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H I G H L I G H T S

• A framework for assessing I-CAES performance in deep aquifers is developed.
• The uncertainty within the geologic formation is included in the framework.
• High permeable deep aquifers have long-term large storage and efficiency.
• The best round-trip efficiency of 67 % is higher than 50 % of the existing D-CAES.
• Potential storage capacity in Gippsland Basin ranges from 0.88 to 1.48 TWh.
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A B S T R A C T

Intermittent renewable energy sources such as wind and solar energy require large-scale energy storage systems 
to balance electricity production and demand. Near-isothermal compressed air energy storage (I-CAES) in 
aquifers can be a choice for large-scale energy storage with minimal greenhouse gas emissions. Since there is no 
existing commercial I-CAES in aquifers and field tests are limited, a numerical investigation is often the only 
pathway for assessing the technical feasibility and performance while addressing the challenges related to 
geological uncertainties. The novelty of this study lies in the development of a new framework for assessing the 
performance of I-CAES based on a coupled surface plant-wellbore-reservoir 3D model in conjunction with ma
chine learning and uncertainty analysis. After conducting a geostatistical analysis with adopting the existing 
geological database, the feasibility of the I-CAES in aquifer is investigated using Gippsland Basin in Southeastern 
Australia as a case study. With the proposed framework, this study not only reveals the physical characteristics of 
a full process of the I-CAES but also assesses its feasibility under geological uncertainties. Results show that the 
round-trip efficiency of the I-CAES system can reach up to 67 % in highly permeable regions with no need of fuel 
combustion. It is also found that aquifer depth and permeability are the most significant geological factors 
affecting the output power and round-trip efficiency. The uncertainty analysis indicates that the daily storage 
potential in Gippsland Basin is found to range from 0.88 to 1.48 TWh with a corresponding probability of from 
90 % to 10 %, which is equivalent to 116 %–181 % of the daily Australian electricity consumption in 2023. It is 
also demonstrated that there is no need of reheating expanded air with the proposed near-isothermal machinery, 
which is significantly advantageous than the conventional diabatic-CAES.

1. Introduction

The use of renewable energy sources such as wind and solar energy 
has been growing rapidly to reduce the reliance on traditional power 
sources such as fossil fuel. However, the balance between the 

intermittent generation of renewable energy and variation in electricity 
demand can pose significant challenges (Guo et al., 2021; Ziegler et al., 
2019). According to the Australian Energy Market Operator (AEMO), 
the overall electricity demand in summer was 11 % higher than that in 
winter in 2024, and the peak demand during a day could be more than 
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150 % of that in off-peak hours (AEMO, 2024). Therefore, grid-scale 
energy storage systems, which store surplus renewable energy for 
future demand could alleviate issues as well as improve the reliability 
and efficiency of energy supply. In terms of the form of energy storage, 
existing energy storage systems mainly include electrical energy storage 
(such as batteries and superconducting magnetic energy storage), ther
mal energy storage (such as phase-change material thermal storage) and 
mechanical energy storage (such as pumped-hydro energy storage). 
Among all types of existing energy storage systems, compressed air en
ergy storage (CAES) is a promising technology considering its cost 
effectiveness, low green-house gas emission, as well as flexibility for 
longer duration and larger capacity. While the conventional battery 
storage systems provide short-duration storage with the discharge 
period up to 4 h (Denholm and Mai, 2019), a CAES system allows daily, 
weekly or even seasonal cycles to flexibly meet different grid-scale re
quirements (Bennett et al., 2022; Mouli-Castillo et al., 2019; Yang et al., 
2020).

Generally, a CAES system stores surplus energy in the form of me
chanical energy within the compressed air in underground formations. 
During high demand periods, the stored air is released and expanded 
through a turbine to generate power (Hounslow et al., 1998; Mahmoud 
et al., 2020; Tong et al., 2021). One of the main challenges for operating 
a CAES is to manage the extra high and low air temperatures during 
compression and expansion stages (Guo et al., 2021). Based on the 
technologies with regard to controlling the thermodynamic cycle of air, 
CAES systems can be classified into three categories: diabatic CAES 
(D-CAES), adiabatic CAES (A-CAES) and isothermal CAES (I-CAES) 
systems (King et al., 2021; Mahmoud et al., 2020; Tong et al., 2021). 
D-CAES is the traditional technology which requires fuel combustion to 
reheat the air during expansion (Guo et al., 2021). The main limitation 
for D-CAES is the significant amount of heat generated and lost during 
air compression (Elio et al., 2021). Furthermore, the extra combustion of 
fossil fuels not only results in a lower round-trip efficiency but also 
contradicts the goal of reducing green-house gas emissions. A-CAES and 
I-CAES can better mitigate the issues of the significant air temperature 
fluctuations during compression and expansion, as well as improving the 
round-trip efficiency with reduced thermal loss (Ghorbani et al., 2020; 
Yu et al., 2022; Zhou et al., 2020). A-CAES systems are coupled with 
storage systems for the extra thermal energy generated from air 
compression, which can then be used to reheat the air during the 
expansion phase (Zhou et al., 2019). While the efficiency can be 
significantly increased and the fuel combustion can be almost or fully 
avoided, the high temperature of the exhaust air is a potential drawback 
(Guo et al., 2021). Different from D-CAES and A-CAES, a 
near-isothermal process can be achieved using I-CAES systems, where 
the heat transfer enhancement such as liquid piston is used 
(Cheekatamarla et al., 2022; Li et al., 2023a; Qin and Loth, 2014).

Based on the type of storage reservoir, compressed air can be stored 
within salt caverns or porous media such as depleted gas reservoirs and 
aquifers (Guo et al., 2021; King et al., 2021). Salt caverns are safe and 
reliable for CAES while providing significant storage volumes. However, 
the natural salt caverns are not widely distributed and are usually far 
away from electricity grids. Porous reservoirs especially aquifers are 
much more widespread with larger capacity for potential air storage 
(Zhong et al., 2024). For example, highly pervious aquifers are widely 
distributed in Australia, e.g., the Otway basin in South Australia and 
Gippsland basin in Victoria (O’Brien et al., 2008; Vidal-Gilbert et al., 
2010).

