restricted direction due to the confining 
pressure, leading to a more heterogeneous stress distribution. The dif-
ference in the PDF between aggregate shapes may be reduced, as indi-
cated by Knpe and Snpe, which converge to their respective values. This 
suggests that although the initial influence of aggregate shape on the 
heterogeneity of stress distribution gradually weakens, the relative dif-
ferences can still be observed under different confining pressures. As 
seen in Fig. 5(g–l), with increasing σ1/σ1,s, the enhanced stress gradually 
propagates to other regions of the mortar, causing the heterogeneity of 
the stress distribution to extend over a wider high-stress area, where the 
shape-induced stress concentration effects on mortar elements become 
less pronounced compared to those at the initial loading stage.

When σ1/σ1,s approaches 1 (or approaching the respective uniaxial 
compressive strength), the confining pressure becomes a more dominant 
factor influencing the heterogeneity of stress distribution, showing a 
universality across different aggregate shapes, as more apparently 
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Fig. 5. Probability density functions (PDFs) of normalised mean stress, σnpe, of mortar elements at (a) σ1/σ1,s = 0.2, (b) σ1/σ1,s = 0.8 and (c) σ1/σ1,s = 1, all using the 
legends from (a), and variations of (d) kurtosis, Knpe, (e) skewness, Snpe, and (f) standard deviation, SDnpe, of σnpe with σ1/σ1,s, all using the legends from (d), and (g-l) 
distribution of mean stress, σpe, in mortar on the y-z plane (i.e. midplane of the concrete specimen) at σL = 25 MPa: (g) and (j) are for σ1/σ1,s = 0.2, (h) and (k) are for 
σ1/σ1,s = 0.8, (i) and (l) are for σ1/σ1,s = 1, (g-i) and (j-l) are for cases of sphere and Fd = 2.6, respectively.
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evidenced by SDnpe in Fig. 5(e).
Finally, at σ1/σ1,s=1, the heterogeneity of stress distribution in 

mortar is similar across different aggregate shapes, and this aligns with 
the universal scaling law expressed by Eq. (23) and in Fig. 4(c). How-
ever, this similarity in stress heterogeneity does not explain the reason 

that rougher aggregates lead to a greater overall concrete strength, as 
illustrated in Fig. 4(b). When concrete approaches its failure strength, it 
transitions from linear to non-linear regions with possible damage 
initiation or propagation within the material phases. The influence of 
material properties and / or morphology have been used to analyse 

Fig. 6. (a-c) Evolutions of damage in mortar, ITZ and aggregate with the axial strain, ε1, all using the legend from (a), and (d–f) variation in damage in mortar, ITZ 
and aggregate corresponding to the compressive strength with σL, all using the legends from (d), and damage field distribution on y-z plane (i.e. midplane of the 
concrete specimen) at σL = 25 MPa: (g) and (j) are for ε1 = 0.003, (h) and (k) are for ε1 = 0.006, (i) and (l) are for ε1 = 0.009, (g-i) and (j-l) are for cases of sphere and 
Fd = 2.6.
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damage mechanisms to interpret how the evolution of internal structure 
affects the macroscopic behaviour of concrete [22,35]. It is worth noting 
here that our focus on the stress distribution in the mortar alone is 
intended to determine whether this approach, similar to that of Laubie 
et al. [63], is applicable to our analysis. The investigation of the het-
erogeneity of stress distribution will not be extended to other material 
phases of concrete. We found that while this approach effectively ex-
plains the universal scaling law, it fails to account for the influence of 
aggregate shape on the macroscopic strength of concrete. Therefore, it is 
necessary to investigate the underlying reasons for both issues from an 
alternative perspective, focusing on the assessment of local damage, as 
discussed in the following section.

3.3. Damage evolutions

The local damage of concrete is investigated to understand how 
different material phases contribute to the damage, providing a more 
accurate representation of the macroscopic behaviour to illustrate its 
universality. Here, the damage in different material phases, mortar, ITZ, 
and aggregate are expressed as Dm, DITZ, and Da, respectively, and can be 
quantified as below: 
∑N

i=1diVi

Vc
or

∑N
i=1diSi

Sc
, (27) 

where di is the element-level damage of i th element, Vi is the volume of i 
th solid element for mortar or aggregate, Si is the area of i th cohesive 
interface element (CIE) representing the ITZ, and Vc and Sc are the 
volume and surface area of cubic specimen of concrete, respectively.

To investigate whether damages have any universality during 
triaxial loading, the evolution of Dm, DITZ and Da are computed using 
values at 30 uniform increments within the range of axial strain, ε1 ∈

[0.0005,0.01]. Fig. 6(a–c) in log-log scale highlight effects of confining 
pressure and aggregate shape. When damages increase with the strain, 
DITZ evolves fastest and reaches the maximum first due to the weakest 
intrinsic fracture strength, followed by Dm and Da. This also explains 
why damage originates from areas adjacent to aggregate boundaries and 
then spreads to other regions of the material phases, as shown in Fig. 6
(g-l). With an increased σL, a significant delay in the damage evolution 
can be observed. That is because the enhanced material strength due to 
σL makes it less prone to inelastic deformation, and the failure mode of 
the material becomes more ductile, typically requiring greater defor-
mation of elements for the onset of damage. Among all material phases, 
only the damage evolution of mortar remains quite similar across 
aggregate shape, exhibiting a universal behaviour governed by the 
confining pressure σL. However, this universality is absent in the damage 
evolution of the ITZ and aggregates due to significant variations in 
aggregate shapes, as shown in Fig. 6(b-c). In particular, under larger 
strain, greater damage propagation from the ITZ into the aggregates is 
observed in cases with rougher aggregate shapes, as seen in Fig. 6(g–l). 
These observations contradict the universality of the scaling law 
expressed in Eq. (21). To address this, the following focus will be on 
investigating how material phases respond at a specific point, i.e., the 
concrete strength, instead of the entire loading process.

To find underlying reasons behind the scaling law, damages in 
mortar, Dm,p, ITZ, DITZ,p, and aggregate, Da,p, at the respective ultimate 
compressive strength are provided in Fig. 6(d–f). When an increase of 
confining pressure, σL, enhances the concrete strength, it also results in 
greater damage within each material phases. It is because at higher σL, 
reaching the compressive strength requires more deformation, as shown 
in Fig. 4(a), during which the intensified overall stress within the ma-
terial phases promotes the initiation or propagation of damage within 
elements. With an increasing value, the Dm,p shows insignificant de-
pendency on the aggregate shape, due to the similar heterogeneity of 
stress distribution in the mortar at the compressive strength (i.e., σ1/σ1, 

s=1) in Fig. 5, indicating comparable levels of damage. More noticeable 

effects of aggregate shape can be observed in DITZ,p and Da,p, which 
shows the competitive relation with an increasing Fd of aggregate. This 
aligns with the findings of Wei et al. [22], which focused only on uni-
axial compressive tests. However, this study also find that this compe-
tition extends to triaxial tests and remains universal across various 
confining pressures.

For rougher aggregates, higher stress concentration can be induced. 
The presence of confining pressure further amplifies this effect by pre-
venting the material from expanding laterally and increasing localised 
stresses. This further promotes the fracture propagation from the ITZ to 
the aggregates. As a result, with an increasing Fd of the aggregate, DITZ,p 
decreases while Da,p increases. The tendencies become more pronounced 
as overall damage increases with increasing σL. The relative damage 
change in different phases explains why rougher aggregates cause the 
more significantly enhanced concrete strength at higher σL, as shown in 
Fig. 4(b). Due to its fully convex shape, damage in spherical aggregate, 
which is even greater than in some realistic aggregates, causes DITZ,p and 
Da,p to deviate from the competitive relation for realistic shapes. The 
greater surface roughness of realistic aggregate with higher Fd causes 
fracture propagation to concentrate in more localised areas (e.g., sharp 
corners or edges), resulting in an almost proportional increase in Da,p. 
The universality of the competitive relation between damage levels in 
ITZ and aggregates across σL indicates that the effect of aggregate 
roughness on concrete strength can be mapped from triaxial to uniaxial 
tests. Thus, when the σ1,s/fc,0 is used in Eq. (23), it can reduce the 
dependence of relation between σL and σ1,s on the aggregate shape, 
allowing Eq. (23) to be applied to predict the σL-dominated concrete 
strength for different aggregate shapes, whilst the shape effects being 
fully captured by the uniaxial compressive strength.