Due to the mentioned advantages, CAES systems have been devel
oped around the world. For example, there are two commercial CAES 
plants, Huntorf, Germany and McIntosh, USA and both are D-CAES with 
air stored in salt caverns. There are also CAES projects in China, such as 
the A-CAES in salt caverns in Jintan and Feicheng (Tong et al., 2021). 
However, CAES in aquifers are still limited, and there is no commercial 
CAES plants in aquifers with either adiabatic or isothermal cycles. The 
Pittsfield test performed in the US in 1981 is regarded as the only 

demonstration of the feasibility of CAES in aquifers (Allen et al., 1985). 
Moreover, a project was planned for developing a D-CAES in aquifer in 
Iowa, but ceased in 2013 due to geological and economic challenges 
(Schulte et al., 2012).

The performance of CAES in aquifers has been numerically investi
gated in recent years. Kushnir et al. (2010) proposed an approximate 
analytical solution for a representative case in which the water coning 
problem was identified as critical to control the air production. One 
advanced numerical study on CAES in aquifers was carried out by 
Oldenberg and Pan (Oldenburg and Pan, 2013a), who developed 2-D 
numerical models based on TOUGH2 to study the essence of CAES in 
porous media in terms of the capability of pore space, round-trip effi
ciency, effect of pressure and water movements. In addition, the effect of 
various cycle modes was numerically investigated, such as the com
parison of daily, weekly and monthly cycles for CAES in aquifers (Allen 
et al., 1983; Yang et al., 2020), and the investigation of seasonal cycles 
for CAES in aquifers (Li et al., 2023b; Mouli-Castillo et al., 2019). Some 
research was extended to study the effect of different gas medias. For 
example, Oldenburg and Pan (2013b) studied the use of CO2 as cushion 
gas in CAES in aquifers, and Li et al. (2022) compared the performance 
of systems using pure CO2 and pure air. Due to the computational cost, 
most existing numerical studies focused on a single CAES site with one 
well or several wells, and the size of reservoir in these studies ranged 
from 3 km to 16 km (Li et al., 2022; Oldenburg and Pan, 2013b; Wang 
and Bauer, 2017). Aquifers usually extend to hundreds of kilometres 
requiring hundreds of or even thousands of wells. It is, therefore, 
important to estimate the overall storage potential of CAES to meet the 
significant electricity demand instead of focusing on smaller regions. 
Accordingly, there is a need to conduct a systematic assessment for the 
I-CAES in regional scale to quantify its performance and identify suitable 
areas. Also, a gap exists between the need for regional-scale assessment 
and relatively small scale of existing numerical studies. In addition, the 
complexity of subsurface conditions is always crucial for geological 
analysis (Fukai et al., 2020). Therefore, it is necessary to develop a 
systematic method for assessing regional-scale I-CAES with probability 
evaluation for geological uncertainties.

This research aims to develop an integrated framework to numeri
cally investigate the performance of a proposed near-isothermal CAES 
system and assess its technical feasibility at regional scale with the 
consideration of geological uncertainties. As a result, the current 
research gap between the need for regional-scale assessment and the 
existing small scale numerical studies can be addressed. In this study, an 
integrated method is developed to evaluate the storage potential of I- 
CAES systems at a regional scale. The storage potential for I-CAES in 
Gippsland Basin in south-east Australia is used as a case study. The 
highly pervious Latrobe aquifer widely distributed within Gippsland 
Basin could provide enormous potential for large-scale air storage. The 
site was identified to have both impervious caprock and base rock to 
constrain the injected air. According to the Department of Climate 
Change, Energy, the Environment and Water (DCCEEW), a 25 GW 
offshore wind farm is under development (DCCEEW, 2024), which 
presents a unique opportunity to combine the proposed I-CAES with 
surplus wind energy. The performance of a single I-CAES site is first 
studied with an integrated framework, which consists of a reservoir 
model, a well model and a thermodynamic analysis for the surface 
plants. The obtained numerical results investigate the relationship be
tween I-CAES performance (including output power and round-trip ef
ficiency) and all parameters from underground reservoir, wells and 
surface plants. To investigate the influence of geological uncertainties 
on I-CAES performance, Monte Carlo (MC) analysis is deployed to 
consider the uncertainties of physical parameters in the underground 
reservoir. The MC analysis is combined with a machine learning (ML) 
model or a surrogate model trained with the numerical results. After 
obtaining the full spatial distribution of all parameters based on the 
existing geological dataset in Gippsland Basin, the trained machine 
learning model is applied for uncertainty analysis using Monte Carlo 
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sampling of all parameters.

2. Methodology

The integrated framework proposed in this study combines numer
ical modelling, machine learning and uncertainty analysis to investigate 
the performance of I-CAES and its technical feasibility at regional scale. 
The open-source code Matlab Reservoir Simulation Toolbox (MRST) was 
used for reservoir modelling (Lie, 2019), while a Gaussian Process 
Regression model was used as the machine learning model. Firstly, a 
conceptual I-CAES with heat enhancement machinery is proposed. The 
Central Deep area within Gippsland Basin in southeastern Australia is 
taken as a case study. The entire daily cycle of each I-CAES grid is 
analysed by modelling reservoir, wells and surface plants. The machine 
learning, which is trained by the numerical results, is then used as a 
proxy model. Finally, an overall uncertainty analysis using Monte Carlo 
approach is used for estimating the overall storage potential of the study 
region. The detail of each step is explained in the remaining content in 
this section.

2.1. Conceptual model

The schematic illustration of the proposed conceptual I-CAES system 
is shown in Fig. 1, which is composed of three parts: 1) a pervious 
aquifer sealed with impermeable cap and bottom rocks; 2) a well for air 
injection and production; and 3) surface plants with heat transfer 
enhancement machinery to achieve near-isothermal compression and 
expansion. With the use of isothermal machinery, the temperature 
change during compression and expansion can be significantly reduced 
so there will be minimal need to include any combustor for reheating air 
during production. The proposed I-CAES also cooperates with wind 
energy, since the selected area is co-located with a potential 25 GW 
offshore wind farm which is expected to be finished in early 2030 
(DCCEEW, 2024).

The workflow of this study is shown in Fig. 2. First, the Gippsland 
Basin located in southeastern Australia was selected as the study area 
with reference to all related geological information (namely, aquifer 
thickness, depth, permeability and porosity). To understand the physical 
mechanisms and critical parameters which dominate the performance of 
the I-CAES, we then used numerical and analytical models to analyse a 
single system with an injection/production well located at the centre of 
a 2 km × 2 km grid. A sensitivity study was also performed based upon 
256 models, where representative values of all four geological param
eters were chosen. Next, the results from parametric study from I-CAES 
modelling with varying parameters were used for training the ML model. 

This model was able to predict I-CAES performance for any value of 
geological parameters within the range, which was further used in the 
uncertainty analysis. Furthermore, geostatistical analysis using Kriging 
method (Hohn, 1999) was conducted based on the geological database 
of Gippsland basin to obtain the spatial distribution of four geological 
parameters. Finally, the trained ML model as a surrogate of the I-CAES 
modelling coupled with the geological data was used for estimating the 
storage potential of the whole region including the uncertainty analysis.

2.2. Site selection

The Gippsland Basin located in southeastern Australia is selected for 
this study. The highly permeable aquifer, named Latrobe aquifer, is 
widely distributed here with the total area of approximately 45,000 km2 

(Malek, 1998; O’Brien et al., 2008; Varma et al., 2010). The thickness of 
Latrobe aquifer ranges from 100 m up to 2500 m within the Central Deep 
area, which provides significant potential for large-scale CAES systems. 
In addition, the permeable Latrobe aquifers are beneath the impervious 
Lakes Entrance aquitard (as shown in Fig. 3) and above the Strzelecki 

Fig. 1. Schematic illustration of a conceptual I-CAES system in an aquifer 
(note: the red box with dashed line indicates the isothermal cycle for air 
compression and expansion).

Fig. 2. Flowchart of the overall process to analyse the performance of proposed 
I-CAES and its application for utility-scale storage assessment.

Fig. 3. Location map of Gippsland basin with Lakes Entrance Formation (top 
seal rock) thickness and depth of top aquifer (O’Brien et al., 2008). The black 
box marks the region of interest investigated in this study.
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aquitard in most areas, of which the structure can provide sufficient top 
and bottom constrains for air storage. This study focuses on the Central 
Deep area with a size of 200 km× 108 km, not only because the Latrobe 
aquifer within this area is thicker with higher storage potential, but also 
because there are existing gas/oil production wells which could be 
further used for CAES. Furthermore, from an economic point of view, 
this area is closer to the potential offshore wind farm (DCCEEW, 2024).

2.3. I-CAES system model

To quantitatively investigate the performance of an entire process of 
I-CAES in aquifer, a single I-CAES system is selected to perform the 
numerical simulations. The grid for a single system was sized as 2 km×

2 km, and the entire study area was divided into 5400 grids. The system 
size was determined with considering the amount of cushion gas, the 
maximum flow rate for the well and the maximum injection pressure. 
The analysis of the single complete I-CAES system is divided into three 
parts. First, a 3-D numerical model for the underground reservoir was 
built to simulate the pressure distribution and air plume evolution 
within the reservoir. Next, an analytical model was created for the in
jection/production well to address the pressure and temperature loss 
within the wells. Finally, a thermodynamic analysis for near-isothermal 
process within surface plants was conducted to obtain input and output 
powers, and the overall round-trip efficiency was also calculated 
accordingly.

2.3.1. Reservoir model
MRST was used for the numerical simulations of reservoir in this 

study (Lie, 2019; Lie and Møyner, 2021). The Black-Oil module was 
adopted for analysing the system with up to three phases in a porous 
medium. The general form of mass conservation equation for an arbi
trary domain Ω with boundary Ω , which is solved by MRST, can be 
written as (Lie, 2019): 

∂
∂t

∫

Ω
ϕραSα dΩ +

∫

∂Ω
ραvα
→⋅ n→ ds =

∫

Ω
qα dΩ, (1) 

where ϕ is the rock porosity, ρα is the density of the fluid component α, 
Sα is the saturation, vα

→ is the Darcy velocity, s is the surface on domain 
boundary ∂Ω, q is sinks and sources and n→ denotes the normal vector on 
surface ∂Ω.

The Darcy’s law for multiphase flow using the concept of relative 
permeability is written as (Lie, 2019; Muskat and Meres, 1936): 

vα = −
Kkrα

μα
(∇pα − ραg), (2) 

where vα is a vector of Darcy velocity of phase α, K is a tensor of absolute 
permeability, krα is the relative permeability of phase α, μα is the dy
namic viscosity, pα is the pressure, ρα is the density and g is the gravi
tational acceleration vector.

The Brook-Corey equation was used to describe the relationship 
between capillary pressure and saturation in the porous media. The 
capillary pressure and saturation relationship is mathematically 
described by (Corey, 1954; Lie, 2019):

The Brook-Corey equation was used to describe the relationship 
between capillary pressure and saturation in the porous media. The 
capillary pressure and saturation relationship is mathematically 
described by: 

Se =

(
Pc

Pe

)− λ

, (3) 

where Se is the effective saturation, Pc is capillary pressure, Pe is entry 
pressure at which gas starts to enter the largest pores, and λ is the pore 
size distribution index. The initial setting values of parameters for 
reservoir model are shown in Table 1.