3.4. Crack patterns

At the final loading stage, we assess the crack pattern of concrete 
subjected to triaxial loading. Most existing mesoscale studies rely only 
on visual observation to compare and discuss crack patterns [24,35]. We 
attempt to improve such an investigation by introducing quantitative 
analyses of the crack clusters in each material phase. Here, the 
macro-crack is assumed to form at the axial strain, ε1 = 0.009. In the 
modelling, there is no precisely defined damage threshold for identi-
fying cracked elements. However, some existing numerical studies have 
used the damage value of elements to characterise cracking patterns in 
concrete, commonly adopting a threshold of 0.9 [35,41,42,73]. 
Following this convention, solid elements or CIEs with damage values 
exceeding this threshold, considered as cracked elements, are isolated 
from each material phase of concrete. The contact between crack clus-
ters in mortar and aggregate is determined by the face-to-face contact of 
solid elements, while in the ITZ, it is determined by the edge-to-edge 
contact of zero-thickness CIEs. Our in-house algorithm for both con-
tact detection methods, which are implemented in MATLAB, follows the 
main workflow outlined below: 

(1) All cracked elements of each material phase are collected into a 
set, TE = {Ei|i = 1, 2, ..n}, where i is the element index. Each solid 
element or CIE can be represented using a 4 × 3 or 3 × 2 matrix, 
where each row contains node indices representing the face or 
edge of the element.

(2) We check whether any single element in TE is in contact with 
other elements. The contact criterion is defined as follows: any 
two solid elements (or CIEs) that share the same row of node 
indices are considered to be in face-to-face (or edge-to-edge 
contact).

(3) The connection elements are identified as clusters for different 
material phases.

Once the above processes are completed, each cluster size of mortar, 
Vf,m, ITZ, Sf,ITZ, or aggregate, Vf,a is determined by summing the volume 
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or area of elements within the same cluster. The normalisation is con-
ducted as Vnf,m = Vf,m/Vc, Snf,ITZ = Sf,ITZ/Sc, and Vnf,a = Vf,a/Vc, shown in 
Figs. 7 and 8.

For cases with spherical aggregates, cracks in the uniaxial test freely 
develop along inclined planes, forming distinct V-shaped branches that 
cross diagonally, particularly prominent in the mortar, as shown in 
Fig. 7(a). As observed in the comparison between Fig. 7(d-f) and Fig. 7
(a-c), differences in crack morphology between uniaxial and triaxial 
tests are primarily found in the mortar and ITZ, while negligible in the 
aggregate due to the minimal crack volume. With σL = 25 MPa, along the 
increased crack area in the ITZ, cracks in the mortar become less in-
clined and exhibit a more diffuse pattern, as shown in Fig. 7(d), due to 
the constraint on lateral deformation imposed by the confining pressure.

For the cases with realistic aggregate under triaxial loading, damage 
during the post-peak stage continues to intensify in the already affected 

local regions at or around the sharp corners or edges of aggregates, and 
propagates along these regions deeper into the aggregate, leading to the 
new cracks or the expansion of existing cracks into larger areas within 
aggregates. When ε1 = 0.009, as shown in Fig. 7(d-f), cracks in the ITZ 
are distributed in spatially dispersed clusters, while a considerable 
volume of cracks is observed within the aggregates. In contrast, as 
shown in Fig. 7(e-f) for cases with spherical aggregates, due to lower 
stress concentration, damage tends to be more uniform on the spherical 
surface, leading to spatially continuous and extensive cracks in the 
weakest phase—ITZ. In the strongest phase—aggregate, only a few local 
regions reach the critical damage threshold (i.e., 0.9) and form cracks.