The numerical model of the single I-CAES system with one injection/ 
production well at the centre, a representative flat reservoir grid size of 
2 km × 2 km × 220 m was taken. As shown in Fig. 4 (a), the thicknesses 
of the caprock, the aquifer and the base layer are 100 m, 100 m, and 20 
m respectively, while the isotropic permeabilities for these layers are 0.1 
mD, 1000 mD and 0.1 mD, respectively. The injection/production well 
located at the centre of the reservoir grid with the well bottom located at 
the interface between the caprock and the top aquifer. Horizontally, the 
reservoir grid was discretised into 39 × 39 cells with refined meshes 
(0.5 m × 0.5m) around the well and coarse mesh (100 m × 100 m) near 
the boundaries, as shown in Fig. 4(b). The model was vertically divided 
into 20 layers with the finest thickness of 5 m around the well bottom. 
The total number of elements was 26,163. A mesh convergence study 
was conducted, showing that the adopted mesh size could ensure the 
convergence and stability of the simulation. Using a uniform small 
horizontal size of 1 m for all elements and smaller refined vertical size 
around the well bottom would not significantly change the results.

It is assumed that the reservoir is initially saturated with water. 
Accordingly, the initial pressure distribution within the reservoir is 
equal to the hydrostatic pressure with 100 % water saturation. The top 
and bottom boundaries are set as closed boundaries with no flux. Since 
the model represents a single site surrounded by neighbouring sites 
(except for those grids located at the edges of the 200 km × 108 km 
region), it is acceptable that the lateral boundaries are defined as no-flux 
as the flows at the two sides of each lateral boundary compensate each 
other.

The two-phase flow (air-water) was simulated by considering air as a 
compressible phase and water as incompressible phase. The temperature 
of ambient air is 20 ◦C and the geothermal gradient is set as 34 ◦C/km 
(Malek, 1998). The process was assumed as isothermal given that the 
temperature of the compressed air is very close to the reservoir tem
perature by using the near-isothermal surface plants. Results from the 
literature also show that the temperature of air from the wellbore only 
affects the temperature of an extremely small range around the well 
bottom with the remaining domain of the reservoir nearly unaffected. 
For example, with a temperature difference of 20 ◦C between well and 
reservoir, the range of temperature influence is only about 10 m–20 m 
around the well (Li et al., 2020).

2.3.2. Well model
The well model is also an essential part of the modelling of a CAES as 

both the pressure and the heat losses within the injection/production 
wells can result in lower efficiencies. The analytical solution from 
Hagoort was applied for determining the well effects (Hagoort, 2005). 
The solution is based on the extended Bernoulli equation and the energy 
balance equation. The extended Bernoulli equation for a length element 
dy is shown below (Hagoort, 2005): 

dp +
Mg cos α

zR
p
T

dy +
2zfw2R
A2dhM

T
p

dy = 0, (4) 

Table 1 
Parameters of the aquifer and wells for the reservoir model.

Parameters Values

Grain density 2400 kg/m3

Relative permeability function Brook-Corey model (Muskat and Meres, 
1936)

Capillary pressure function Brook-Corey model (Muskat and Meres, 
1936)

Fitting parameter λ 0.5
Saturated liquid saturation 1.0
Residual liquid saturation 0.1
Residual gas saturation 0.05
Skin factor 1.0
Well diameter 0.3 m
Injection and production length of well 

bottom
3 m
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where p is the pressure, M is the molecular mass, g is the gravitational 
acceleration, α is the inclination of the well, z is the compressibility 
factor, R is the gas constant, T is the absolute temperature, y is the di
rection along the well, f is the Fanning friction factor which is an 
empirical function with regard to Reynolds number and wall roughness, 
w is the mass flow rate, A is the cross-sectional area of well and dh is the 
well diameter. The energy balance equation is written as follows 
(Hagoort, 2005): 

dH + Mg cos α dy = dQ, (5) 

where dH is the enthalpy change and Mg cos α dy is the potential energy 
change, while dQ is the heat being added to the gas flow.

2.3.3. Near-isothermal process for surface plants
After obtaining the well bottom pressures from the reservoir model 

and the well head pressures from the well model, the output power and 
the round-trip efficiency for an entire cycle was determined by the 
analysis of surface plants (a compressor and an expander). The analysis 
of near-isothermal process was based on the equations for polytropic 
process. The polytropic process is widely used for describing non-ideal 
gas behaviours between isothermal and adiabatic conditions. The gen
eral relation is written as: 

pVk = C, (6) 

where p is the pressure, V is the volume, k is the polytropic index and C is 
constant.

The output work from the expander is calculated as (Dib et al., 2021): 

W =
p2V2 − p1V1

1 − k
, (7) 

where subscripts 1 and 2 denote the conditions before and after the 
expansion. That is, p2 and V2 are the pressure and volume of air at the 
outlet of the expander, while p1 and V1 are of the pressure and volume of 
air at the inlet of the expander. The polytropic index k, also known as the 
specific heat capacity ratio, dominates the type of thermodynamic 
processes. It is 1.4 for adiabatic process and 1.0 for pure isothermal 
process (Cengel et al., 2020). From the literature, the polytropic index 
for existing near-isothermal machinery ranges from 1.04 to 1.21 
(Bennett et al., 2022; Patil et al., 2020; Zhang et al., 2018). Since the 
polytropic index of 1.04 can be achieved within the existing heat 
transfer enhancements this value was assumed in this study. The output 
power can be correspondingly calculated using the volumetric flow rate 
to replace the air volume in the equation. Then the outlet temperature is 
calculated using 

T2 =

(
p2

p1

)1− k
k

T1, (8) 

where T2 and T1 are the outlet and inlet air temperatures for either 
compressor or expander, respectively. Knowing the air temperature and 
pressure at the inlet of the compressor, equations (4) and (5) can also be 
used for the compression stage to obtain the power and temperature at 
the outlet of the compressor after the compression. Accordingly, the 
polytropic index, pressures at the inlet and outlet of compressors and 
expanders, will influence the behaviour of surface plants. As shown in 
Eqs. (7) and (8), the polytropic index k is the major parameter influ
encing the process. A smaller k being close to 1 could increase the work 
generated, as well as decreasing the temperature difference of T1 and T2. 
The pressure difference between p1 and p2 also has impacts on the outlet 
temperature T2. Then the round-trip efficiency (RTE) of an entire cycle 
can be calculated accordingly. The RTE is defined as the ratio of total 
produced energy at the outlet of the expander to the total injected en
ergy at the inlet of the compressor, and is mathematically described as: 

ηRTE =
Wprod

Winj
ηcompηexp, (9) 

where Wprod and Winj are the output energy and input energy during 
production and injection phases, while ηcomp and ηexp are the mechanical 
efficiencies of the compressor and the expander which are assumed to be 
both 85 % in this study.

2.4. Uncertainty analysis

The results from the I-CAES model were then used to investigate the 
overall performance of Gippsland Basin with uncertainty analysis. Pre
dictive machine learning models trained by numerical results were 
applied for the uncertainty analysis. The full geological map of the entire 
studied area was obtained by geostatistical analysis, where limited in
formation from gas/oil fields were used for estimating the geological 
properties of all 2 km × 2 km grids. Finally, Monte Carlo approach was 
applied for addressing geological uncertainties, and the overall storage 
potential with various probability was obtained.

2.4.1. Predictive machine-learning model
To reduce the computational cost, predictive machine learning (ML) 

models were trained and applied for predicting the relationships be
tween the dependant variables (output power and round-trip efficiency) 
and predictors (permeability, porosity, aquifer depth and thickness, 
which are the key geological parameters identified above). The Gaussian 

Fig. 4. Numerical setup for a single I-CAES system in aquifer: (a) 3-D illustration of system size with vertical distribution of permeability; and (b) domain 
discretisation.
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Process Regression (GPR) model was used, which is nonparametric and 
kernel-based probabilistic. The nonisotropic Matern 3/2 kernel function 
was adopted. The type of kernel function was tuned as main hyper
parameter in this study, which was optimised by Bayesian optimization.

2.4.2. Geostatistical analysis: Kriging method
The main challenge for modelling reservoir is associated with the 

complexity of a geological formation and the limited information of data 
from core logging. There are 32 gas/oil fields within the Central Deep 
area of Gippsland Basin, where the geological data is known from the 
geologic samples. To obtain the full maps of all geological parameters, 
the Kriging method was used for the spatial interpolation. Kriging is a 
regression algorithm for spatial modelling and prediction of random 
processes/random fields based on covariance functions. The interpola
tion accuracy of the Kriging model was assessed by performing leave- 
one-out cross-validation (LOOCV), where all data points except one 
were iteratively trained until all points were validated. The mean ab
solute error (MAE) and the coefficient of determination (R2) values were 
used to measure the predictive accuracy. The general form of the Kriging 
method is written as: 

Ẑ(s0) =
∑N

i=1
λiZ(si), (10) 

where s is the coordinates representing a location in the spatial domain, 
Z(si) is the value measured at the location i, λi is the weight of the 
measured value which depends on not only the spatial relationship be
tween the measurement points but also the prediction point as well as 
the spatial relationship within a certain range (Ricciardi et al., 2005).

2.4.3. Monte Carlo analysis
With the Kriging method, the full map of all geological parameters 

can be generated with representative values at each single CAES site. To 
further address the uncertainty within the geologic formation, each 
geological parameter was then represented by a distribution. Here the 
distribution of parameters is based on the available characterisation of 
the Latrobe aquifer in the Gippsland Basin from Hurter et al. (2013), in 
which the authors used a normal distribution for porosity and depth, and 
a lognormal distribution for permeability and thickness. We performed 
100 iterations for each CAES grid. The number of Monte Carlo iterations 
was determined by the standard deviation threshold. The simulation 
was determined to be converged when the standard deviation is less 
than 0.1 %. With the distribution of all four parameters defined, the 
predictive ML model was applied to perform the Monte Carlo analysis 
for output power and round-trip efficiency.

2.4.4. Section 2.5 cost estimates
Cost estimates of the proposed I-CAES system were calculated using 

the levelised cost of electricity (LCOE) (Matos et al., 2023), which is 
represented by 

LCOE =

∑n

t=1

Wt + Tt + Ct + Mt

(1 + r)t

∑n

t=1

Et

(1 + r)t

, (11)

where subscript t is the year, Wt is the initial cost of well drilling, Tt and 
Ct are the capital cost of the turbine (expander) and the compressor, Mt 
is the operation and maintenance (O&M) cost, Et is the generated 
electricity and r is the discount rate.

3. Modelling of a single I-CAES

In this section, the results from the modelling of a single I-CAES grid 
are included. The modelling consists of three components: a reservoir 
model, injection/production well model and surface plant model. With 

these three models, the temperature and pressure change within the 
entire daily cycle can be generated, as well as the overall round-trip 
efficiency indicating the performance of the proposed I-CAES. All rele
vant results are presented within the remaining contents of this section.

3.1. Pressure performance and gas saturation in aquifer

The base model was designed based on the geological dataset with 
adjusted flow rates. Permeability, porosity, aquifer depth and aquifer 
thickness were identified as the four crucial parameters in reservoir 
modelling. Based on the range of all four parameters as well as their 
distributions in Gippsland Basin, the permeability, porosity, aquifer 
depth and aquifer thickness for the base model were set as 1000 mD, 17 
%, 1500 m and 100 m respectively. To be representative, the values of 
the former two parameters were taken as middle values within the 
range, while the latter two were chosen using the most distributed 
values within the region. The mass flow rate of air injection and pro
duction was 40 kg/s, which was determined with the consideration of 
the maximum injection pressure, stabilisation of production pressure 
and well capacity. From the literature, the cushion gas ranged from 10 to 
100 times of the working cycle gas (Guo et al., 2021). Therefore, an 
initial air bubble with mass being 40 times of working gas was selected, 
which is sufficient for providing pressure support for minimising water 
coning while the maximum pressure in the reservoir is still under the 
limit state. Accordingly, the injection of cushion gas is at flow rate of 40 
kg/s for 20 days, followed by 100 daily cycles with 12 h injection and 12 
h production. It was observed that the injection and production be
haviours tend to be stable after 100 cycles for all cases with their 
permeability no smaller than 1000 mD.