PDF is plotted for the relative crack cluster size, which is evenly 
divided in logarithmic space. It is calculated based on the cluster counts 
within each bin width and provided in Fig. 8(a–c). The PDFs reveal that 
smaller relative crack cluster sizes occur more frequently in material 

Fig. 7. Crack patterns of mortar, ITZ and aggregate, where (a-c) are for the uniaxial test, (d-i) are for the triaxial tests with σL = 25MPa, (a-f) are for the sphere and 
(g-i) are for aggregates with Fd = 2.6, and three colours bars from left to right sequentially represent the relative size (i.e., area/volume) of crack cluster of mortar, Vnf, 

m, ITZ, Snf,ITZ and aggregate, Vnf,a.
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phases, as stress tends to concentrate more often in small local regions, 
making these areas more susceptible to damage. The relative total crack 
volume or area for mortar, Vntf,m, ITZ, Sntf,ITZ, and aggregate, Vntf,a, are 
computed by summing relative cluster sizes. Their variations with 
respect to σL are provided in Fig. 8(d–f). To explicitly describe the 
variation of the PDFs with confining pressure and aggregate shape, the 
lognormal fitting, fln(xs), is applied to effectively capture the overall 
trend of the PDF, as below: 

fln(xs) =
1

xsσs
̅̅̅̅̅̅
2π

√ exp
(

−
(Inxs − μs)

2

2σs
2

)

(28) 

M = exp
(

μs +
σs

2

2

)

, (29) 

where μs and σs are the fitting parameters of the lognormal fitting, xs is 
the random variable for the PDF, which can be replaced by Vnf,m, Snf,ITZ 
and Vf,a. The analysis of the PDF based on this fitting uses Eq. (29) to 

calculate its mean value, M, which can be replaced by Mm for mortar, 
MITZ for ITZ, and Ma for aggregate, as introduced in Fig. 8(g-i). This 
mean value of fitting is used to indicate the central tendency of the 
relative cluster size.

With increasing the confine pressure σL, the damage level in mortar, 
Vntf,m, in Fig. 8(d) shows a nearly continuous decrease, whilst Sntf,ITZ and 
Vntf,a in Fig. 8(e) and (f), respectively, exhibit different trends in 
response to σL. We note that, compared to the uniaxial test, low 
confining pressures (e.g., 5 MPa) can even cause increases in damage 
levels in ITZ and aggregates, Sntf,ITZ and Vntf,a, because the lateral 
constraint is insufficient to prevent fracture initiation or propagation in 
both material phases, driven by intensified overall stress. Nevertheless, 
confining pressure can restrict the growth direction of cracks, making 
them more likely to be confined to localised areas and resulting in 
smaller crack clusters, as evidenced by the reductions in MITZ and Ma in 
Fig. 8(h) and (i), respectively, in contrast to uniaxial test, where crack 
can freely develop. As σL increases beyond 5 MPa, damage levels in 

Fig. 8. (a–c) Probability distributions of relative size of crack clusters of mortar, ITZ and aggregate, maker shapes for data point follow the legend in (d), legends in 
(a) for lognormal fittings is also used for (b-c), (d-f) variations in relative total crack volume/area of mortar, ITZ and aggregate with respect to σL, all using the legends 
from (d), and (g-i) variations in mean value of lognormal fittings to PDF for mortar, ITZ and aggregate with respect to σL, all using the legends from (g).
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mortar and aggregates, Vntf,m and Vntf,a in Fig. 8(d) and (f), respectively, 
progressively decrease. This is because the greater lateral constraint 
becomes more dominant, restraining deformation in the axial loading 
direction and potential shear failure. This significantly increases the 
strength required for material fracture, reducing the regions of experi-
ence severe damage. However, although the strength of the ITZ im-
proves with higher σL, as described in the material model, it remains the 
weakest phase and is still the most susceptible to cracking. Therefore, 
Sntf,ITZ is not significantly inhibited for increasing level of confine pres-
sure, as shown in Fig. 8(e).