Fig. 5(a)–(c) show the development of air bubble after cushion gas 
injection and after 100 daily cycles. The cross section at middle (i.e. at Y 
= 0 m) is taken for all figures in Fig. 5. Initially, the air bubble forms a 
cone shape around the well bottom with horizontal extension of about 
400 m at each side and maximum thickness of about 50 m. After 100 
cycles, the air bubble tends to float up to the interface between top 
aquifer and cap rock. The corresponding profiles of pressure distribution 
are shown in Fig. 5(d)–(f). The region around the well bottom has a 
sharp pressure increase after cushion gas injection, and the size of hor
izontal extension of pressure increase area is similar to the air bubble. 
The pressure distribution smears after the operation of a few cycles, and 
the pressure around the well decreases to maintain the constant 
production.

To better monitor the pressure performance, the well bottom pres
sure during the cycle operations was extracted in Fig. 6. The injection 
pressure remained almost stable among all cycles, with a value close to 
21.0 MPa. The production pressure dropped to 20.4 MPa after the first 
cycle. With the continuation of cycles, the production pressure initially 
decreased quickly and then gradually stabilised at around 18.2 MPa. The 
movement of air bubble results in the reduction of air around the well 
bottom, and the lack of air below the well bottom requires a larger 
pressure difference between reservoir and well bottom to extract the air.

3.2. Losses in injection/production wells

With the bottom hole pressures obtained from the reservoir model, 
the well head pressures as well as the temperature loss for both injection 
and production were calculated from the well model by considering 
friction losses, heat loss from well wall and gravity effects. The results of 
the sensitivity analysis for the well model are shown in Fig. 7, where the 
effects of flow rate, well diameter and length on well head pressures are 
shown under the bottom hole pressure of 18.2 MPa for the base model. A 
noticeable pressure drop was observed for the cases with well diameter 
of 0.15 m. The pressure drops also increased with the well length. With 
the range of the flow rates in this study, the well head pressures for the 
cases with diameters of 0.3 m and 0.45 m were found to be almost 
identical. Therefore, diameter of 0.3 m was selected, which also aligns 
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Fig. 5. Numerical results of base model for air saturation profile: (a) after injection of cushion gas; (b) after the last injection; and (c) after the last production cycle. 
Simulated pore pressure distribution profile (d) after injection of cushion gas, (e) after the last injection and (f) after the last production cycle. (All profiles are at the 
cross section of Y = 0 m).

Fig. 6. Numerical results of well bottom hole pressure from the base model in (a) 0–100 cycles, and (b) 90–100 cycles.
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with the size of most existing gas wells. Then the injection and pro
duction well head pressures for the base model were 20.0 MPa and 16.4 
MPa respectively. On the other hand, the temperature loss within the 
well was relatively reduced compared with the cases with well diameter 
of 0.15 m. As shown in Fig. 8(a), the temperature losses within the well 
for the base model are 3 K and 2 K for injection and production 
respectively.

3.3. Near-isothermal process and entire cycle performance

With the available well head pressures and temperatures for both 
injection and production phases, the energy and round-trip efficiency 
could be determined with the thermodynamic analysis of the near- 
isothermal surface plants. Taking the base model as an example 
(Fig. 8(a)), the inlet pressure and temperature for the expander were 
18.1 MPa and 346 K (which equals the reservoir temperature), respec
tively. Assuming the ambient air with the pressure of 0.1 MPa and the 
temperature of 293 K, the output power was calculated to be 20.5 MW 
based on Eq. (7). Furthermore, the outlet temperature was 283.6 K from 
Eq. (8). The temperature was satisfactory as it is slightly higher than the 
dew point of 283 K, which shows that the near-isothermal system can be 

successfully applied for the base model without the need of fuel com
bustion for air reheating. By using Eqs. (7) and (8) for the compressor, 
the input power was calculated as 24.0 MW, then the round-trip effi
ciency for the entire daily cycle for the base model was 61.9 %, as ob
tained from Eq. (9). All key results of an entire daily cycle from the base 
model are summarised in Fig. 8 (a). A sensitivity analysis was conducted 
to illustrate how the selected parameters impact the I-CAES performance 
in terms of output power and round-trip efficiency. A total of 256 cases 
were simulated using MRST, and the detail of all values of the four pa
rameters are shown in Table 2. The losses in the well and surface plants, 
the input and output powers and the round-trip efficiency for all 256 
cases were calculated accordingly. The results of the sensitivity analysis 
indicated the best scenario to be the reservoir with the aquifer depth, 
thickness, permeability and porosity of 2100 m, 100 m, 5000 mD and 
0.1, respectively. The impact of each geological parameter on I-CAES 
performance was measured by sensitivity index (SI), which is shown in 
Table 3. It can be seen that the output power is dominated by the aquifer 
depth, while both permeability and depth are major factors influencing 
the round-trip efficiency. The details of all relevant values within a 
whole cycle for the base model and the favourite model are reported in 
Fig. 8(b), and the round-trip efficiency was 67.3 %, which is much 
higher than that of two existing D-CAES sites (42 % and 54 % respec
tively) (Hounslow et al., 1998; Stys, 1983).

4. Uncertainty analysis: A case study of Gippsland Basin

The numerical results are then used for the storage potential 
assessment of the entire studied region under geological uncertainties. 

Fig. 7. Well head pressure in production well with different diameter and 
length versus flow rate for bottom hole pressure of 18.2 MPa.

Fig. 8. Summary of numerical results of the: (a) base; and (b) favourable scenarios. (Note: the non-bold and bold data indicate inputs and calculated results, 
respectively).

Table 2 
Parameters from Gippsland basin and values chosen for reservoir modelling, 
where the values in bold are for the base model.

Parameters Range from 
Gippsland Basin

Chosen values for sensitivity study in 
reservoir modelling

Permeability 100–5000 mD 100 mD, 1000 mD, 3000 mD, 5000 
mD

Porosity 10 %–30 % 10 %, 17 %, 23 %, 30 %
Depth of top 

aquifer
500–2000 m 600 m, 1100 m, 1600 m, 2100 m

Thickness of 
aquifer

100–2500 m 100 m, 900 m, 1700 m, 2500 m
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In this section, the machine learning models are first trained as the proxy 
model to replace simulation. Geostatistical analysis is then performed to 
estimate the geological parameters for the whole studied area. Finally, 
an uncertainty analysis using Monte Carlo approach is used for esti
mating the overall storage potential.

4.1. Acquisition of predictive machine learning model

Since it is time consuming to conduct the reservoir performance 
analysis using MRST for a new case with input parameters different from 
those in Table 2, predictive machine-learning models were developed 
next to establish the relations between the output power, round-trip 
efficiency and all relevant parameters within the I-CAES model for 
reducing the computational cost. Four reservoir parameters (porosity, 
permeability, aquifer depth and thickness) are identified as critical 
predictors in the ML models. Results from 256 cases in sensitivity 
analysis were used for training the ML models, where 30 % data points 
were used for training while 70 % were used for validation. The 
regression trends of ML models for both output power and round-trip 
efficiency are shown in Fig. 9. With the R2 values of 0.97 and 0.91 
respectively, the ML models can provide enough accuracy to predict the 
output power and round–trip efficiency in the range of all the parame
ters shown in Table 2.

4.2. Geological analysis: Spatial distribution of all parameters

The uncertainty analysis requires the regional permeability, 
porosity, depth and thickness maps for each zone with a single I-CAES 
system as an input for estimating the energy storage potential. The core 
data from 32 existing gas/oil fields are extracted for developing the full 
maps of all four reservoir parameters with a spatial interpolation using 
the Kriging method. The spatial distributions of four parameters within 
the Central Deep area in Gippsland Basin estimated by the ordinary 
Kriging method are shown in Fig. 10. The MAE and the R2 values for all 
four parameters are smaller than 1 % and larger than 0.96 respectively, 
which indicates a high level of predictive accuracy.

4.3. Uncertainty analysis: Estimation of overall storage potential and 
efficiency

The overall performance of the I-CAES system in the Central Deep 
area was assessed using a Monte Carlo approach. The values of all four 
reservoir parameters for each grid were obtained from the geostatistical 
analysis. The Monte Carlo sampling was then applied to represent each 
parameter as a distribution. With the Monte Carlo analysis, the uncer
tainty within the reservoir can be quantified, including the variance of 
depth (which results in potential variance of initial pressure distribu
tion) and thickness.

Besides of the mean values, the cumulative probability of 95 % and 
90 % was also used to present the results of uncertainty analysis for each 
single CAES grids. For example, the value with a cumulative probability 
of 90 % means that 90 % of the results are above this threshold. The 
results from the uncertainty analysis coupled with ML model for the 
distribution of output power across the Central Deep area are shown in 
Fig. 11, in which Fig. 11(a)and(b) represent the threshold values with a 
cumulative probability of 95 % and 90 %, respectively, and (c) shows the 
mean value. The value of the output power ranges significantly, with its 
mean value varying from 0 to 40 MW, with the highest power found at 
the southeastern region. Comparing with Fig. 10, this region overlaps 
with the deepest aquifers. Also, high output power with over 30 MW is 
observed within the middle south region where the aquifer has a high 
permeability, around 5000 mD. The results indicate that the aquifer 
depth is the most crucial parameter which positively dominates the 
output power, while permeability also entails an important contribu
tion. Similarly, Fig. 11(d)–(f) show the distribution of round-trip effi
ciency for the values with 95 % and 90 % cumulative probability and the 
mean value. The mean efficiency ranges from 34.7 % to 67.3 % with 
over 58 % area having the efficiency over 50 %. Higher efficiency values 
were observed within the middle south, southern-east and middle north 
regions. Permeability was the most significant parameter for the round- 
trip efficiency, as the middle south area has the highest efficiency where 
the reservoir has the most pervious aquifers. The northwestern region 
has the lowest output power due to shallower aquifer depth and smaller 
permeability, while lowest RTE is observed at the region around X = 50 
m, Y = 75 m due to extremely low permeability as well as shallow depth 
and thicker layers. Based on the results, the region with high perme
ability and deeper aquifer is optimal for site selection. Smaller thickness 
within the range of this study is also beneficial for increasing the round- 
trip efficiency.

Based on the results of power distribution, the overall storage po
tential of the study area for a daily cycle with 12h injection and 12h 

Table 3 
Sensitivity index (SI) for output power and round-trip efficiency from the 
sensitivity study.

Permeability Porosity Depth Thickness

Output power 0.19 0.03 0.69 0.09
RTE 0.37 0.12 0.38 0.13

Fig. 9. Results from machine learning being trained by numerical results for: (a) output power; and (b) round-trip efficiency.
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production versus the cumulative probability is calculated and sum
marised in Fig. 12. It is worth noting that the probability in Fig. 12
represents the probability of the total storage potential being larger than 
the corresponding value. For example, the storage potential at 90 % 
probability is 0.88 TWh. The potential energy storage ranges from 0.88 

TWh (90 % cumulative probability) to 1.48 TWh (10 % probability) with 
a mean value of 1.18 TWh. Furthermore, the mean energy storage 
filtered by the round-trip efficiency is shown in Fig. 13. The overall 
storage potential of the sites with above any values of RTE can be 
visualised. For example, the mean overall storage potential for the RTE 

Fig. 10. Distribution of: (a) permeability; (b) porosity; (c) thickness; and (d) depth predicted through the geostatistical analysis using the ordinary Kriging method.

Fig. 11. Output power and round-trip efficiency map for the near-isothermal CAES in the Central Deep area with various confidence levels based on Monte Carlo 
analysis. Output power map with: (a) 95 % cumulative probability; (b) 90 % cumulative probability; and (c) mean value. Round-trip efficiency map with: (d) 95 % 
cumulative probability; (e) 90 % cumulative probability; and (f) mean value.
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of 50 % is about 0.97 TWh, which means that the sites with the RTE 
being over 50 % can provide an energy storage of 0.97 TWh. About 0.9 
TWh can be provided by the area with the efficiency over 50 %, which 
indicates that most of the studied area is feasible for the proposed air 
storage. The lines representing the threshold of a cumulative probability 
of 95 % and 90 % are also represented in Fig. 13. The overall trends are 
similar with the potential storage dropping significantly at an RTE of 
approximately 45 %–50 %. The sites with an RTE over 50 % can still 
provide over 50 % of the energy storage regarding the overall potential. 
With Fig. 13, the overall storage potential of sites with any threshold of 
RTE can be obtained, and the mean storage as well as the values with 90 
% and 95 % probability are included. The results from the uncertainty 
analysis proves the feasibility of the proposed I-CAES in the studied area 
regarding not only the significant overall storage ability but also the 
high RTE for over half of the available sites.