Among all material phases, the mortar phase, Vntf,m and Mm as shown 
in Fig. 8(d) and (g), respectively, exhibits similar damage behaviour for 
different aggregate shapes, reflecting the universality of crack properties 
in mortar across varying confining pressures. The dependencies of Sntf,ITZ 
and Vntf,a on aggregate shapes are evident through their competition as 
Fd increases. Although the decrease in Vntf,a with increasing σL, as shown 
in Fig. 8(f), makes this competition less pronounced, it remains universal 
under varying confining pressures. This also indicates that higher level 
of stress concentration induced by rougher aggregates, whether in uni-
axial tests or amplified in triaxial tests, persists during the post-peak 
regime and continues to promote the fracture propagation from the 
ITZ to aggregates. The mean of cracked region sizes, MITZ and Ma as 
shown in Fig. 8(h) and (i), respectively, exhibit no significant variation 
with increasing σL but still generally display universal competition be-
tween two material phases. This suggests that, in the case of rougher 
aggregates under confining pressures, cracking in the ITZ is constrained 
to propagate in smaller and more localised areas, leading to the more 
frequent formation of smaller clusters. When promoting fracture prop-
agation into aggregates, higher stress concentration can also expand the 
fractured area within the aggregates, increasing the likelihood of 
forming larger crack clusters.

4. Conclusion

In this paper, the triaxial fracture behaviour of concrete, which 
contains aggregates with realistic shapes, is studied using mesoscale 
modelling based on the finite element method. The effect of aggregate 
shape on the macro strength of concrete under varying confining pres-
sures is specifically investigated, with a focus on exploring the under-
lying microscopic information from the local response of concrete. These 
micromechanical features, such as distribution and evolution of stress, 
local damage, and crack clusters, are analysed to illustrate the univer-
sality observed in macroscopic mechanical responses.

Rougher aggregates lead to higher compressive strength of concrete, 
and this effect becomes more pronounced under higher confining pres-
sure. The relation between confining pressure and normalised 
compressive strength for all aggregate shapes can be describe by the 
scaling law with only a single fitting parameter. It is found that the 
universal law in the triaxial loading regime relies on uniaxial responses, 
which are strongly dependent on the aggregate shape.

At the initial loading stage, rougher aggregates induce higher 
concentrated stress within the adjacent mortar phase, resulting in a 
significant difference in the heterogeneity of stress across samples with 
different aggregate shapes. As the loading increases toward compressive 
strength, this heterogeneity becomes universal across varying confining 
pressures. Confining pressure amplifies the stress concentration effects 
caused by rougher aggregates, further promoting fracture propagation 
from the ITZ into the aggregates and resulting in greater concrete 
strength. The competition among damage evolution in concrete phases 
across varying confining pressures allows the effects of aggregate shape 
on concrete strength to be reflected from triaxial to uniaxial tests and 
enables the scaling law to include the shape effects through normal-
isation while predicting concrete strength under confining pressure. The 
competition between the ITZ and aggregates also extends to crack and 
damage evolutions, illustrating that shape-induced stress concentration 
effects on fracture propagation from the ITZ to aggregates persist even in 

the post-peak regime. Under confining pressures, the competition in 
terms of crack clusters indicates that, for rougher aggregates, the ITZ 
tends to fracture into smaller clusters, while higher stress concentrations 
can expand the fractured zones within the aggregates, leading to larger 
fracture clusters.

In summary, the role of aggregate shapes on fracture behaviour of 
concrete under triaxial stresses has been comprehensively understood 
by examining local responses within the material phases. It provides a 
valuable insight for practical engineering applications, especially in 
concrete mixture design, where shape irregularity of aggregate associ-
ated with concrete strength and damage should be carefully considered. 
Our mesoscale model can be improved for future research to consider 
more complex multiaxial stress conditions, i.e., σ1 > σ2 > σ3, as well as 
cases with mix-sized aggregates.
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