4.4. Results of cost estimates

Based on the equations from Section 2.5, the LCOE of the base model 
is calculated as 0.11 US$/kWh. The capital cost of the compressor and 
the expander makes a major contribution to the LCOE, while the effect of 
well cost and O&M cost is relatively modest. In addition, there are over 
400 existing gas/oil production wells throughout the Central Deep area 
of Gippsland Basin (Malek, 1998), and over 90 % of them are potentially 
satisfactory for being reused at minimum retrofitting costs. Further
more, the LCOE of all I-CAES grids within the studied area is calculated 
using the mean value of all the geological parameters. As shown in 
Fig. 14, the calculated LCOE within the region ranges from 0.04 US 

$/kWh to 0.14 US$/kWh.

5. Discussions and conclusions

In this study, an integrated method was developed to assess the 
performance of near-isothermal CAES system in aquifers. The study 
showed the significant capacity and promising features of the near- 
isothermal CAES in aquifers for utility-scale energy storage. Widely 
distributed aquifers provide significant underground storage for com
pressed air without occupying land surface. The storage potential of 1.18 
TWh was estimated for Gippsland Basin alone, which is more than two 
times of the existing pumped hydro storage (0.553 TWh) and about 47 
times of largest battery storage in Australia (2.4 GWh). Moreover, while 
the production duration of these energy storage systems is up to hours (e. 
g., up to 4 h and 12 h for battery and pumped hydro systems respec
tively), CAES is capable of providing daily cycles and potentially weekly 
or even seasonal cycles for storage options.

Regarding the technology of CAES, results also showed that the I- 
CAES to be more advantageous than the traditional D-CAES. By the 
modelling of a single I-CAES system, it was found that aquifers with 
proper geological conditions are feasible for developing CAES. The 
highest round-trip efficiency could reach 67.3 %, which is higher than 
that of the traditional D-CAES systems around 50 % (Guo et al., 2021; 
Hounslow et al., 1998). The temperature of the output air for most areas 
in the Gippsland Basin would be higher than the dew point, which in
dicates that there is almost no need to reheat air with fuel combustion. 
Additionally, this also leads to a higher round-trip efficiency. Among all 
the parameters for underground reservoir, permeability and aquifer 
depth were identified as the most crucial ones to impact the performance 
of I-CAES, while the former parameter is more dominant for the output 
power and the latter has more impact on the round-trip efficiency. The 
loss of round-trip efficiency is mostly originated from the pressure loss in 
reservoir and the efficiency within surface plants, while the pressure and 
temperature reduce within the injection/production wells is minor 
when the well is properly designed (e.g., by increasing the well radius) 
and thermally insulated. As for the surface plants, the mechanical effi
ciency of the compressor and expander highly influences the round-trip 
efficiency. Also, the selection and design of heat transfer enhancement 
machinery can have an important role in achieving a near-isothermal 
process. The temperature of output air will be possibly under the dew 
point with insufficient heat transfer enhancements.

Based on the economic assessment of this study, the LCOE of the 
proposed I-CAES is 0.04–0.14 US$/kWh, which is more cost-effective 
comparing to pumped hydro energy storage systems (~0.15–0.25 US 
$/kWh) and batteries (~0.15–0.30 US$/kWh) (Al Zohbi, 2022; Xu et al., 
2022). Beside of the lower LCOE than other energy storage systems, the 
proposed I-CAES can effectively reduce green-house gas emission by 
excluding the usage of combustors, which can meet the Australia’s Net 

Fig. 12. Cumulative probability of exceeding the total storage potential in the 
Central Deep area.

Fig. 13. Summary of total storage potential with round-trip efficiency. The 
storage capacity here is the sum of the storage potential of the areas with the 
RTE exceeding corresponding threshold (For example, the mean capacity is 
0.917 TWh at RTE = 50 %, which means that a total storge capacity of 0.917 
TWh could be achieved from all the sites with RTE over 50 %).

Fig. 14. LCOE map for the near-isothermal CAES in the Central Deep area.
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Zero target of achieving net zero green-house gas emissions by 2050 as 
well as a short-term target of reducing emissions by 43 % below 2005 
levels by 2030 (Parliament of Australia, 2022). Moreover, renewable 
energy especially wind energy is becoming the main source of electricity 
generation (AEMO, 2025), and CAES will be significant to reduce wind 
energy curtailment. The co-location of the large-scale I-CAES with wind 
farms will play a crucial role in balancing the differences between en
ergy supply and demand.

It is found that the machine learning model is capable of predicting 
the power and round-trip efficiency after trained by sufficient numerical 
results, which significantly reduced the computational cost for uncer
tainty analysis. The results from Monte Carlo analysis indicate that the 
geological uncertainty have significant impact on the overall perfor
mance. In summary, this study demonstrates the enormous potential of 
the proposed I-CAES systems to be adopted in aquifers under a wide 
range of geological conditions. The proposed system can be operated for 
cycle duration of 12 h, which is longer than batteries. The estimated 
overall storage potential within the studied area is over 1 TWh, which is 
capable of supporting a city with population of 5 million. Wide distri
bution of pervious aquifers worldwide also allows its strong promise of 
deployment. I-CAES is cost-effective in the consideration of its relatively 
low LCOE, minimisation of surface land usage as well as exclusion of 
combustors. The simulation and uncertainty in this study are based on I- 
CAES grids of 2 km by 2 km with fixed flow rate. Future research could 
be conducted to further investigate the impact of scalability in terms of 
system design on the I-CAES performance. This could be achieved by a 
multi-objective optimization study of the overall performance. Future 
study could also consider chemical reactions and other types of CAES 
systems such as A-CAES.
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